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Abstract  In the present work, tele-manipulation of robot arm and gripper is experimentally 
performed using inertia measurement unit (IMU) and electromyogram (EMG)-based human 
motion recognition. The movement of robot arm and motion of robot gripper is determined 
based on the measured IMU and EMG data, respectively. To overcome user dependence
which is one of main disadvantage of EMG-based motion recognition, reference voluntary con-
traction method-based normalization of measured EMG data is carried out. Training and test
data of EMG are obtained from experiments for four kinds of hand motion of four experimental
participants. After extraction of feature vectors, artificial neural network is applied for the EMG-
based hand motion recognition. Even when training data and test data are obtained from differ-
ent participants, it is confirmed that classification accuracy can be greatly improved through the
proposed simple normalization method. Finally, a real-time tele-manipulation of 6-degree-of-
freedom robot arm is demonstrated successfully by adopting the proposed user independent
human motion recognition method. 

 
1. Introduction   

Recently, various efforts have been made to utilize a robot in a dangerous environment, such 
as a medical system requiring precise and delicate work or a disaster site where direct access 
is difficult for humans [1, 2]. Various studies have been conducted to develop an excellent robot 
capable of solving a problem by recognizing the situation and acting autonomously, but there 
are still problems to be solved. As a front step of a fully autonomous robot, a lot of research has 
been conducted to perform a given task by remotely controlling the robot in various ways. Re-
search on da Vinci, a robot for surgery, can be said to be representative [3]. Joystick is used as 
the most common human-robot interface for remote control of robots, but it has disadvantages 
such as unintuitive usage, and cannot be used by people with hand or arm disorders. Research 
to remotely control a robot using motion recognition as an intuitive human-robot interface 
method is also actively being conducted. Motion recognition using a camera is the most repre-
sentative, and research using Microsoft's KINECT has been conducted in various ways, but the 
disadvantage is that the spatial limitation is large [4, 5]. Recently, studies on motion recognition 
techniques using EMG also have been actively conducted [6]. Electromyography is a signal for 
microscopic action potentials generated in the muscles and nervous system during muscle 
contraction of skeletal muscles and can be easily measured through electrodes on the skin 
surface. In particular, research is being conducted on the number of robots recognizing the 
user's intention by using a characteristic in which the EMG can be measured even in the re-
maining muscles of the body [7]. The EMG-based human-robot interface system can be classi-
fied according to whether the pattern is recognized. The first is a method of using a threshold 
value of the EMG signal as a control input signal such as force and torque, and has a limitation 
in extending multiple motion control commands [8-10]. The second pattern recognition-based 
method has the advantage of being able to distinguish multiple motions by extracting linear and 
nonlinear features to perform motion recognition or by recognizing motion using images of sur- 
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face EMG signals. Chu et al. proposed a novel real-time EMG 
pattern recognition for the control of a multifunction myoelectric 
hand from four channel EMG signals [11]. They also propose a 
linear-nonlinear feature projection composed of principal com-
ponent analysis (PCA) and a self-organizing feature map. 
Geng et al. presented that the patterns inside the instantane-
ous values of high density EMG enables gesture recognition to 
be performed merely with surface EMG signals at a specific 
instant [12]. Francesco et al. reported that it is possible to de-
code individual flexion and extension movements of each fin-
ger (ten movements) with greater than 90 % accuracy in a 
transradial amputee using only noninvasive surface myoelec-
tric signals [13]. Englehart et al. proposed wavelet-based con-
tinuous classification scheme to achieve greater classification 
accuracy for multifunction myoelectric control [14]. Bi et al. 
investigated on EMG based motor intention prediction of con-
tinuous human upper limb motion for human-robot collabora-
tion [15]. Tavakoli et al. proposed a minimalistic approach with 
only 2 EMG channels to achieve comfort and lightness of 
wearable device and adopted support vector machine as a 
classifier to construct robust hand gesture recognition system 
[16]. 

There are disadvantages to the motion recognition technique 
using EMG. The first is that the signal characteristics may be 
different for the same motion due to a decrease in magnitude 
caused by muscle fatigue when used for a long time. The sec-
ond point is that the characteristics of the EMG may vary de-
pending on the location of the electrode. Third, because the 
person's age, gender, skin thickness, and size of muscle cross-
sections are different, the measured EMG amplitude is different 
when the user is different even when measuring for the same 
motion at the same electrode location. In order to compensate 
for these shortcomings, a normalization method for EMG has 
been proposed. The most common method is maximum volun-
tary isomeric contraction (MVIC), which is based on the maxi-
mum electromyogram measured when a subject applies 
maximum contraction to the muscle, and indicates the level of 
the remaining signal corresponding to the percentage of the 
maximum value. MVIC is mainly used as a normalization 
method for motions where a large force is applied. The refer-
ence voluntary contraction (RVC) method determines the 
maximum value measured when a specific motion is taken as 
a reference value, and indicates the percentage of the remain-
ing signal corresponding to the level of the maximum value. 
This is a method that increases the sensitivity to motions that 
do not apply large force. Matsubara proposed a bilinear model, 
consist of user dependent factor and motion dependent factor, 
of EMG signal to extract user-independent features for multi-
user myoelectric interface [17]. Zhang et al. proposed user-
independent feature classification of forearm using EMG sig-
nals by using back propagation neural networks [18]. However, 
there have been few reports of research on real-time tele-
manipulation of six-degree-of-freedom robots without user 
dependence using EMG-based motion recognition. 

The main contribution of this work is demonstration of a tele-

manipulation of robot arm and gripper by using user independ-
ent human hand motion recognition. The movement of human 
arm is measured by using two IMUs which are attached on the 
upper and lower arm. The motion of human hand is measured 
by using three EMG sensors which are attached on the lower 
arm. To apply machine learning algorithm for the recognition of 
human hand motion, features are extracted from the measured 
EMG data. To achieve user independence of EMG based mo-
tion recognition, feature vectors are normalized using reference 
voluntary contraction method. Training and test data are ob-
tained from experiments for four kinds of hand motions from 
four experimental participants. When learning is performed 
using the measurement data of one experimental participant 
and the classification is performed using the measurement 
data of remaining three participants, it is confirmed that the 
classification accuracy is greatly increased by using the nor-
malized feature vectors. The effectiveness of the proposed 
method is experimentally demonstrated by performing a real-
time tele-manipulation of a 6-degree-of-freedom robot arm, and 
it is clearly confirmed that user independence can be secured 
using a normalization technique.  

 
2. Data acquisition 

The proposed process of tele-manipulation of robot arm and 
gripper using hand motion recognition is presented in Fig. 1. 
The movement of robot arm is controlled by using IMU data of 
human upper arm and forearm. The motion of robot wrist and 
gripper is controlled by using results of human hand motion 
recognition based on surface EMG data. After measurement of 
surface EMG data, features are extracted according to hand 
motions. Hand motion recognition is conducted after training 
and testing of machine learning-based classifier. The meas-
urement devices which are worn on human arm are shown in 
Fig. 2. As shown in Fig. 2(a), one IMU sensor is attached on 
forearm to measure the Euler angle in pitch direction and an-
other IMU sensor is attached on upper arm to measure the 

 
 
Fig. 1. Process of hand motion recognition and robot arm manipulation. 

 

   
 (a) IMUs (b) EMG sensors 
 
Fig. 2. Measurement devices. 

 



 Journal of Mechanical Science and Technology 36 (6) 2022  DOI 10.1007/s12206-022-0507-x 
 
 

 
2741 

Euler angle in pitch and yaw direction. As shown in Fig. 2(b) 
three EMG sensors are attached on forearm to measure the 
wrist and hand motions. The positions of the sensor are se-
lected where the muscles related to the wrist and hand move-
ments, such as flexor digitorum profundus, flexor digitorum 
superficialis, flexor pollicis longus, extensor digitorum, extensor 
pollicis longus, and abductor pollicis longus, are located. The 
experimental setup for data acquisition using EMG sensor and 
IMU is presented in Fig. 3. The measured data from EMG sen-
sors and IMUs which are attached on human arm is transmit-
ted to data receiver via wireless communication. The obtained 
IMU data is transmitted to computer via USB cable and com-
puter. After changing to analog signal, the obtained EMG sen-
sor data is transmitted to computer through wireless data re-
ceiver. The principal specifications of EMG sensor and IMU are 
listed in Table 1. In this work, the sampling rate is 1000 Hz and 
2000 Hz for IMU and EMG sensor, respectively.  

 
2.1 IMU data 

As a first step, movement tracking performance of robot arm 
according to measured 3-axis Euler angle of IMU is evaluated 
experimentally. By matching the coordinate system of the IMU 
with the coordinate system of the robot arm, the Euler angle 
measured by the IMU is used as the angle the human arm 
moved without an additional conversion process. The relation-
ship between angles of IMUs attached on human arm and 
joints of slave robot arm is shown in Fig. 4. The measured 
Euler angles of human arm and measured angles of robot arm 
from robot arm joints are presented in Fig. 5. The error be-

tween measured Euler angle of human arm and followed angle 
of robot arm is calculated by following equation. 

 
Robot Joint AngleError 1 *100
IMU Euler Angle

= − . (1) 

Table 1. Sensor specifications. 
 

Specifications EMG IMU 

Manufacturer NORAXON E2BOX 

Channels Max. 8 CH 
3-axis acc. 
3-axis gyro 

3-axis magnetometers

Sampling rate Max. 4000 Hz 1000 Hz  

Cut-off frequency of  
low pass filter 500/1000/1500 Hz 5-250 Hz 

Sensitivity 0.3 uV Gyro 250-2000 dps 

Wireless  
communication 2.4 GHz Bluetooth 2.4 GHz RF 

 

 
Fig. 3. Experimental setup for data acquisition from EMG and IMUs. 

 

 
 
Fig. 4. The relationship between robot joint and Euler angle of IMU. 
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(a) Joint 1 
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(b) Joint 2 

 

 
(c) Joint 3 

 
Fig. 5. The measured angle of human arm and robot arm. 
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Average and maximum error for three robot joints are sum-
marized in Table 2. It is clearly observed that the average error 
are very small and this result means that the movement of 
robot arm is perfectly matched to movement of human arm by 
using IMU data. The maximum error is due to the time differ-
ence when the robot arm moves according to significantly 
changed Euler angle. 

 
2.2 EMG data 

For the control of gripper motion of slave robot, EMG data 
for predefined hand motions are collected by using EMG sen-
sors. The predefined four target hand motions such as hand 
close, hand open, wrist flexion and wrist extension, are pre-
sented in Fig. 6. To recognize hand motions, EMG data of 
each hand motion are obtained for four participants in this work. 
The basic information for the participants is presented in Table 
3. Since, the method of measuring the surface EMG has a 
disadvantage that it is affected by the impedance of the skin 
rather than using an invasive electrode, the disposable alcohol 
cotton is used to remove foreign substances from the skin to 
lower the impedance of the skin. In addition, since the charac-
teristics of the EMG signal may be changed according to the 

location of the electrode, the exact location is designated so 
that the electrode can be attached to the same location. In this 
study, the most used silver electrode of 1 cm size is used. 
Three channels of EMG are measured from each experimental 
participant, and the measured EMG is in μV. In this study, a 
gain of 4000, a high pass filter of 20 Hz, a low pass filter of 
500 Hz, and a sampling rate of 2000 Hz are applied. Partici-
pants are allowed to measure EMG with their arms relaxed in a 
sitting position. EMG measurement is performed in the follow-
ing order: hand close, hand open, wrist flexion, and wrist ex-
tension. Each hand motion is repeated 5 sets, 10 times per set. 
During the repetition, the motion is performed for 1 second, 
paused for 5 seconds, and the metronome is used to allow the 
participant to recognize the proper timing. Between each set, 
sufficient rest time is given for more than 5 minutes to minimize 
errors caused by muscle fatigue. The EMG signals collected 
for each operation are stored in the form of a 2000 by 3 matrix 
using MATLAB program.  

The measured raw data of EMG is shown in Fig. 7(a), and it 
is not easy to find the characteristics of each hand motion from 
this waveform. In order to apply the measured EMG to ma-
chine learning, it is necessary to extract features from raw data. 
In this study, the moving RMS method, which is widely used in 
the time domain, is applied. The moving RMS contains the 
amplitude information of the measured signal and is expressed 
by the following equation. 

 

( ) ( )
1

2

0

1 RMSM

kRMS

RMS t raw t k
M

−

=

= −∑ . (2) 

 
Here, t is sampling index and raw(t) is the raw data of the 

EMG signal when the t-th sample is measured. MRMS repre-
sents the size of the moving window. If the size of the window 
is too small, the amount of data to be measured decreases and 
recognition accuracy decreases. In this work, the window size 
is 200 ms and the extracted RMS based feature is presented in 
Fig. 7(b). In order to reduce the real-time calculation speed of 
MATLAB program, the data stored in a matrix of 2000 by 3 is 
converted into a 1200 by 3 matrix by storing only the data up to 
the 1200th sample as the starting point where 30 % of the 
maximum value of the collected data occurs. Even though the 
EMG signal is measured under the same conditions, it has a 
characteristic that varies depending on the person, and thus it 
is difficult to apply the motion recognition method using EMG to 
several people. If the person who provided training data and 
the person who provided test data are different, it is impossible 
to accurately classify. In this study, the reference voluntary 
contraction (RVC) normalization technique is applied to over-
come this disadvantage. The RVC normalization method has 
the feature that it can increase the sensitivity even at a small 
amplitude when a specific action is taken without requiring 
much force. In the proposed RVC method, after finding the 
maximum value in the matrix of 1200 by 3 where the rms value 
is calculated, and the entire matrix is divided by the maximum 

Table 2. Error between human arm and robot arm movement. 
 

Joint Average error Maximum error 

Joint 1 0.45 5.62 

Joint 2 0.39 5.67 

Joint 3 0.59 8.59 

 
Table 3. Basic information for participants. 
 

Participants Age Gender 

A 27 Male 

B 27 Male 

C 23 Female 
D 23 Female 

 

  
 (a) Hand close (b) Hand open 
 

  
 (c) Wrist flexion (d) Wrist extension 
 
Fig. 6. Target hand motions. 
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value so that the all the element in the matrix has a value be-
tween 0 and 1. The results of normalization of the RMS ob-
tained from Fig. 7(b) is presented in Fig. 7(c). 

The RMS based features of 50 repeated measurements of 
the four hand motions of participants A and B are shown in 
Figs. 8 and 9, respectively. It is clearly observed that the mag-

nitude of RMS features of participant A and B for each hand 
motion is much different. The normalized features of the four 
hand motions of participants A and B are shown in Figs. 10 
and 11, respectively. Comparing Figs. 10 and 11 clearly shows 
that the features for each hand motion are much similar, rather 
than comparing Figs. 8 and 9. The RMS and normalized fea-
ture for participants C and D are provided in Appendix from 
Figs. A.1-A.4. 

 
3. Classification 

For the hand motion recognition using EMG data, artificial 
neural network (ANN) is applied in this work. In this study, a 
classifier is constructed using Neural Net Pattern Recognition 
Application of Deep Learning Toolbox of MATLAB program. 
This application configures the classifier by learning through 
the scaled conjugate gradient backpropagation algorithm by 
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Fig. 7. Measured EMG data and extracted features. 
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Fig. 8. RMS feature vector for EMG data of participant A. 
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Fig. 9. RMS feature vector for EMG data of participant B. 
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Fig. 10. Normalized feature vector for EMG data of participant A. 
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setting the input data matrix corresponding to the input layer 
neurons and the target data matrix representing the class in-
formation of the output layer and setting the number of hidden 
neurons. In artificial neural networks, the number of input layer 
neurons is the same as the number of input feature vectors, 
and the number of output layer neurons is the same as the 
number of classes to be classified. However, the number of 
hidden neurons can be freely set, and if insufficient or exces-
sive, it may cause underfitting or overfitting, so a process of 
determining the optimal number is necessary. In this study, the 
method of finding the number of neurons with the highest clas-
sification rate by repeatedly adjusting the number of neurons in 
the hidden layer is applied. The input layer neurons of the arti-
ficial neural network used in this study are 3600 (1200 samples 
* 3 channels), and the output layer neurons are composed of 4 
equals to the number of hand motions to be classified. The 
classification accuracies according to the number of hidden 
neurons is compared before and after normalization using 200 
(4 motions * 50 data) training data and additionally measured 
200 test data of the participant A. The classification accuracy is 
confirmed by changing the number of hidden layer neurons 
from 1 to 60, and the results are summarized in Table 4. The 
presented accuracies are the average of 10 replicate tests for 

each number of hidden neurons. It is confirmed that it has the 
highest classification accuracy when it has 40 hidden layer 
neurons. The similar classification accuracies before and after 
normalization is because the same participant’s data are used 
for training and testing.  

With the classifier learned using the data of participant A, the 
classification accuracy for the cases where the data of other 
participants is applied as test data without normalization are 
evaluated. The classification accuracy is listed in Table 5. It is 
clearly observed that the classification accuracy is significantly 
reduced compared to the case when the training data and the 
test data are of the same person. The confusion matrix for the 
classification with RMS features (without normalization) for 
participants A, B, C, and D are presented in Fig. 12. As shown 
in the confusion matrices, In the case of the hand open during 
the four hand gestures, it can be seen that although it does not 
normalize, it has relatively high classification accuracy, but the 
wrist flexion and wrist extension have very low classification 
accuracy. As mentioned earlier, the RMS-based feature with-
out normalization is characterized by the magnitude of the 

Table 4. Averaged classification accuracies for participant A. 
 

Number of  
hidden neurons 

Accuracy with  
RMS features 

Accuracy with  
normalized features 

1 49.0 48.7 

10 97.6 97.7 
20 98.1 98.6 

30 98.3 98.6 

40 98.6 98.7 
50 98.3 98.0 

60 98.2 98.5 

 

  
 (a) Hand close (b) Hand open 
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Fig. 11. Normalized feature vector for EMG data of participant B. 

 

Table 5. Classification accuracies according to participants. 
 

Test data provide Accuracy with  
RMS features 

Accuracy with  
normalized features 

A 98.0 99.0 

B 67.0 91.0 
C 63.0 90.5 

D 56.0 99.5 

Training data: participant A, number of hidden neurons: 40 

 

 (a) Participant A (b) Participant B 
 

 (c) Participant C (d) Participant D 
 
Fig. 12. Confusion matrix with RMS features. 
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measured EMG. Since there is a difference in the muscle mass 
of the participants, the shape of the feature vectors of each 
participant becomes different for the same motion, and the 
classification accuracy is decreased. 

With the classifier learned using the data of participant A, the 
classification accuracy for the cases where the data of other 
participants is applied as test data after normalization are eval-
uated and the results are also listed in Table 5. When using the 
normalized test data, it can be clearly seen that the classifica-
tion accuracy is significantly higher for all participants com-
pared to the case where the normalization is not performed. It 
was confirmed that classification accuracy can be improved to 
90 % or more by adopting normalization even when providers 
of training data and test data are different. The confusion ma-
trix for the classification with normalized features for partici-
pants A, B, C, and D are presented in Fig. 13. In the case of 
participant B, although the classification accuracy for the hand 
open motion is slightly reduced, it can be seen that the wrist 
flexion and the wrist extension motion are classified 100 % 
accurately. In the case of participant C, the classification accu-
racy of the hand close and hand open motions is not signifi-
cantly different from that before normalization, but it can be 
confirmed that in the case of the wrist flexion and the wrist 
extension motions, the classification accuracy is 100 % accu-
rate. In the case of participant D, it can be seen that only one 
case is incorrectly classified in the hand close motion and all 
the other cases are correctly classified. 

 
4. Experimental demonstration 

To confirm the superiority of the proposed EMG based hand 

motion recognition technique featuring the normalization feature 
vector, real-time tele-manipulation of a 6-degree-of-freedom 
slave robot is performed. In this work, JACO2 model of KINOVA 
is used for slave robot and a description of the joints and links is 
presented in Fig. 14. The movement of robot arm is determined 
by forward kinematics using the 3-axis Euler angle data meas-
ured from IMU sensors mounted on the human upper arm and 
forearm. The motion of robot wrist and gripper is determined by 
using results of human hand motion recognition based on sur-
face EMG data. The predefined hand motions are hand close, 
hand open, wrist flexion and wrist extension and the corre-
sponding gripper motions are gripper close, gripper open, wrist 
rotation in left and wrist rotation in right, respectively. The pro-
cedure of real-time tele-manipulation is provided in Fig. 15. The 
IMU data of arm movement and EMG data of hand motion of is 
measured in real-time from operator, participant B. For the real-
time hand motion recognition, artificial neural network algorithm-
based classifier is constructed by using normalized EMG data of 
participant A. The classifier is realized by MATLAB program. 
The photograph of the robot arm tele-manipulation is presented 
in Fig. 16. The movie clips of real-time tele-manipulation of 

 (a) Participant A (b) Participant B 
 

 (c) Participant C (d) Participant D 
 
Fig. 13. Confusion matrix with normalized features. 
 

 
 
Fig. 14. Photograph of the slave robot. 

 

 
 
Fig. 15. Procedure of real-time tele-manipulation of robot arm. 

 

 
 
Fig. 16. Photograph of robot arm tele-manipulation. 
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robot arm are presented in Refs. [19, 20]. Video in Ref. [19] is 
movie clip for tele-manipulation using RMS based features, 
without normalization of EMG data. It is observed that only five 
times of success is achieved in nine attempts as similar pattern 
as shown in Fig. 12(b). Video in Ref. [20] is movie clip for tele-
manipulation using normalized features. It is also clearly ob-
served that ten times of success is achieved in eleven attempts 
as similar as shown in Fig. 13(b). By comparing these two re-
sults, it is concluded that high classification accuracy can be 
achieved by applying normalization of measured EMG data 
when the training data and test data are obtained from different 
person. The effectiveness of the proposed method for real-time 
user independent tele-manipulation of robot arm is also clearly 
demonstrated.  

 
5. Conclusions 

The demonstration of a tele-manipulation of robot arm by us-
ing user independent human hand motion recognition was 
carried out in this work. The movement of a 6-degree-of-
freedom robot arm was followed by measured human arm 
movement and the wrist and gripper motion of the robot was 
determined by recognizing human hand motions. The move-
ment of human arm was measured by using IMUs which are 
attached on the upper and lower arm. The human hand mo-
tions were measured by using EMG sensors which are at-
tached on the lower arm. For the recognition of predefined four 
kinds of hand motions, a classifier based on artificial neural 
network was constructed and utilized. To achieve user inde-
pendent characteristics in hand motion recognition, normaliza-
tion of RMS based feature vector had been proposed and its 
superiority was confirmed through experiments with four par-
ticipants. By applying normalized feature vectors, it was verified 
that classification accuracy can be much improved to more 
than 90 percentage even though the training data and test data 
were obtained from different person. Finally, the effectiveness 
of the proposed method is demonstrated by performing a real-
time tele-manipulation of a 6-degree-of-freedom robot arm, and 
it was clearly confirmed that the tele-manipulation of robot arm 
can be conducted successfully regardless of the user even 
when the EMG based motion recognition was used. 
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Fig. A.1. RMS feature vector for EMG data of participant C. 
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Fig. A.2. RMS feature vector for EMG data of participant D. 
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Fig. A.3. Normalized feature vector for EMG data of participant C. 
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Fig. A.4. Normalized feature vector for EMG data of participant D. 
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