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Abstract  Artificial intelligence (AI) in machine tools offers diverse advantages, including
learning and optimizing machining processes, compensating errors, saving energy, and pre-
venting failures. Various AI techniques have been proposed and applied; however, many chal-
lenges still exist that inhibit the use of AI for machining tasks. This paper deals with different
types and usage of AI technologies in machining operations such as predictive modelling, pa-
rameter optimization and control, chatter stability, tool wear, and energy conservation. We dis-
cuss the challenges of AI technologies, such as data quality, transferability, explainability, and 
suggest future directions to overcome them.  

 
1. Introduction   

In the manufacturing industry, there is growing interest in the implementation of machines 
that are capable of learning and adapting to their environment to optimize manufacturing proc-
esses. This new wave of technology has been given many names, including “Industry 4.0”, 
“digital manufacturing”, “cyber physical systems”, “internet of things (IoT)” and “smart factories”. 
Regardless of names, embedding sensors into manufacturing tools and analyzing the resulting 
data with AI can address many shortcomings in modern manufacturing processes; machines 
that can learn from their work can improve efficiency and reduce production costs by optimizing 
workflow, enabling predictive maintenance before a failure, and increasing precision of machin-
ing processes. This will result in productive and adaptable production lines capable of meeting 
the ever-changing needs of consumers. 

A report by PricewaterhouseCoopers indicated that 91 % of industrial companies are invest-
ing in digital manufacturing [1]. Furthermore, it was reported that over US$900 billion was in-
vested in such initiatives in 2016 [2]. One particular area of interest for the application of AI is 
machining or subtractive manufacturing. Subtractive manufacturing accounts for an estimated 
5 % of the developed worlds’ GDP, with a market size that is expected to reach US$43.73 bil-
lion by 2026 [3]. There is also strong economic motivation for the monitoring of tool condition 
and process parameters using sensors and AI. It was projected that the manufacturing sector 
in the United States alone would spend US$6.99 billion on machine tools in 2020 [4]. Extending 
the tool life by optimizing the machining process and accurately predicting when to replace new 
tools would reduce expenses related to replacing the tools. The implementation of AI could also 
cut costs associated with minimizing failures and machining errors. A majority of manufacturing 
defects result from human errors. Thus, enabling machines to learn and adapt to optimize ma-
chining processes could result in significant economic benefits. 

The development of this new technology, however, presents its own challenges. AI models 
require large amounts of accurate data to operate successfully. If the dataset given to a model 
is too small or contains inaccuracies, then the model will provide inaccurate results. It is also 
difficult to transfer AI models between different machines. Additionally, the reasoning of AI 
models is not easily understood since they do not use traditional, physics-based approaches to   
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solve problems. Therefore, AI models must be equipped with 
sufficient reasoning algorithms to mitigate false alarms when 
performing diagnostics. 

This paper provides an overview of the use of AI in machin-
ing processes. The motivations behind the use of AI are dis-
cussed for solving different problems, along with current appli-
cations of AI in machining research. In the context of subtrac-
tive manufacturing, researchers have been applying various AI 
models to achieve machine automation, sometimes comparing 
different models for fulfillment of certain objectives. Some ex-
amples include chatter in machining operation, tool wear and 
breakage mitigation, parameter optimization, error compensa-
tion, and energy conservation. Several researchers have been 
investigating new techniques such as automatic data collection 
and data analytics, to address these traditional machining chal-
lenges. The future of AI implementation is outlined including 
challenges facing current models, suggested improvements 
and opportunities. 

 
2. Different types of artificial intelligence 

approaches 
In order to apply AI to machining systems in the right place, it 

is necessary to identify the types of AI. AI is subdivided by 

‘cognitive level’ and ‘modeling implementation stage’. Fig. 1 
shows a schematic diagram of how the types of AI algorithms 
are applied to the applications of smart machining covered in 
this paper. The algorithms are arranged according to the depth 
of each model architecture. A deeply designed algorithm can 
take into account more variables and produce high accuracy 
trained results, but it requires more data and can easily lead to 
overfitting error. Shallow algorithms are relatively inferior to 
deep algorithms in terms of the training performance but can 
work well with small amounts of data and generally provide a 
more interpretable reasoning process. 

AI’s cognitive level, the first aspect of AI categorization, can 
be related in terms of similarity to human’s cognitive level, and 
it is classified into four levels: Reactive, limited memory, theory 
of mind, and self-aware [5, 6]. Table 1 illustrates the cognitive 
levels. 

The second criterion for AI categorization is how the model is 
built, and from this perspective, AI models are divided into rule-
based and learning-based. The rule-based models are estab-
lished by the logical reasoning process, generally IF-THEN 
rules, based on the corresponding domain knowledge, as ex-
pert systems. Fuzzy theory is a representative logic for the 
rule-based model that infers a proper result by using member-
ship functions and defuzzification rules defined by experts. The 

 
Fig. 1. Schematic diagram of applications of AI algorithms for smart machining. 
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rule-based AI models mostly fall into the ‘reactive machine’ 
phase introduced in Table 1 and thus have the advantages of 
transparent decision-making and easy modification. However, 
when the number of variables involved in the result is vast, it is 
difficult to define clear logic, and the performance of the model 
becomes poor. If the target information to be inferred by AI has 
a defined causal relationship and requires a clear reasoning 
process, a rule-based model is worth considering. 

The learning-based approach, also known as machine learn-
ing, is a modeling methodology that belongs to the 'limited 
memory' stage in terms of cognitive level. The machine learn-
ing can be said to apply to majority of AI systems in use today. 
Depending on the learning principle, machine learning models 
are classified into supervised, unsupervised, and reinforcement 
learning methods [7]. 

Supervised learning is a methodology that trains AI using a 
data set in which the correct answer is matched to each data 
sample and makes the model to output an appropriate result 
for a new data. It is advantageous for efficient and accurate 
learning by self-exploration of the correlations between data 
and output information. However, it is not easy to prepare a 
well-organized training data set for supervised learning, and it 
requires tremendous data-processing work if the amount of 
data is very large.  

Meanwhile, an unsupervised model is trained to identify the 
characteristics of a data set using only data without designated 
answers and to assign the specific features for new data. This 
type does not require the labor-intensive work in the data 
preparation step unlike supervised learning, but it is sometimes 
difficult to understand the exact meaning of results. Therefore, 
in recent years, some AI modeling methods in which super-
vised and unsupervised learning are integrated to compensate 
each other's shortcomings have been proposed. 

During reinforcement learning, an AI agent performs repeti-
tive actions in a given environment based on a behavior strat-
egy called policy and trains the model to be optimized through 
rewards for actions. Well-trained AI agents often provide inno-
vative solutions that humans have not thought of, but setting up 
an independent and complete environment for reinforcement 
learning is very difficult, and the training process can take days 
to even weeks. In the recent smart manufacturing field, a con-
cept of creating a reinforcement learning environment using the 
digital twin system has been proposed [8, 9]. 

On the other hand, a number of notable AI models that sup-
port industrial decision-making have been recently studied 
based on a deep learning approach. The deep learning refers 
to an AI modeling method using neural networks with many 
hidden layers, and it has emerged as a major machine learning 
field since the publication of Hinton’s paper in 2006 [10], which 
confirmed that even deep-layered neural networks can be effi-
ciently trained if the initial values are well defined. The deep 
learning algorithms are characterized by including self-feature 
extraction layers customized to specific data types to effectively 
learn high-dimensional data; convolutional neural network 
(CNN) specialized for image recognition and recurrent neural 
network (RNN) tailored for natural language processing are 
representative. Therefore, in case of training big data to solve 
complex problems lacking domain knowledge, the deep learn-
ing algorithms often show strong performance. However, the 
deep learning requires a sufficient amount of training data to 
avoid overfitting, and a trained model tends to be difficult to 
interpret, so the algorithms should be carefully selected as AI 
modeling methods. 

As a third perspective, a pragmatic AI categorization scheme 
focusing on the perspective of applying algorithms to machin-
ing is introduced. This has been defined by reorganizing the 
purpose and characteristics of the AI algorithms based on sev-
eral review papers that summarized a large number of algo-
rithms applied to machine tools and smart machining [11-13]. 
Consequently, AI algorithms could be divided into five types of 
purposes: classification, prediction, clustering, visualization, 
and generation, according to the form of output information, 
which is an essential factor in selecting suitable algorithms.  

Table 2 illustrates a number of representative algorithms for 
each category, and their characteristics. 

Classification is the main purpose of applying AI algorithms. 
These algorithms output the corresponding class for the input 
data, and they are mainly applied to detect and diagnose faults 
or abnormal conditions. The softmax-based multilayer percep-
tron (MLP), which has the same representation as standard 
artificial neural networks (ANN), is the most popular learning-
based classification algorithm. Support vector machine (SVM), 
k-nearest neighbor (KNN), and naïve Bayes classifier are also 
frequently used in the case of classifying five or fewer classes. 
Convolutional neural network (CNN) series and ensemble se-
ries including random forest (RF) are widely applied to classify 

Table 1. Types of AI's cognitive level. 
 

Reactive machine Limited memory Theory of mind Self-aware 

- Responds to external stimuli by 
programmed logic 

- Shows understandable rationales 
for the result 

- Suitable for simple tasks 
- Developer must be an expert for 

the tasks 
- Most of AIs before machine learn-

ing falls into this level 

- Makes new decisions through 
memories of previous experiences

- Analyzes the new data by pattern 
recognition 

- Able to handle complex and difficult 
problems 

- All existing AI models come under 
this level 

- Understands fundamental meaning 
of tasks 

- Interacts with human intentions and 
emotions 

- Explores comprehensive and fun-
damental optimum 

- No practical cases yet 

- Self-development based on human-
like or higher cognitive abilities 

- No longer relies on human educa-
tion 
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more than five classes or to extract further detailed information. 
Rule-based algorithms such as decision tree (DT) and fuzzy 
inference system (FIS) can also deal with classification prob-
lems, but their performance is insufficient to handle recent 
complex systems. Therefore, hybrid-type algorithms such as 
adapted neuro-fuzzy inference system (ANFIS) have been 
proposed. These classification algorithms have the powerful 
advantage of being able to easily utilize the models because 
they provide a deterministic answer selected from trained la-
bels. On the other hand, there is a limitation - a result of a clas-
sifier is only within the predesignated labels even if an outlier 
that greatly deviates from the distribution of trained data set is 
entered into the model. To overcome this limitation, classifica-
tion models are occasionally designed in conjunction with clus-
tering or visualization models to periodically update the label 
set or provide information about the data samples outside of 
the typical data distribution. 

Predictive algorithms output real values, so they can be ap-
plied to objectives such as status monitoring, process optimiza-

tion, remaining useful life (RUL) prognosis, etc. Artificial neural 
network (ANN) as multilayer perceptron (MLP) is the most 
widely used algorithm in predictive models so far and is often a 
standard for comparison with other proposed modeling tech-
niques. Polynomial regressions, and evolutionary algorithms 
(EA) as genetic algorithms (GA) are found in many applications 
for relatively simple tasks. Since the predictive models are 
constructed by uncategorized real values, it is very sensitive to 
outliers in the modeling process, so sophisticated data pre-
processing such as normalization is required. In particular, 
processing high-dimensional data needs expertise in data sci-
ence. Nevertheless, predictive models can take major roles in 
AI-based smart systems because they are very versatile. 

Clustering algorithms output the result of classifying data 
samples with similar properties into the same group in an un-
supervised manner. This type is mainly applied to identify out-
liers or obtain some beneficial insight from collected data. Di-
mensionality reduction techniques are sometimes used to-
gether to compensate for the weak point of clustering models, 

Table 2. Types of AI algorithms and their characteristics from the application point of view. 
 

Categories Algorithms Characteristics 

·Artificial neural network (ANN) 
·Support vector machine (SVM) 
·Decision tree (DT) 
·K-nearest neighbor (KNN) 

- Most frequently used classification algorithms 
- Generally suitable for larger datasets in the following order: ANN > SVM > DT > 

KNN 

·Naïve Bayes classifier 
·Logistic regression 
·Hidden Markov model (HMM) 

- Probability-based classification algorithms 
- Effective modeling with relatively small datasets 

·Adaptive neuro-fuzzy inference system (ANFIS) - Hybrid version of fuzzy inference system and ANN to reduce the need for domain 
knowledge 

- Effective for classifying relative levels 

Classification 

·Convolutional neural network (CNN) 
·Random forest (RF) 

- Popular deep learning and ensemble algorithms 
- Suitable for large datasets 

·Artificial neural network (ANN) 
·Polynomial regressions 

- Most frequently used prediction algorithms 
- ANN requires larger datasets than regressions do 

·Support vector regression (SVR) 
·Decision tree regression (DTR) 

- SVM and DT combined with regression principle to transform the classifier into 
predictive models 

·Evolutionary algorithms (EAs) - Effective in tracing the optimal value within a set boundary condition 

·Extreme learning machine (ELM) - Derived version of ANN with improved learning efficiency of gradient-based back-
propagation 

Prediction 

·Recurrent neural network (RNN) 
·Long-short term memory (LSTM) 

- Suitable for prediction of values with sequential meaning (e.g. prediction of remain-
ing useful life) 

·K-means clustering - Representative clustering method based on statistics 
- Need to pre-define the number of clusters [14]  

Clustering ·Mean-shift clustering 
·Density-based spatial clustering of applications 

with noise (DBSCAN) 

- Valid when the number of clusters cannot be pre-defined or when shifting specific 
statistics in uneven data distribution [14]  

·t-Stochastic neighbor embedding (t-SNE) 
·Principle component analysis (PCA) 

- Unsupervised dimensionality reduction method 
- t-SNE is usually more effective at visualizing the distance between each data sam-

ple [15]  Visualization 
·Partial least squares (PLS) 
·Linear discriminant analysis (LDA) 

- Supervised dimensionality reduction method 
- Require labeling of data samples 

Generation 
·Generative adversarial network (GAN) 
·Autoencoder (AE) 

- Applied when virtual data similar to actual one is required (e.g. class imbalance 
problem) 

- Require large datasets 
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which is poor performance in high-dimensional data. Since the 
clustering models provide only qualitative results in terms of 
data analysis, it is difficult to apply them to automated systems 
alone, but they can be applied as a preprocessing step to im-
prove the performance of classification and prediction models. 

The fourth type, visualization algorithm, is applied to monitor 
the change of data trends or to analyze the trend in conjunction 
with a clustering algorithm. Visualization models output the 
result of reducing high-dimensional data to three or less di-
mensional data that humans can visually perceive and are 
divided into models that learn in supervised and unsupervised 
manners. 

Generative algorithms have recently attracted great attention 
in the field of industrial AI application, where it is difficult to 
obtain a satisfying data set. While the previous four types of 
algorithms output information, whether it is quantitative or quali-
tative, the output of a generative model is data that is similar to 
real data but does not actually exist. There are three main rea-
sons why data generation is necessary for the industrial fields 
including machining: insufficient supply of data, class-
imbalanced data sets, and irregular data collection. To cope 
with low data quality, approaches at the data level such as data 
imputation have been conventionally used, but many ap-
proaches at the algorithm level focusing on generative models 
also have been proposed recently. The generative adversarial 
network (GAN), which has raised the generative type to one of 
the main algorithmic categories, is trained to create virtual data 
close to actual data samples in the distribution of high-
dimensional data, and the performance of data imitation is 
gradually updated to be indistinguishable from real data by a 
discriminator. Autoencoder (AE) is also a popular generative 
algorithm that produces a representation similar to input data 
through a reduced encoding network using an unsupervised 
method. These generative algorithms can perform important 
roles in solving fundamental problems of AI models that highly 
depend on the data quality. Meanwhile, like how a photograph 
of virtual people is seen and judged to be similar to real peo-
ple’s appearance by human beings, the generated virtual data 
should be determined to be similar to actual data by humans or 
more accurate criteria, especially before utilizing it to train other 
AI models. However, for the raw data from industrial sensors, 
such as vibration and noise, that kind of reliable judgement is 
nearly impossible, and there is no way other than relying on the 
stochastic similarities used in the modeling process. Therefore, 
to improve the reliability and utilization of generative algorithms 
in industrial sites, further studies related to data quality issues 
will be consistently needed in the future. 

Different types of AI were introduced according to three kinds 
of perspectives. From the first perspective, AI was divided into 
four stages depending on the level of thinking ability to be able 
to recognize things, and nearly all existing AI models have 
remained in the second level. The second point of view was 
the difference in the principles under which AI models were 
constructed, and the learning-based approaches have been 
most widely used in recent years due to applications that re-

quire consideration of complex variables. The classification 
criterion from the third perspective was the form of information 
that the algorithm outputs, and representative algorithms for 
each type and some hybrid manners that complement each 
other’s types were briefly introduced. Understanding these 
classification schemes is expected to support customized AI 
applications for various objectives of smart machining and 
machine tools. 

 
3. AI in machining 

In order to improve the quality and productivity of machining 
operations, both preventive maintenance and corrective ac-
tions must be undertaken. Often, chatter vibrations limit the 
overall machining productivity rather than the machine tool 
torque or speeds. Moreover, errors, tool wear and breakage, 
tool path or process optimization, and energy conservation 
need to be addressed. Traditionally, physical model-based 
approaches have been used to overcome these problems; 
however, there have been limitations in solving the challenges 
due to non-linearities, varying parameters, and uncertainties. 
Advances in AI methods in machining and machine tools offer 
the potential to overcome these challenges by collecting and 
analyzing appropriate data. This section investigates the im-
plementation of AI and other smart functions from the perspec-
tives of traditional machining challenges, improvement oppor-
tunities, and controllable parameters. 

 
3.1 Chatter vibrations management 

Variation of chip thickness during cutting operations results in 
a self-excited vibration called regenerative chatter vibration. 
This phenomenon can decrease the efficiency of machining 
processes and results in poor quality of finished products. 
Therefore, chatter stability analysis is required prior to starting 
any machining operation in order to assess whether the proc-
ess generates chatter or not. There are many factors affecting 
chatter stability including machine-tool dynamics, cutting tool 
geometry, cutting conditions, and workpiece material. Chatter 
could be nonlinear at low cutting speeds, which requires the 
inclusion of process damping in the models. Fig. 2 shows a 
two-degree-of-freedom (2DOF) milling operation model. This 
physics-based analytical model is used to analyze chatter with 
a frequency response function of structural dynamics and 
mechanistic coefficients of the force model, along with the 
number of teeth, diameter, and radial depth of cut. Stability 
analysis using a physics-based analytical model, however, has 
limitations in accurately predicting due to non-linearity, chang-
ing dynamics from rotational speeds, and changes of cutting 
constants due to the magnitude of instantaneous chip thick-
ness and orientation of the vibrating tool or workpiece [16]. 

Few AI techniques have been proposed for chatter stability 
analysis and prediction. Cherukuri et al. [16] developed an 
artificial neural network (ANN) to model stability in turning. A 
data set that trained the ANN was generated from an analytical 
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physics-based stability limit. In the case of chatter prediction, 
the problem is of binary classification, since the output predicts 
whether a given set of inputs leads to chatter or not. A model 
was defined in the test domain of spindle speed and chip thick-
ness in which experimental stability results are collected and 
the ANN model uses those to update in training. The gradient 
descent method is a way for updating the weights at each neu-
ron, which includes the derivative of error with respect to the 
weight. A learning rate can be used to control the magnitude of 
correction. Due to the complexity of the gradient calculation 
that can arise from an ANN with multiple hidden layers, the 
approach used the resilient backpropagation algorithm that has 
a different learning rate for each weight, and during the training 
process, the rates can be adjusted to accelerate convergence. 

Furthermore, only the signs of derivatives were used in place 
of derivatives. The ANN considered had two hidden layers with 
six neurons in each layer. An analytical turning stability limit 
was used to generate training data from the frequency re-
sponse function (FRF), mechanistic cutting coefficients, and 
the geometry. The training data set generated from the analyti-
cal model consisted of 2001 points, using the stability boundary 
depicted in the Fig. 3(a). After training, using spindle speed and 
limiting chip width as inputs, the predicted stability boundary is 
shown in Fig. 3(b) in comparison with the actual boundary. The 
result is not accurate near lobe peaks and some troughs. The 
overall accuracy of the model is 99.4 % using a test data set of 
501 points [17]. 

Karandikar et al. [18] used Bayesian machine learning to 
predict chatter stability in milling, using the criteria of spindle 
speed and axial depth of cut. Experiments were used for train-
ing, which updated the probabilities using Bayes’ rule. Fu et al. 
[19] used deep belief network trained with vibration signal from 
end milling to predict chatter stability. The training was done 
with greedy layer-wise strategy, where optimal choice was 
made one layer at a time, and fine tuning of the model was 
done with back propagation. The concept of using AI ap-
proaches in chatter prediction has been proven for standalone 
conditions by considering the process parameters. Opportuni-
ties exist to extend the AI predictions for more variables, such 
as process damping. This will improve the applicability to a 
wider range of scenarios. 

Neural networks using input data from signal analysis on 
piezoelectric accelerometers were used to develop data-driven 
AI models to detect slot milling stability. Signals from the sen-
sors were processed using multiband filtering resonance, then 
went through the envelope treatment to increase signal to 
noise ratio and sensitivity. The resulting features were sepa-
rately classified by neural networks built on a radial basis func-
tion and multilayer perceptron [20]. A vector based on the 
standard deviation of wavelet transforms and the frequency 
band’s wavelet packet energy ratio was developed for chatter 
detection in conjunction with a piezoelectric accelerometer in a 
boring process. For pattern recognition, a support vector ma-
chine (SVM) with a radial basis function kernel was generated 
from the vector, which classified three categories: stable, tran-
sition, and chatter. A state recognition accuracy of 95 % was 
achieved after training with experimental data [21]. This tech-
nique can be used with, for example, cutting forces and spindle 
vibration in frequency and discrete time domain. Continuous 
wavelet transform (CWT) was used on signals from a dyna-
mometer in end milling to convert them to two-dimensional 
scalogram images, that represent frequency variation with time. 
A convolutional neural network (CNN) was served with the 
scalogram inputs to identify stable, transition, and chatter 
states, with accuracy of 99.1 % [22]. Data from piezoelectric 
vibration and force sensors, and acoustic emission sensors for 
machining conditions, and laser displacement sensor for sur-
face, were used to train a support vector regression model to 
relate the phenomena in grinding operation. The result was 

 
Fig. 2. 2DOF milling operation (left) and chip thickness variation during 
operation (right). 
 

(a) 

 

 
(b) 

 
Fig. 3. Chatter stability using ANN: (a) ANN training; (b) predicted decision 
boundary [17]. 
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used to show alarm for roughness with accuracy of 85 % [23]. 
Unsupervised learning approach was also attempted. Dyna-
mometer signals from end milling thin-walled parts were unla-
beled and compressed by a deep autoencoding process. Then 
hybrid clustering based on density and distance metrices was 
used on the compressed signals to detect chatter with accu-
racy of 95 % [24]. 

With the AI models having shown ability to see vibration from 
the standalone conditions, there is also research into the appli-
cability of transfer learning to see whether the ability can be 
maintained when the cutting condition changes. Yesilli et al. 
[25] separately applied wavelet packet transform (WPT) and 
ensemble empirical mode decomposition (EEMD) to data from 
an acceleration sensor placed on the toolholder of a lathe. The 
two methods were combined with support vector machine 
(SVM), logistic regression, random forest (RF) classification, or 
gradient boosting, through recursive feature elimination. Trans-
fer learning capability was tested by operating in other configu-
rations with varying stickout length. It was found that when the 
configuration stayed the same, WPT and EEMD can each 
achieve accuracy reaching as high as 94 % and 95 %, respec-
tively; when the cutting condition changed, EEMD was found to 
outperform WPT with accuracy reaching up to 95 %. 

The results of chatter prediction can be used for machine op-
timization. The self-optimizing developments for chatter con-
sideration are introduced. Tunc [26] described an optimization 
technique for a five-axis milling process for the purpose of 
avoiding chatter, while also considering cutting forces and scal-
lop height. For stability consideration, variable cutting depth 
was implemented, which also reduced cycle time. The decision 
workflow is shown in Fig. 4. The optimization was concerned 
with tool path generation. Stock shape, stock dimension, and 
tilt angle can also be adjusted to increase stability [27]. Chao et 
al. [28] similarly updated tool orientation for the purpose of 
chatter-free conditions in five-axis ball end milling. Yuan et al. 
[29] used historical displacement information from a laser sen-
sor in three-axis milling operation to train a Bayesian network. 
Then a predictive controller is developed to mitigate vibration 
while also taking into account deformation of the workpiece by 
setting depth of cut. 

Although analytical physics models have been made to re-
late machining stability to the process parameters, they contain 
many assumptions and conventionally do not consider nonlin-
earity effects. AI models have shown the potential to overcome 
these limitations and to predict complex behaviour accurately. 

Opportunities exist to further extend the models to include 
automatically identifying dynamic parameters using AI. On-line 
chatter detection has also been explored, and the results can 
be used in the process optimization in real time by changing 
spindle speeds or cutter position. More sensor technologies in 
addition to the conventional force sensors are experimented 
with to enable this function, with signal processing AI algo-
rithms and recognition. In addition to changing the process to 
suppress vibration, active damping or stiffener are also being 
experimented with at the cutting tool or toolholder. 

Since chatter stability is affected by many factors, a success-
ful algorithm in one operation might not be successful in an-
other operation. This creates the issue of transferability ex-
plained in more detail in a later section that needs to be ad-
dressed in order to ensure practicality. Self-optimizing mecha-
nisms and AI approaches have shown ability to recognize chat-
ter, and opportunities of enhancement and integration ideas for 
further research. 

 
3.2 Error measurement and compensation 

With the increasing demand for high accuracy of machine 
tools, several researchers investigated error compensations. 
Accuracy is affected by error sources during the machining 
process [30]. There are several error sources such as geomet-
ric, kinematic, thermal and tool wear, etc. One of the principal 
factors of the inaccuracy in machine tools is thermal error 
caused by the thermal deformation [31, 32]. This accounts for 
40~70 % of inaccuracy in the machine tools. Thus, it is essen-
tial to reduce thermal deformation error for precise processing. 
Also, mitigating high temperature can improve tool wear. In 
general, there are two types of heat sources in a machine tool 
structure, an internal source generating heat inside the ma-
chine and an external source generating heat with the sur-
rounding environment. In order to minimize these thermal er-
rors, various methods have been proposed such as thermal 
error avoidance, thermal error control, and thermal error com-
pensation. Among them, thermal error compensation is the 
more effective, convenient and cost-efficient method. 

Thermal compensation is a method that adjusts the position 
of a machine’s axis by an amount equal to the thermal error at 
a particular time. For measuring the temperature and thermal 
error values, temperature sensors and displacement sensors 
are usually used to collect the data [33]. Variations of tempera-
ture are measured by temperature sensors and thermal defor-
mation data is collected through the deformation sensors on 
the spindle and overall frame of system. Selection of the ap-
propriate sensors is also important, but it is essential to effi-
ciently locate the sensors and select the number of them. 
Therefore, there are a few ways to improve accuracy by utiliz-
ing methods such as fuzzy clustering for proper thermal sensor 
selection [34]. A large number of temperature sensors are 
needed to cover the entire machine tool system and structure. 
Based on the data collected from the sensor, the thermal state 
of the machine tool is monitored. The overall conditions of the 

 
Fig. 4. Decision approach for chatter avoidance tool path modification [26].
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machine are verified in real-time, and the thermal compensa-
tion scheme is adopted during the machining. 

Despite many efforts using theoretical thermal models, they 
may not be accurate enough to provide sufficient information 
on the boundary conditions of the machine tool and the heat 
generation rate from various machining conditions. The rela-
tionship between the thermal error and temperature field is 
nonlinear. AI models can learn complex nonlinear relations and 
efficiently process inaccurate data. It can increase the accuracy 
and improve the limitations of existing models. Therefore, sev-
eral researchers have been investigating prediction models for 
thermal errors in machine tools using empirical model struc-
tures with an AI method. Thermal error compensation has 
been implemented mainly by applying compensation values 
computed online via a thermal error model to machine tools in 
real-time. The error compensation value is obtained by using a 
regression method/AI algorithm based on the acquisition of 
sensor signals for verifying the thermal deformation and cali-
bration origin of machine tools during the machining process. 
Fujishima et al. [35] proposed a novel thermal displacement 
prediction and virtual compensation method in turning using 
convolutional neural network (CNN). The method considered 
ambient temperature change, and heat generation from cutting, 
spindle rotation and axes movement. For changing the com-
pensation weight adaptively, reliability evaluation based on 
Bayesian dropout was used in thermal displacement prediction. 
Different types of ANNs have been developed for thermal error 
compensation modeling such as cerebellar model articulation 
controller (CMAC) [36, 37]. Yang et al. [36] proposed a CMAC 
neural network algorithm that systematically learns to search 
for the characteristics of nonlinear interactions between the 
thermal errors and temperature area on the structure. Ma et al. 
[38, 39] also improved the accuracy of their model by using 
particle swarm optimization (PSO) with backpropagation (BP) 
neural networks. By thermal compensation based on this 
model, the dimensional error was reduced and the surface 
quality was improved. Li et al. [33] developed a thermal error 
prediction model for a spindle system using improved particle 
swarm optimization (IPSO) with a back propagation (BP) neu-
ral network to improve the low accuracy and poor convergence 
of the BP model. The IPSO-BP prediction model increased the 
prediction accuracy and had better generalization ability. The 
grey neural network model was proposed to improve the pre-
diction accuracy of grey system models since conventional 
models that consist of the least square method were not suit-
able for solving the nonlinear thermal errors problem [40-43]. 
Liu et al. [44] used a four-stage framework that included bidi-
rectional long short-term memory (BiLSTM), feedforward neu-
ral network, and max pooling, to model thermal error in hori-
zontal milling. The model framework was used for compensa-
tion, in which the depth variation due to thermal error was re-
duced by 85 %. Chengyang et al. [45] proposed a novel multi-
classification CNN model of spindle thermal errors, unlike the 
traditional empirical model. The thermal image was used for 
predicting spindle thermal errors. It shows 90~93 % prediction 

accuracy and is higher than that shown by the fully connected 
BP neural network. 

Recently, various research has been proposed about error 
prediction and compensation based on the digital twin. It is a 
challenge to predict the error for a certain machining when the 
machine tool and numerical control (NC) program are deter-
mined. Liu et al. [46] proposed a method of the time-varying 
error prediction and compensation for the movement axis of 
the CNC machine tool based on the digital twin, which was 
built from heat transfer theory. The framework is the combina-
tion of digital twin of milling grooves and holes, and time-
varying error compensation, and the 3D real-time presentation 
for the thermal deformation of the movement axis is created. 
Then, it can predict the time-varying error for the movement 
axis in the future machining. Liu et al. [47] proposed a digital 
twin system of thermal error control for a case of grinding a 
large-size gear profile. The digital twin system was developed 
using a new cloud-haze computing architecture. A gated recur-
rent unit (GRU) optimized by a bat algorithm was embedded in 
the model, and was trained with data fed from temperature and 
position sensors placed around the machine. It can solve the 
serious problem of the efficient processing of large-volume 
data in the industrial internet environment that has characteris-
tics such as limited bandwidth and latency. 

Dimensional errors of the machined part cause problems 
such as inability to assemble, quality deterioration, and vibra-
tion of the product after assembly. Also, dimensional errors due 
to inaccurate measurement of the workpiece before machining 
can affect tool wear and lead to reduced tool life. Traditional 
methods of dimension measurements are manual measure-
ments using tools such as vernier caliper, tape measure or 
micrometer. Though the traditional measurements are simple, 
they require additional time and labor for measuring, and accu-
racy of measurement is affected by the workers. Nowadays, 
digital image processing technology can be used to measure 
dimensions of objects. A non-contact dimension parameter 
measurement system was realized using machine vision and 
image processing [48]. Machine vision and image processing 
were used not only to measure the dimension of products, but 
also to improve the accuracy of measuring physical defects 
such as cracks. A method to improve the accuracy of crack 
length measurement based on machine vision was proposed 
[49]. As digital image technology was applied to measurement, 
the images were utilized in AI algorithms to measure dimension. 
In addition, AI algorithms based on convolutional neural net-
works (CNN), which are most suitable for using images, were 
mainly used to measure dimensions. 

A dimension measurement system of objects using deep 
learning with digital images was developed [50]. They used the 
mask region based convolutional neural network (CNN) to 
detect all objects to be measured and distinguish segments for 
each object on images from the camera. To get the two-
dimensional sizes of objects, they used digital image process-
ing to extract the edge contours of objects for obtaining mini-
mum bounding rectangles of the objects. The advantage of a 
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measuring system based on AI is that it can measure several 
objects in a short time, which can improve productivity. But a 
challenge is that image processing technology is needed to 
measure the dimensions of an object. Also, the measurement 
is limited to the resolution of image. Fig. 5 illustrates the vision-
based measurements using AI. 

Predicting machining quality and errors can replace the 
measurement process. It can reduce the process time and the 
effort for measurement, so productivity improvement can be 
expected. Surface roughness is the major index of the product 
quality. Traditionally, surface roughness is measured using a 
form tracer system by contacting surfaces using a stylus, or a 3-
dimensional measurement system machine using a microscope. 
Recently, to reduce additional processes for measuring surface 
roughness, the surface roughness is predicted through the AI 
method. Adaptive network-based fuzzy inference system 
(ANFIS) can be especially useful to deal with nonlinear mapping. 
Thus, ANFIS is considered a suitable AI method for prediction 
of surface roughness. ANFIS was applied as a model to predict 
surface roughness in end milling using parameters such as 
spindle speed, feed rate, and depth of cut [51]. A system to 
predict surface roughness for the end milling process using 
ANFIS was developed [52], and a hybrid Taguchi-genetic learn-
ing algorithm (HTGLA) was applied in the ANFIS to determine 
the suitable membership functions and optimal parameters to 
investigate the effectiveness of predicting surface roughness. 
The machining parameters such as spindle speed, feed rate, 
and depth of cut in end milling were input variables of the ANFIS 
and surface roughness was output variable of the ANFIS. The 
HTGLS-based-ANFIS were trained by directly minimizing the 
root-mean-squared-error (RMSE) criterion. This HTGLS-based-
ANFIS showed 4.06 % prediction error of the surface roughness 
compared with the actual experimental results. 

With the number of machine learning methods available, 
there was research into comparison of the methods for predic-
tion performance. Jurkovic et al. [53] developed three models 
and compared their performances at prediction of operating 
parameters in the case of high-speed turning. The parameters 
included surface roughness, cutting force, and tool life. Poly-
nomial (quadratic) regression, support vector regression, and 
an artificial neural network were used. They found polynomial 
regression to have the best performance for roughness and 
force prediction, while ANN had the best performance for life 
prediction. 

An evolutionary neuro-fuzzy system for evaluation of surface 
roughness that consisted of three units: cutting parameters 
(first unit), optimization of cutting parameters for minimizing 
machining time and maximizing metal removal rate (second 
unit), and control of required surface roughness by means of 
the features quantified from digital images of the machined 
surface (third unit) was suggested [54]. In the first unit, input 
variables of ANFIS were the basic face milling cutting parame-
ters: spindle speed, feed per tooth, and cutting depth. In the 
second unit, a genetic algorithm (GA) was applied for optimiza-
tion of the cutting to minimize machining time and maximize 
metal removal rate while maintaining required surface rough-
ness. After the experiment, digital images of the machined 
surfaces of all samples were taken by table scanners. All digital 
images were inscribed in matrix form, and in matrix form the 
three variables: the mean value of the columns matrix, the 
standard deviation of the columns matrix, and the ratio were 
used as input values of the fuzzy inference system for evalua-
tion of surface roughness. A fuzzy logic-based supervision 
controller was developed for real-time adjustments of cutting 
parameters like feed rate and spindle speed for achieving de-
sired surface quality [55]. A neuro-fuzzy prediction model was 
used to estimate the surface roughness by using real-time 
input of machining parameters (feed rate and spindle speed) 
monitored via smart sensors attached on CNC machines. The 
case study conducted milling of steel alloy to validate research. 
The case study showed the surface quality was improved with 
adjustment by the supervision controller. Initial exploratory 
testing of the concept of digital twin in regards to position error 
has been done with a CNC motion test bed. A flexible drive 
shaft with non-linear backlash and friction was considered in 
the virtual representation which included mechanical and elec-
trical components. Simulated annealing (SA), genetic algorithm 
(GA), and cross-entropy (CE) method were separately utilized 
for optimization of the controller based on the digital twin, and 
accounted for the backlash peak amplitude, backlash peak 
time, and hysteresis amplitude. The strategy improved the 
position error on the test bed, by having the digital twin interact 
with an open CNC, where the cross-entropy method was found 
to have the best performance of the procedures [56]. 

The AI methods used in terms of thermal and dimensional 
errors in machine tools were investigated. In thermal error 
measurement, a temperature sensor or infrared thermal cam-
era is used to measure the temperature variation of the system, 
and data of thermal error is collected using displacement sen-
sors. Based on the collected data, the prediction model for 
compensation can be developed and thermal error compensa-
tion is conducted based on the modeling. Since the data be-
tween thermal error and temperature fields are nonlinear, 
modeling with AI methods is efficient in developing models for 
these complex nonlinear data. The thermal error compensation 
by applying an AI method is more accurate than existing mod-
els. For dimensional measurement, CNN-based AI measure-
ment through machine vision was introduced, and productivity 
can be improved by being able to measure several objects at 

                (a)                                 (b) 
 
Fig. 5. (a) Original image of objects to be measured; (b) result image of 
object dimension measurement [50]. 
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once using an AI method. However, there is a limitation of 
minimum unit of measure due to the limit of the resolution of 
measuring devices such as cameras. For prediction, ANFIS 
algorithms that predict surface roughness were introduced. 
Accurate prediction is possible, and they are also used in ap-
plications such as real-time monitoring. However, it is neces-
sary to conduct an experiment for AI training, and there is a 
limitation in that experiment must be conducted whenever the 
workpiece or tool is changed. 

 
3.3 Process optimization 

The selection of machining parameters is crucial to deter-
mine the success of machining operations. The parameters are 
traditionally selected by the operator’s judgement and experi-
ence or following handbooks. However, the selected machining 
parameters usually do not provide an optimal result because of 
a number of factors that interrupt achieving accuracy and high 
productivity. 

In the recent trend of machining parameters optimization, AI 
has been used to find the optimal feed rate, spindle speed, 
depth of cut, etc. for minimizing the surface roughness. The AI 
technique has been applied in developing a predictive model 
and optimization. Since the development of an accurate predic-
tive model is essential to optimize machining parameters, re-
searchers have developed a dynamic-based model using the 
friction models. In contrast to this theoretical modeling method, 
the AI technique is the data-driven modeling approach. For 
example, a predictive model can be developed using an ANN 
[57]. The machining parameters such as cutting speed, feed 
per tooth, depth of cut, and flank wear were inputs to the model, 
and the predicted surface roughness was its output. The pre-
dictive model is then used to optimize the machining parame-
ters using a genetic algorithm (GA) to have the minimum sur-
face roughness. Milling process planning and scheduling was 
optimized to improve energy efficiency and productivity with 
high surface quality [58]. The paper proposed a two-stage op-
timization approach: (1) Optimization of machining parameters 
using ANNs, (2) Optimization of process sequence, set-up and 
schedule using pattern search, genetic algorithm (GA), and 
simulated annealing algorithm. ANN has also been setup for 
the process of roller burnishing, to map the nonlinear relation-
ships between feed rate, burnishing force, roller contour radius, 
surface roughness, and strain hardening. Genetic algorithm 
(GA) was used in the trained model to find the fastest feed rate 
while maintaining the desired surface qualities [59]. These 
data-driven modelling approaches have an advantage in terms 
of finding the relationships between system state variables 
(input and output) without prior knowledge of the system. 
Through training an algorithm (e.g., linear regression, ANN, 
Gaussian process) on manufacturing data, the data-driven 
models can derive the system’s relationship. One drawback of 
the data-driven model is that the model’s reliability is deter-
mined by data quality. This challenge, described in more detail 
in a later section, shows that it is important to prepare a suit-

able data set for modelling the desired system in the machining 
process. 

Intelligent controls such as neural networks, machine learn-
ing, reinforcement learning, fuzzy logic, genetic algorithms, and 
evolutionary computing have been applied to improve the sur-
face quality in real-time. For example, an ANN observer was 
used in a controller to control the cutting parameters [60]. By 
integrating with the surface roughness predictive model from a 
multi-layer perceptron (MLP), the AI controller helped to 
achieve the desired surface roughness. With proportional inte-
gral (PI) sub-controllers, rule-based fuzzy logic controllers 
(FLC) were also used to improve the surface roughness in a 
closed-loop control algorithm [55].  

AI techniques have also been used in both an off-line optimi-
zation module and surface roughness control [61, 62]. The 
basic idea of the offline optimization approach was to merge 
the particle swarm optimization (PSO) algorithm and neural 
network (NN) based cutting force model. The cutting force 
model generated a 3D surface of cutting force, then used this 
surface to find the optimal feed rate and spindle speed using a 
PSO algorithm. In surface roughness adaptive control, there 
were a feed drive model, a spindle speed drive model, and five 
basic prediction models of machining quantities. These predic-
tion models were: reference force model M1, feed rate control 
model M2, spindle speed control model M3, NN based cutting 
force model M4 and ANFIS surface roughness model M5. Fig. 
6 describes these prediction models with controller. These 
intelligent control approaches have an advantage in terms of 
providing better control performance without depending on 
models beforehand. The controller learns from training data so 
it can self-tune until a satisfactory result is reached. It can also 
adapt to changes in the conditions in the environment with less 
interference by a human. However, most intelligent control 
schemes are hard to implement into a system. Without proper 
knowledge about the controlled variable, system, input, and 
output, the controller cannot work or cannot determine if it is 
working correctly. Sufficient training data is also required. 
These challenges need to be overcome in order to use intelli-
gent control in the machine process. 

The tool path optimization is also important for productivity 
and accuracy. Artificial immune systems (AIS) were proposed 
in the tool path generation problem for the non-uniform rational 
B-spline (NURBS) surfaces [63]. Since there are many points 
and NURBS equation variables, AIS optimization algorithm is 
used to avoid possible local optima and to get to the desired 
solution in an iterative fashion. The novelty is to apply the AIS 
approach on both the u and v parametric directions in order to 
compute the tool path interval for ball-end milling. A geometric 
simulator, a physical process model, and a machining parame-
ter optimizer for 2 ½ axis end milling was developed and inte-
grated by using a commercial solid modeler (ACIS) and ANN 
technique [64]. The geometric model created by using ACIS 
can simulate the milling operation to extract the critical in-cut 
geometric information between the cutting tool and the work-
piece. A radial basis function (RBF) neural network was im-
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plemented to develop the physical model and to optimize ma-
chining parameters for maximal production, minimum cost, and 
maximal surface finish. The optimized parameters were used 
to reschedule NC code. Neural networks (NN) were also used 
to predict the milling path strategy or the sequence of the mill-
ing process [65]. These models were used to train the NN us-
ing the input data to predict the milling path strategy that pro-
duced the best surface quality. An ant colony optimization 
(ACO) was used in a traveling salesman problem (TSP) to 
optimize hole-making operations in order to reduce machining 
time and to improve productivity of the manufacturing [66]. 
Similarly, the ACO algorithm was used to find the optimum 
path planning in CNC drilling machines for a large number of 
holes [67]. To create smoothing of discontinuous tool paths for 
higher efficiency, a deep neural network was constructed which 
outputted servo commands, and was trained with reinforce-
ment learning [68]. The model contained features such as input 
tool path, error constraint, current position, etc. Current status 
and rewards were used to train the model, with training algo-
rithms of Q-learning, state-action-reward-state-action, deep 
deterministic policy gradient, etc. separately used. The method 
could achieve real-time performance and thus could be applied 
to real CNC milling. 

The use of AI allowed for prediction of machine tool condi-
tions and therefore, the appropriate optimization of machining 
parameters. The data-driven approach helped to circumvent 
the complex relations between multiple parameters, which is 
difficult to calculate all at once analytically, in order to provide 
an optimization with all the considerations. As well, AI ap-
proach has been used to suggest tool path strategy, for the 
purposes of enhancing yield and workpiece quality. 

 
3.4 Energy consumption management 

The energy consumption of the manufacturing industry has 

become one of the key considerations due to rigid intergov-
ernmental environment policies such as long-term low green-
house gas emission development strategies (LEDS), reduction 
of plant operating energy cost, and demand for energy-saving 
equipment. Considering energy consumption of machine tools, 
a lot of energy optimization or energy efficiency improvement 
research has been done in two ways: optimizing or developing 
additional programs into the main and support units of the ma-
chine tool which can control the energy-saving system, and 
operational efficiency measures such as process parameter 
adjustment through energy empirical model, energy flow map 
and machine learning (ML) model for energy saving [69]. 

Current efforts in the real industrial field focus on saving the 
energy of machine tools by developing programs into the main 
and support units of machine tools. For example, Okuma ECO 
saves energy by reducing the machine operating and idle time 
power consumption [70]. The intelligent control could report-
edly save energy up to 74 % by stopping machine tool idling. 
Similarly, other machine tool manufacturers use a machine 
control interface that can turn off the power when not in cycle 
based on the machine idling time. Such techniques and pro-
grams involve just stopping unnecessary operation of the ma-
chine tool or monitoring the operation status. 

To save energy more efficiently, many researchers are using 
data-driven approaches which could save more energy and 
improve efficiency by estimation of energy consumption. The 
first step towards reducing energy consumption of machine 
tools is to understand their energy consumption [71]. Due to 
varying definitions of energy consumption of machine tools, 
there are various theoretical models [69]. Zhao et al. [72] clas-
sified an empirical model during cutting. At the process level, 
net cutting specific energy, which is energy consumed in actual 
material removal, is influenced by process parameters and 
material properties. Sihag et al. [73] defined six hierarchical 
classification criteria of machining energy in machine tools. 

 
 
Fig. 6. Block diagram of the surface roughness control simulator [62]. 
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They provided comprehensive information at the first level and 
went down to specific information at the sixth level. In the first 
level, energy consumption can be divided into three compo-
nents: machine tool, spindle, and process. At the process level, 
the energy consumed for actual material removal is the output, 
and chip formation and surface generation are affected in en-
ergy consumption of the process level. Therefore, the energy 
consumption is considered with the process parameter to get 
appropriate cutting energy or a predictive model of cutting en-
ergy consumption with higher performance. The energy con-
sumption prediction helps in determining optimized parameters 
to save energy, but large amounts of experiments are needed 
to determine the coefficients for empirical models. 

Kant et al. [74] developed an accurate predictive model of 
cutting energy consumption using ANN during a milling proc-
ess through comparing the experimental results and analyzed 
the influence of machining parameters such as spindle speed, 
feed rate, depth of cut, and width of cut on cutting energy. Zhao 
et al. [75] developed a backpropagation neural networks 
(BPNN) prediction model for specific energy consumption 
which meant the required energy consumption for cutting unit 
volume material. Using the comparison of mean square predic-
tion error, the highest performance structure was adopted. 
Zhang et al. [76] improved the ability of hybrid ensemble neural 
networks model for forecasting electrical energy consumption 
of a non-linear grinding process and made the robust forecast-
ing performance. Liu et al. [77] proposed the hybrid prediction 
model of future energy consumption based on empirical mode 
decomposition (EMD), least squares support vector regression 
(LSSVR), and quadratic exponential smoothing (QES) for a 
cement grinding process. This hybrid model is compared with 
other models by root mean square error (RMSE) and mean 
absolute percent error (MAPE), and results proved the high 
performance of the future energy prediction model. Ak et al. 
[78] proposed a neural networks (NNs) ensemble prediction 
model which can predict the interval for energy consumption of 
milling machine tools during face milling operations by using 
the input data and a regression model. The proposed predic-
tion model showed high prediction interval coverage probability 
(PICP) with smaller normalized mean prediction interval width 
(NMPIW) than individual NN training.  

Theres was also comparison made on different AI ap-
proaches for energy consumption prediction of cutting process. 
Xiao et al. [79] used the deep learning setups of convolutional 
neural network (CNN), stacked auto-encoder (SAE), deep 
belief network (DBN) separately to model energy consumed in 
turning process, and compare to support vector machine 
(SVM). Input data such as workpiece diameter, hardness, cut-
ting length, etc. were acquired. K-fold cross-validation was 
used to assess the methods, which found that the deep learn-
ing methods had higher accuracies than SVM. 

The energy consumed by the entire machine tool such as 
control systems, drive systems, cooling and lubrications units, 
and spindle motor, was considered. Zhang et al. [80] proposed 
an integration of process planning and scheduling (IPPS) 

model based on nonlinear process planning (NLPP) to imple-
ment energy-saving methods and predict the energy consump-
tion of machine tools in product manufacturing processes in 
machining systems using a Therblig-based model. Then, the 
optimal process plan and energy saving effectiveness of IPPS 
was verified by the case study comparing a genetic algorithm 
(GA)-based approach applied with process planning and 
scheduling work independently. Flum et al. [81] developed a 
simulation model, which could breakdown a turning machine, 
to predict energy consumed by various components in the 
machine. Real machine tool input data was used with Math-
works SimscapeTM to establish the virtual module. Sets of 
simulated data were compared with measured data on the 
physical hardware in the different situations of standby, ready, 
and work, and the deviation were found to be within 10 %. It 
represents an attempt in building digital twin model where dif-
ferent NC code strategies could be simulated considering en-
ergy efficiency. 

In the AI aspect, most of the algorithms used are neural net-
works for energy conservation. The appropriate AI selection for 
machine tool energy consumption is still challenging since they 
may fall into local minima rather than global minima values. 
Recently, prediction models with AI to diagnose abnormal 
states of spindles in machine tools have been researched, but 
this diagnosis based on energy consumption needs to be ex-
panded to machine tool systems including the cooling, idle, etc. 

 
3.5 Tool condition monitoring 

Reliability and availability of machines play an important role 
in decreasing production costs and time, as well as increasing 
accuracy. Proper machinery maintenance is required to maxi-
mize the reliability of the manufacturing process. Based on the 
European Standard of EN 13306, maintenance can generally 
be categorized into two groups i.e., corrective maintenance 
and preventive maintenance [82]. The former is carried out 
when a failure or fault is detected in the system and includes 
deferred corrective maintenance and emergency (or immedi-
ate) maintenance. The latter includes time or age-based main-
tenance (or predetermined maintenance) and condition-based 
maintenance [82, 83]. 

Interventions ahead of time, which normally impose unnec-
essary significant costs to the manufacturers, can be averted 
using condition-based preventive maintenance. Diagnostics 
and prognostics are two methods of condition-based preven-
tive maintenance [84], and they are both included in prognos-
tics and health management (PHM) of a system [85]. Diagnos-
tic is defined as the process of detecting all existing faults and 
failure modes in the system, while the process of predicting 
future states and remaining useful life (RUL) is defined as 
prognostics [85-87]. 

Fig. 7 illustrates the different maintenance strategies. Elattar 
et al. [88] categorized the prognostics approaches into four 
types: (a) Reliability-based (or experience-based) prognostics, 
which is appropriate for unmonitored mass productions, de-
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pends only on the historical data about the same component 
and its average rate of failure; (b) Physics-based prognostics, 
which uses the mathematical models for the system’s failure or 
degradation, is very accurate, and descriptive. However, since 
detailed knowledge about the system and operating parame-
ters is required for an accurate modelling, this strategy can be 
very costly and time-consuming; (c) Data-driven prognostics, 
which relies on techniques from AI, uses the parameters of the 
systems that can be constantly measured to develop a model 
that correlates the variation of the measured parameters to the 
degradation level of the system. This method is cost-effective 
and quick, although its accuracy, which depends on the quan-
tity and quality of the available data, could be less than the 
physics-based prognostics; (d) Hybrid approach, which is also 
called the fusion approach, is practical when at least two of the 
mentioned approaches are available. It combines these meth-
ods to tackle the limitations of each one [89]. Especially when 
both the physics-based and data-driven models are available, 
the hybrid approach can lead to very accurate results [90]. 

In machining operations, tool condition monitoring (TCM) is 
essential to achieve high dimensional accuracy and surface 
quality while also preventing tool failure and decreasing down-
time. Tool wear, which continuously progresses, affects the 
surface quality of the machined workpiece, and in the worst 
case, it can cause a catastrophic failure. If the tool is monitored 
constantly to detect excessive tool wear, the cutting parame-
ters can be tuned to optimize the tool life [91, 92]. Monitoring 
the tool wear can be categorized into two different methods 
[93-95]; the first one is the direct method (or offline method) 
which relies on the visual checking of the tool using CCD cam-
eras, optical sensors and a laser scan micrometer, or measur-
ing the electric resistance between tool and workpiece. This 
method can provide accurate information about the tool state. 

However, the main limitation of this method is the interruptions 
needed to check the tool which have an adverse impact on the 
production time. The second one is the indirect method (or 
online method) which uses the data gathered by different kinds 
of sensors to estimate the condition of the tool. The latter 
method can be used to predict the remaining useful life (RUL) 
efficiently during the machining process without any interrup-
tions if an appropriate PHM system is developed in addition to 
monitoring the tool state continuously. 

In order to predict the RUL of a component using data-driven 
prognostics, multiple sets of run-to-failure data are needed to 
model the degradation. For TCM, generally, flank wear is moni-
tored and considered as a sign of degradation. A typical flank 
wear-time curve is shown in Fig. 8 [96] which also depicts the 
initial wear stage and the unhealthy stage. In this model, tA is 
time when the curve changes from concave to convex. After 

 
 
Fig. 7. Maintenance categories [82, 88]. 

 

 
Fig. 8. A typical tool flank wear curve in milling with different wear condi-
tions [96]. 
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extracting the flank wear-cutting time curve, the lifetime is di-
vided into different health stages and an appropriate health 
indicator (HI), which represents the health state, is considered 
for the degradation trend [97]. Lei et al. [98] categorized the HIs 
into two groups i.e., Physics HIs and Virtual HIs. The former 
HIs are generally extracted using statistical or signal process-
ing methods. These HIs are related to the physics of failures. 
However, if the HIs are extracted from the fusion of multi-
sensor signals, it is hard to determine their physical meaning 
and they just represent the degradation trend of the system 
virtually [89, 98, 99]; hence, they are called Virtual HIs. 

Data-driven-based TCM is gaining more and more attention, 
as it is time and cost-effective. As shown in Fig. 9, there are 
three important steps in data-driven based TCM i.e., sensors 
selection, feature extraction and, training and decision-making 
method which will be discussed in the following sections. 

The first step for the data-driven prognosis approach (also 
called data mining or machine learning) is selecting and meas-
uring the parameters whose features can correlate well with 
the degradation of the system. For the TCM, these parameters 
could be cutting force, acoustic emission, sound, vibration level, 
temperature, and motor current. When the tool gets dull, the 
friction between the workpiece and the cutting tool increases 
the cutting forces and the temperature of the tool (or the work-
piece). The cutting forces can be measured directly, e.g., using 
multicomponent dynamometers or indirectly estimated if the 
motor current is measured during the process using Hall effect 
sensors. The temperature is normally measured using contact 
methods by embedding thermocouples or non-contact meth-
ods by infrared thermography (IRT). The variation in tool condi-
tions can also affect the vibration level [100]. The signatures of 
vibration signals such as mean, RMS, and peak to peak, in-
crease with the tool wear [101]. Based on that, vibration sen-
sors such as accelerometers and laser vibrometers have been 
used for TCM. Furthermore, acoustic emission (AE) and sound 
signals are also very popular for TCM because they are highly 
related to the tool condition and they propagate at very high 

frequencies which are distinguishable from the cutting frequen-
cies [102]. Teti et al. [103] and Kuntoğlu et al. [104] have re-
viewed the merits and demerits of using each of the above-
mentioned sensing systems for TCM. 

When the signals are acquired, it is important to extract the 
most suitable features which are independent of cutting condi-
tions and correlate well with the tool wear. These features can 
be extracted in time domain using time series analysis includ-
ing auto-regressive (AR), moving average (MA) and auto-
regressive moving average (ARMA) along with statistical fea-
tures such as maximum to minimum ratio, average value, root-
mean-square (RMS), skewness, standard deviation, and kurto-
sis [94, 103], in the frequency domain using the fast Fourier 
transform (FFT) to extract the spindle and tooth pass frequen-
cies, peak to peak amplitude and the power spectrum [105], or 
in time-frequency domain e.g. using wavelet analysis. Fre-
quency domain features have the advantage over the time 
domain features that the parameters can be easily separated 
for the important frequencies such as spindle frequency or 
tooth passing frequency [106]. Continuous wavelet transform 
(CWT), discrete wavelet transform (DWT) which is faster than 
the CWT [94], wavelet packet transform (WPT) which has bet-
ter frequency resolutions on high-frequency band signals than 
the DWT [94], complex continuous wavelet transform (CCWT), 
Hilbert transform (HT), and empirical mode decomposition 
(EMD) are some of the signal processing techniques to extract 
time-frequency domain features [94, 105]. 

Selecting the appropriate feature of the signal depends on 
some parameters such as the type of the sensors used to 
monitor the tool. For force sensors, generally, time-domain 
features are used while for vibration, sound and AE sensors 
frequency domain features are more common [104]. However, 
since the signals captured during machining processes are 
generally non-stationary, the time-frequency features are more 
favorable [107]. Moreover, using the time-frequency domain, 
the features from both perspectives were investigated. 

After extracting the suitable features of the signals measured 

 
 
Fig. 9. Different steps in the TCM process. 
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from the experiments, the tool condition should be estimated 
using decision-making algorithms. Several methods have been 
used for this purpose including ANN [108], probabilistic neural 
network (PNN) [109], convolutional neural network (CNN) [110], 
recurrent neural network (RNN) [111], neuro-fuzzy systems 
[112], adaptive neuro fuzzy inference system (ANFIS) [113], 
fuzzy clustering [114], regression [115], fuzzy logic (FG) [116], 
genetic algorithms (GA) [117], support vector machine (SVM) 
[118], support vector regression (SVR) [119], the hidden 
Markov model (HMM) [120], decision trees [121], and extreme 
learning machine (ELM) [102]. Among these methods, ANN, 
HMM, and SVR are more popular for TCM [94].  

Gouarir et al. [110] used experimental data which was ob-
tained from a force sensor monitoring wear progression of the 
tool flank to train a convolutional neural network (CNN), after 
which the network could relate the cutting forces to the tool 
flank wear. This was tried on milling of stainless steel, with a 
non-coated ball endmill, in dry machining conditions. The net-
work can then be used for wear prediction purposes. Extreme 
learning machines (ELM) were used to speed up learning and 
improve accuracy. Laddada et al. [122] evaluated the health 
condition of the cutting tool and estimated the RUL based on 
complex continuous wavelet transform (CCWT) and improved 
extreme learning machine (IELM). In order to gather the data, 
they conducted different run-to-failure cutting tests using a 
CNC machine to train their model. Zhou et al. [102] used dif-
ferent dimensional and dimensionless statistical features in 
time and frequency domains from a single sound sensor 
placed near the workpiece. First, the features were extracted 
from sound signals while cutting tools with different known 
normal and wear states were used to train the two-layer angle 
kernel extreme learning machine (TAKELM) model. Then the 
model was used to predict the wear of some tools with un-
known conditions. They reported that the prediction error in 
the TAKELM method was much less compared with KELM 
and least square-SVM with an insignificant increase of the 
computation time compared with the KELM method. In order 
to increase the accuracy of the predictions, Luo et al. [123] 
attempted to fuse theoretical and data-driven RUL estimation 
of milling tool in a digital twin model, that had degradation 
mechanism, material characteristic, and operating conditions 
as the basis. They established a multi-domain model of cou-
pled dynamics and thermodynamics to simulate the tempera-
ture, stress and relative slip speed during milling which were 
used to calculate the tool wear. The predicted values from 
simulation and data-driven approaches were fused in a parti-
cle filtering algorithm. The hybrid approach yielded more accu-
rate results compared to each of the single approaches in 
their investigation. 

Tool wear monitoring methods have been also studied for 
other traditional machining processes such as sawing [124], 
broaching [125], and grinding [126, 127]. Caesarendra et al. 
[126] used a 10-layer CNN to predict the belt grinding tool wear 
in polishing processes using a 3-axes accelerometer and a 
table dynamometer. They studied the different combinations of 

signals in three axes and reported that some combinations 
provide more accurate predictions of the tool state than the 
others. Oo et al. [127] also proposed a tool wear monitoring 
model for belt grinding using image-processing techniques. In 
their model, a random forest classifier (RFC) and a multiple 
linear regression (MLR) were combined to detect the current 
state of the tool and to predict the RUL. 

Although the majority of the articles for TCM are based on 
supervised training, few models have been developed for un-
supervised learning. Since the tool wear gradually propagates 
until the failure, Kumar et al. [128] used unsupervised learning 
for temporal clustering of unlabeled data. They utilized HMM to 
perform a model-based clustering and considered that the tool 
was perfectly healthy at the very beginning and it failed at the 
end (run-to-fail dataset). Then they developed a prognostic 
module based on the results of diagnostics using a polynomial 
regression model. Dou et al. [129] developed an unsupervised 
model for online monitoring of tool wear using a sparse auto-
encoder (SAE). In their model, the features of the force and 
vibration signals were extracted adaptively for training without 
supervision of the empirical label. 

One of the most important challenges for TCM is that the 
online monitoring of tools usually requires multiple expensive 
sensors and relevant equipment such as amplifiers and data 
acquisition systems. Moreover, there are some restrictions on 
the size and material of the workpiece to utilize some of these 
sensing systems. For example, it is not very practical to con-
stantly use piezoelectric table dynamometers in a workshop to 
measure the cutting forces during the machining of compo-
nents with different geometries. 

Most of the developed models in the field of TCM are diag-
nostic-based which means they are capable of evaluating the 
current state of the tool including the tool wear condition and 
other faults of the tool. However, prognostic-based models, 
which estimate the RUL of the tool, would be more beneficial in 
industrial settings because the qualitative classification of the 
current tool wear condition cannot provide accurate information 
about the future state of the system. 

Moreover, the developed models are sensitive to cutting pa-
rameters. Hence, these models may result in inaccurate tool 
condition estimation if the machining conditions are different 
from what the model is trained for, and they cannot be general-
ized for various cutting conditions [96]. Most of the developed 
algorithms were trained and verified for a specific condition, 
e.g., tool material and geometry, workpiece material, and cut-
ting system dynamics. Although most of them were trained well 
to predict RUL or state of the cutting tool, they might produce 
unreliable results for the conditions different from the training 
ones. Moreover, the system dynamics might be different from 
one machine to another, and it is also dependent on the posi-
tion of the sensors. Hence, it is important to consider the dy-
namics between the applied force on the tool tip and the sen-
sors in the training models. Hybrid prognostics which utilize the 
physical model in addition to data extracted by the sensors can 
be used to overcome these limitations and improve the trans-
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ferability of the models on new environments considering the 
cutting conditions and dynamics of the systems. 

 
4. Challenges and future outlook 

Despite significant advantages associated with AI methods 
used in machining and machine tools, there are several chal-
lenges to overcome. With the many years of accumulated 
knowledge in machining and machine tool research, aug-
mented intelligence is required in order to achieve the robust-
ness and accuracy to harmoniously bridge human intelligence 
and AI. Fig. 10 illustrates the hybrid augmented intelligence 
capable of accurate prediction, prognosis, diagnosis, and self-
optimization through the combination of digital twin and analyti-
cal models used for training. Physical sensor data can be also 
used to reinforce the learning process. A physical sensor net-
work placed around a machine tool can provide data which can 
be used to build a real time model of the tool, workpiece, ma-
chining conditions, and in-situ metrology data. The loops com-
plete integration between the physical machine tool, cyber 
space (virtual model), and human intelligence. The physical 
sensor data are preprocessed in order to address transferabil-
ity between different machines. They can also be included in a 
database that stores the historical information and is ready to 
integrate with big data analytics, for instance, clustering to find 
relationship. 

4.1 Data quality for AI 
The most demanding and time-consuming process of apply-

ing AI is the preparation of an appropriate data set. As of 2016, 
it was suggested that a rough rule of thumb for a supervised 
deep learning algorithm is to have at least 5000 training sam-
ples in each category to achieve usable performance [130]. 
According to results of a survey of data scientists from Forbes, 
80 % of the work for data mining and AI was related to gather-
ing, cleaning, and organizing of data [131]. This issue is the 
major reason why there are insufficient ready-to-use AI appli-
cations for machining operations despite the continuous ad-
vancements in AI modeling. The inferior data quality can be 
classified into four types: insufficient data, fragmented data, 
biased data, and Imprecise data as illustrated in Table 3. For 
example of addressing data quality challenge, generative ad-
versarial network (GAN) was investigated for increasing the 
data size to detect ball bearing fault with accuracy of 99.8 % 
[132]. Opportunities exist to apply the solution in smart machin-
ing to overcome the challenge with high accuracy, such as for 
detecting tool wear. 

Although various solutions for the corresponding quality de-
terioration phenomena have been proposed, they are limited to 
addressing one or two factors, so the data quality issue is still 
the most challenging from the aspect of applying AI to poor 
data collection environments in industrial sites. Therefore, 
overall improvement efforts, from designing robust sensing 
systems to establishing the standards for data measurement, 
are needed in the future. 

 
4.2 Transferability for AI 

How well an AI trained for one machine performs on similar 
machines is the question that has been received great atten-
tion from industrial AI researchers, and this is known as trans-
ferability. Since existing AI models are highly dependent on 
mathematical features of the training data, if the value of the 
data changes for any physical reason, the AI reacts sensitively 

Table 3. Data quality problems. 
 

Data quality Phenomena Possible solutions 

Insufficient data ·Insufficient samples of the collected data set Applying more sensors or generating virtual data using genera-
tive adversarial network (GAN) 

Fragmented data 

·Lack of some information in a data set 
·Referred to as ‘missing data’ problem 
·Mainly caused by inconsistent data collection systems 

Data imputation methods corresponding to different types of 
missing mechanisms categorized as missing completely at ran-
dom (MCAR), non-ignorable (NI), and missing at random (MAR) 
[133]  

Biased data 

·Significant difference in the amount of data between 
classes 

·Referred to as ‘class imbalance’ issue 
·Most frequently occurring problem in AI-based classifica-

tion 

Under/over-sampling of data (approaches at data level) or ad-
justing the weight values of minor classes in training process 
(approach at algorithm level) [134]  

Imprecise data 
·Inaccurate values measured and intermittent sampling 

delay 
·Caused by unstable and imprecise sensor systems 

Reducing the sampling frequency, filling the empty section using 
interpolation methods, and synchronization in the data process-
ing stage for different sampling rates 

 

 
Fig. 10. Hybrid augmented intelligence in machining and machine tools. 
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and outputs a dissimilar result. Even when machining is per-
formed on the same workpiece on the same machine tool, AI is 
not guaranteed to operate consistently due to sensor data that 
varies depending on the machining conditions, dynamics and 
other environmental factors. Improving the transferability of AI 
is commonly approached at two levels: one at the data level 
and the other at the algorithm level. 

At the data level, one can overcome this limitation predomi-
nantly through data scaling, including normalization or stan-
dardization. There are different types of scalers such as min-
max, standard, max-absolute, robust, quantile transformer, 
power transformer, and unit vector, and it is necessary to select 
an appropriate scaler according to the distribution of data [135]. 
In order to implement efficient data scaling for improving the 
transferability, it is important to set specific information which 
does not change for different machines or systems in the same 
domain as a standard. 

At the algorithm level, several techniques that make AI 
quickly adapt to similar domains with a small amount of data 
have been recently proposed, by subdividing the architecture 
of pre-trained AI models and allowing some to preserve exist-
ing training and some to retrain from new data. This kind of 
method is called transfer learning, and several studies have 
been reported that transfer learning was effective in AI model-
ing for fault diagnosis of mechanical parts [136-138]. 

Meanwhile, a hybrid approach incorporating digital twin has 
recently been proposed (see Fig. 10). The digital twin is a plat-
form that interacts with various information by synchronizing 
with the actual system in a virtual environment and is being 
actively studied. If the digital twin is equipped with a physical 
model that works by the same mechanism as the actual sys-
tem, it can be used as a reference for scaling data that is up-
dated in real time. In other ways, modeling strategies for AI 
algorithms such as transfer learning can be developed using 
detailed operational information from digital twins synchronized 
to multiple machine tools. 

 
4.3 Explainability for AI 

As demonstrated, machine learning (ML) for machining op-
erations meant that the models in subtractive manufacturing 
are moved away from physical models and towards probabili-
ties. Therefore, the AI-enabled machine tool would often not 
have a rule-based model expert system which is more com-
prehensible to the user. Since the ways a human operator and 
machine understand the phenomena are different, it would be 
difficult to understand the reasoning behind ML decision or 
results. This would make it hard for the human operator to 
figure out how the AI algorithm arrived at the output. In some 
situations, such as in an augmented intelligence setup where 
the machine makes suggestions to the operator, this can be a 
problem if the operator is to determine how the suggestion 
arises in interpretation of the results. For example, it could be 
necessary to find out whether there is a false alarm or not. 

It has been argued that the advantage of human involvement 

in the decision-making process is the ability to make accurate 
predictions from small amounts of training data. Human-in-the-
loop is a proposed scheme to overcome the limitation of AI. 
Thus, the human could also guide the AI-enabled machine tool 
in the process [139]. An explainable interface could present a 
view of the algorithm, as well as the explanation of parameters 
as they flow through the algorithm. This would aim to help “de-
code” the processing to the user. Back to the example of false 
alarm, this would then enable the operator to decide whether to 
override the suggestion or not. 

However, the aim to implement explainable AI could also af-
fect the choice of AI model to use in the self-optimizing system. 
For example, AI based on statistical methods would be more 
difficult to implement explainability relating to physics. Further-
more, depending on the choice of algorithm, certain limitations 
have greater effects on the explainability. 

One example is the overfitting of data [140]. The concept is 
related to variance and bias. As one generalized example indi-
cated in Fig. 11, a trend line that is very highly fit with the data 
would have very low training error but would lose sight of the 
pattern to be identified and produce high error when testing 
with another dataset. This negatively impacts the explainability 
of the machine learning output. Therefore, a balance between 
training error and testing error should be maintained as illus-
trated in Fig. 11. This consideration applies to other problems 
as well, for example classification. 

One way to reduce overfitting is by using ensemble learning 
techniques such as bootstrap aggregating. The ensemble 
combines multiple hypotheses in the training process to im-
prove prediction. Bootstrap aggregating involves having each 
trained model vote with equal weight. One example is combin-
ing random decision trees to achieve high classification accu-
racy. Multiple samples which are different from each other are 
generated in bootstrap aggregating and sent to multiple learn-
ers. Voting combines the result from each learner, therefore 
increasing prediction accuracy. As computing power continues 
to increase, this technique becomes more feasible. 

An AI construction that employs a combination of methods 

 
Fig. 11. Model complexity and estimation error. 
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could overcome the limitation of single choices. Although the 
biological neural network is still not well understood, cognitive 
science argues that the natural intelligent system is a hybrid 
that uses symbolic and subsymbolic operations. This inspires 
the construction of AI as a hybrid intelligence system to enable 
broader integration. This would make one component of AI 
interoperable with knowledgebases as the other component, 
thus increasing the explainability. One example is the fuzzy 
logic expert system which is based on a set of rules from ex-
perts. 

 
4.4 Future outlooks 

The ideal level of smart machining and machine tools should 
be supported by not only the data science for AI modeling, but 
also overall industrial advanced technologies such as low-cost 
pervasive sensors, high-speed communications, supercomput-
ing, hyperconnected cloud service, and extended reality. 

The first aspect is a fail-safe system through the redundant 
use of advanced sensors. The existing high-performance sen-
sors are very expensive, so their use in the manufacturing site 
is limited. In addition, the sensors are sensitive to harsh ma-
chining environments, so they sometimes supply unreliable 
data and cause false alarms, which is critical in industrial sites 
where downtime is directly related to economic losses. On the 
other hand, low-cost micro-electromechanical systems 
(MEMS) and in-situ industrial internet of things (IIoT) sensors 
continue to advance in recent years. If multi-sensors can be 
redundantly installed in machine tools at low cost, it will be 
possible not only to supply a large amount of machining-related 
sensor data, but also to build a fail-safe system for smart ma-
chining through mutual complementation between different 
sensor signals to increase frequency bandwidths and accuracy 
as well as minimize imprecise data. 

Another possibility for AI is the real-time processing of large 
volumes of data. The data communication speed is increasing 
with introduction to 5G and 6G in the near future. High-speed 
communications will have the capacity to increase the amount 
of data transmitted from machine tools to sensors, sensors to 
computers, computers to clouds, and clouds to machine tools 
again. This will move away from the current level of intermittent 
monitoring and anomaly detection for some targets and allow 
analyzing of all the machine parts and machining processes in 
real-time. In addition, real-time generated big data will be 
stored and AI processed through a so-called hyperconnected 
cloud platform. 

The explosive improvement of AI performance is achieved 
through cloud and parallel processing. Currently, it is fore-
casted that a different level of computational speed will be pos-
sible through technologies such as ternary semiconductor and 
quantum computing. Until now, studies on AI modeling have 
put a lot of effort into efficient and automated feature extraction 
for high-dimensional data to avoid excessive computation. 
However, if such worries are resolved through supercomputing, 
multiple AI methods can be simultaneously processed by con-

sidering many more variables than what is currently possible. 
Additionally, it will be possible to make comprehensive deci-
sions in real time by linking with the supply of vast amounts of 
data based on advanced low-cost sensors and high-speed 
communication mentioned above and to perform automated 
optimal machining control by feeding it back to the machine 
tool [141]. 

With the advanced technologies described above, AI will be 
able to make very accurate and rapid decisions; but for deci-
sions related to overall productivity, humans must make a final 
decision that aggregates all external factors. Also, humans 
must learn to trust AI properly by watching its decision-making 
process [142]. In this context, extended reality (XR) such as 
augmented reality (AR) and virtual reality (VR), which have 
recently attracted great attention in various fields, will provide 
the interactive interface that intuitively shows the reasoning 
process and results of explainable AI. Especially in the case of 
smart machining, it can be imagined that practitioners remotely 
watch the real-time machining process that AI is working on 
through the XR interface, and sometimes answer the AI’s 
questions if there is a significant issue to report. 

 
5. Conclusions 

Many machine tool companies and job shops are faced with 
fierce global competition to deliver products with improved 
productivity, flexibility, cost-effectiveness, and accuracy. AI has 
been employed by various industries, and the machine tool 
industry is showing great interest in adopting the new opportu-
nity. The continuing development of sensing technologies 
combined with the industrial internet of things (IIoT) may help 
shape the trend. We examined different aspects of AI usage in 
machining operations such as thermal compensations, pa-
rameter optimization, chatter stability, tool wear and breakage 
monitoring, energy usage, etc. Many AI approaches available 
have been used to develop machining functions that involve 
problems such as classification, prediction, clustering, etc. in 
standalone situations with low error. This is achieved by using 
reliable data supplied from sources such as empirical or physi-
cal models. Sensor signals can be combined with AI ap-
proaches to identify conditions. When AI models correlate the 
effects between process parameters, they enable increased 
insight for the operator and adjustment of the process to reach 
the desired outcome. This offers faster feedback turnaround 
and possibility of further integration in cyber-physical machine 
tools. 

Numerous interviews have found that domain experts who 
understand AI are needed to capitalize on AI-enabled smart 
machining. Particularly, machine tools and machining proc-
esses are quite complex. Many companies are collecting a lot 
of data without really knowing the exact usage of these data. 
The benefits of smart manufacturing come with associated 
challenges and risks. The critical questions we must ask are 
centered around data quality and security, transferability be-
tween different machines, workpieces, tools, etc. and ability to 
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explain outputs. In order to address these challenges, the 
combination of traditional physical models, digital twin, machine 
learning, rule based expert approach, and human intelligence 
is needed to develop robust manufacturing processes. 
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