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Abstract  The feature extraction problem of coupled vibration signals with multiple fault
modes of planetary gear has not been solved effectively. At present, kernel principal 
component analysis (KPCA) is usually used for nonlinear feature extraction, but the blind 
setting of kernel function parameters greatly affects the performance of KPCA algorithm. For 
the optimization of kernel parameters, it is necessary to study theoretical modeling to improve
KPCA performance. In this paper, employing a Fisher criterion (FC) discriminant function in 
pattern recognition, the optimization mathematical model of the kernel parameter was 
presented and the improved particle swarm optimization algorithm (PSO) was applied to search
for the optimum value, and the performance of the Kernel principal component analysis for 
nonlinear problems was improved. The optimized KPCA was applied for feature extraction of 
different wear fault modes of a planetary gear, and the feature dimensions were reduced from 
27 to 10. The feature parameters with 92.9 % contribution rates were retained and sample sets 
were formed to feed the support vector machine (SVM) for final classification and identification. 
The intelligently optimized KPCA based on the PSO-FC has improved the structural distribution 
of data in the feature space and showed a good scale clustering effect in planetary gear wear
state recognition. The accuracy of the SVM classification was improved by 17.5 %.  

 
1. Introduction   

A planetary gearbox is a composite gear transmission system. Due to its poor working condi-
tions, the gear teeth often produce fatigue cracks, wear, and pits, and different degrees of fail-
ure may occur in multiple gears [1]. At present, some investigations on the fault identification 
and diagnosis of the planetary gearbox have been done from the aspects of modeling, signal 
processing, and intelligent diagnosis [2, 3]. Considering the time-varying effect of the vibration 
transfer path, Lei et al. [4] established a corresponding dynamic model and obtained the dy-
namic response of a planetary gear train in normal, crack, and spalling conditions, and then 
analyzed their spectrum characteristics to achieve the goal of health monitoring. Wu et al. [5] 
proposed local oscillatory characteristic decomposition, by which the fault characteristics of 
gear cracks were analyzed and the fault characteristics were efficiently and accurately ex-
tracted. Liu et al. [6] established a composite vibration signal model to realize the fault diagno-
sis of an incipient tooth crack on the sun gear in a planetary gear, and finally verified the simu-
lation results through a test rig experiment. Cheng et al. [7] used entropy feature fusion of the 
ensemble empirical mode decomposition (EMD) for planetary gear fault diagnosis. Chen and 
Feng [8] presented an iterative generalized time-frequency redistribution method and success-
fully extracted the fault symptoms of time-varying gears under unsteady operating conditions to 
acquire good diagnostic results for the planetary gearbox. Lei et al. [9] proposed a method 
based on the multi-kernel relevance vector machine (MRVM), which was applied to multilevel 
planetary gearboxes for health status identification and diagnosis. Khazaee et al. [10] combined 
a fast Fourier transform and a least-square support vector machine for condition monitoring and 
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classification of a planetary gearbox, which improved diagnos-
tic accuracy. Liu et al. [11] proposed a hybrid intelligent model 
based on the redundant second-generation wavelet package 
transform (RSGWPT), the kernel principal component analysis 
(KPCA), and the twin support vector machine (SVM) to realize 
multi-fault detection of rotating machinery, and the experiment 
results demonstrated its effectivity. Although some achieve-
ments have been made in the previous research, multiple 
components such as synchromesh excite similar vibration in 
different phases during the planetary gearbox’s transmission, 
which are coupled with each other and results in the neutraliza-
tion or weakening of the vibration signals from the fault compo-
nents. So, typical nonlinear characteristics are presented. 
Therefore, it is still an urgent task to extract effective and sensi-
tive features from the coupled vibration signals of the multi-fault 
mode for fault diagnosis of a planetary gearbox. 

In recent years, the kernel learning method has made 
some progress in the research fields of feature extraction, 
pattern recognition, data mining, image and signal processing. 
To a certain extent, it solves the nonlinear problem in the 
actual system and improves the accuracy of pattern recogni-
tion and prediction. KPCA is a method based on “kernel 
learning”, which is widely used for nonlinear feature extrac-
tion at present. It uses a kernel function instead of the inner 
product of nonlinear mapping to solve nonlinear problems. 
Liu et al. [12] used hybrid kernel feature selection and kernel 
Fisher discriminant analysis to carry out fault level diagnosis 
for a planetary gearbox. Vo and Durlofsky [13] adjusted the 
KPCA to achieve the efficient parameterization of complex 
geological models. However, the kernel learning method has 
encountered a bottleneck problem that affects the perform-
ance of the algorithm, that is, the selection of kernel function 
and its parameter. Existing studies showed that the kernel 
function and its parameters directly affect the data distribution 
structure in nonlinear feature space. So, the optimization of 
kernel parameters is the most direct method to improve the 
performance of the kernel learning algorithm. Currently, it is 
mainly determined by a large number of experiments or 
adopted by cross-checking methods, and there are few sys-
tematic studies from the perspective of modeling. Therefore, 
this is a new research hotspot to optimize and improve the 
performance of KPCA by using new intelligent methods. 

The particle swarm optimization algorithm (PSO), a typical 
swarm intelligence method, has been rapidly developed and 
applied to solve optimization problems [14, 15] due to inherent 
parallelism and distributed processing characteristics in recent 
years. In this paper, the improved PSO was compounded with 
the Fisher criterion (FC) discrimination method in pattern rec-
ognition to solve the optimization of the kernel parameters by 
modeling optimization. A simulated failure experiment of a 
planetary gearbox was carried out, and the optimized KPCA 
was applied to the nonlinear feature extraction. Then, SVM 
was used for wear fault state recognition of a planetary gear to 
solve the problem where the fault boundary is fuzzy and identi-
fying and classifying of the fault are difficult. 

2. Theory 
2.1 The principle of KPCA 

Firstly, nonlinear mapping is used to map the input vectors of 
the original space to the feature space, and then the corre-
sponding linear transformation is carried out in the feature 
space. In essence, this method of kernel transformation real-
izes the nonlinear mapping of the data space, feature space, 
and category space, and thus greatly enhances the capability 
for nonlinear data processing [16]. A geometric sketch of the 
KPCA is shown in Fig. 1. 

x1, x2, …, xN, xi∈X, are set as data sample points in the 
original space X (X⊆ Rn). When the KPCA is carried out, the 
input space X is firstly nonlinearly mapped to the feature space 
F, that is, Φ: X→F, xi→Φ(xi), i = 1, 2, …, N, F = {Φ(x)|x∈ X }, 
F⊆ Rm. 

Then the space transformation is once again carried out on 
the data Φ(xi) in the feature space F, so the linear mapping 
feature after the space transformation matrix WΦ can be written 
as: 

 
( )Φ= Φi iy W x   (1) 

 
where yi(i = 1, 2, …, N) is the eigenvector, and the N eigenvec-
tors are standardized first and then linearly combined into sev-
eral vectors, which must be orthogonal to each other. When 
the data Φ(xi) in F are projected on these vectors, the first vec-
tor should fully reflect the maximum difference of the data Φ(xi). 
The degree of difference reflected by other vectors decreases 
in turn. These vectors are defined as the kernel principal com-
ponent (KPC). Thus, a vector is calculated to describe the 
maximum change direction of feature space data, which is 
regarded as the first KPC (KPC1). Then, the second KPC 
(KPC2) is calculated and used to describe the maximum 
change direction of the remaining data. 

There are many forms of kernel function. In this paper, the 
most commonly used radial basis kernel function is applied and 
analyzed. Its specific form is as follows: 

 
2

( , ) exp( )
−

= −
x z

k x z
h

  (2) 

 
where z is the kernel function center, h is the scale parameter 
of the kernel function, and its value affects the data distribution 
scale of KPCA after nonlinear projection. 

(a) Original space      (b) Feature space     (c) Category space 
 
Fig. 1. Geometric sketch of the KPCA. 
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2.2 Establishment of the scale parameter op-
timization model of the kernel function 
based on the Fisher criterion 

The basic design idea of the Fisher criterion discrimination is 
to project the N-class m-dimensional data as far as possible in 
one direction (a straight line), so that the class and other 
classes can be separated as much as possible. 

For a data matrix x, the first class w1 has N1 samples, the 
second class w2 has N2 samples and N = N1+N2.  

Through nonlinear mapping, the vector set x1, x2, …, xN of 
input space X is mapped to the vector set Φ(x1), Φ(x2), …, 
Φ(xN) of feature space F. The mean vectors of two classes in 
the feature space are as follows: 

 

( )1 ( 1,2)
∈

Φ= =∑
p i

i
wi

p
x

i
N

xμ .  (3) 

 
In the feature space F, the within-class discrete matrix Si in 

each sample class and the total within-class discrete matrix Sw, 
are: 

 

( ) ( )1 [ ][( ) 1,2
∈

Φ Φ= − − =∑
p i

p p
T

i i
x w

ixS xμ μ  (4) 

( ) ( )
2

1 2
1

[ )][ ]
= ∈

Φ Φ= + = − −∑∑ T
w j

j
p p j

p N

（ xS S S μ μx . (5) 

 
The between-class discrete matrix Sb of the samples is: 
 

1 2 1 2( )( )= − − T
bS μ μ μ μ .  (6) 

 
A projection direction is set: η∈F, so the projections of both 

the mean vectors in this direction are: 
 

( )1 ( 1,2)
∈

= = =∑i
p i

T T
i

i

i
N x w

Φη η xμ μ . (7) 

 
The mean difference of any projected samples can be ob-

tained by adjusting η. To separate the two types of samples 
from the projection area, the larger mean difference and the 
smaller gap between the samples of the same class are de-
sired. This is the Fisher criterion (FC). These two conditions 
need to be represented by the between-class discrete matrix 
Sb, and the within-class discrete matrix Sw, respectively. 

In the feature space after projection, the sum of squares of 
the total within-class divergence errors of the two classes is: 

 

( )

( ) ( )

2
2

1

2

1

[ ]

[ ][ )

= ∈

= ∈

Φ

Φ Φ

= −

⎡ ⎤
= − −⎢ ⎥

⎣ ⎦
=

∑∑

∑∑

T T
w j

j p N

T T
j j

j p

w

p p

T

p

N

S μη x η

η x ημ

η

μ

S

x

η

. (8) 

The sum of the squared errors of the dispersion between the 
sample classes is: 

 
2 2

21 1 2( )= − = − =T T T
b b（ ）S μ μ μ μη η Sη η .  (9) 

 
According to the above optimal criterion, the FC discriminant 

function is: 
 

( ) = =
T

w w
T

b b

J η S
S

η
η

S
S

η
η

.  (10) 

 
The optimal projection direction is obtained from the above 

formula 
 

* 1
1 2( ) ( )−= −bS μ μη .  (11) 

 
The projection of Φ(x) on η* is 
 

( )*= TΦy η x .  (12) 

 
All the above calculations are carried out in the feature space. 

Because of the high dimension of the feature space, it is im-
possible to operate directly. Considering that it can be ex-
pressed linearly by Φ(x1), Φ(x2), …, Φ(xN), i.e., 

 

( )
1=

Φ=∑ i

N

i
i

η xα .  (13) 

 
Combined with Eqs. (3), (7) and (13): 
 

1 1

1 ( , )

( 1,2; 1,2, , ; )
= =

= =

= = ∈

∑∑
iNN

T T
i j j p i

j pi

p i

k
N

i j N

μ α x x α M

x w

η
 (14) 

 
where Mi is defined as an N×1 matrix, 

 

1

1( ) ( , )( 1,2; 1,2, , ; )
=

= = = ∈∑
iN

i j j p p i
pi

k i j N
N

M x x x w   

 
Gaussian radial basis function is taken as kernel function, 

that is, 
 

2

( , ) exp( )
−

= − j p
j pk

h
x x

x x .  (15) 

 
Then, 
 

1 2 1 2

1 2 1 2

( )( )
( )( )

− −

=

=

− − =

T T T
b

T T T

η ηS μ μ μ μ
α

η η
M M M M α α Mα

  (16) 

 
where 1 2 1 2( )( )= − − TM M M M M  
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1 2 1 2

2

1

( )( )

( ) )
= ∈

− −

=−

=

= −∑∑

T T T
w

T T T
p j p j

j p N

（

S μ μ μ μ

x μ x μ

η η η η

η αη Hα
 (17) 

 
where 

1,2

( )
=

= −∑ T
i i i

i

H K I L K . 

 
Ki is the kernel matrix of ith class that satisfies with (Ki)r,s = 

k(xr,xs), I is a matrix of Ni×Ni size, and all elements are 1/Ni. 
Then Eq. (10) is equivalent to the following formula: 

 

( ) =
T

TJ α Hα
α

α
Mα

.  (18) 

 
It can be seen that the essence of α is the eigenvector corre-

sponding to the maximum eigenvalue of the matrix H-1M, which 
can be obtained directly as follows: 

 
1

1 2( )−= −H M Mα .  (19) 
 
Therefore, the best projection vector η* is transformed into 

the solution α, which needs to be solved by the kernel function. 
Thus, the projection of features Φ(x1), Φ(x2), …, Φ(xN) on η is 
transformed into the projection of k(·,x) on α. 

Here, the optimization objective is transformed into the pro-
jection vector η to obtain the minimum value of J(η*). Since the 
space transformation is realized by the radial basis kernel func-
tion, the problem is transformed to find the optimal parameter 
h*, so that J(h*) is minimized. J(h) is used as the fitness func-
tion of the PSO optimization in intelligent optimization. 

For multiple classes of problems, the FC discriminant 
method can be promoted. The set of samples contains q-class 
problems, which can be converted into q(q-1)/2 two-class prob-
lems, namely, the q(q-1)/2 discriminant functions are required. 
 
3. Algorithm 
3.1 Improved PSO algorithm 

As a global optimization algorithm, the proposed PSO is 
based on the behavior rules of birds and the similarity of opti-
mization problems. At present, there are some problems in the 
application of the PSO, such as being caught in a local optimal 
when the convergence speed of the PSO is accelerated. 
Therefore, researchers mixed it with other algorithms and in-
creased the depth of local exploration and the breadth of the 
global search. 

The standard PSO algorithm is expressed by Eqs. (20) and 
(21): 

 
1 1 2 2( 1) ( ) ( ( )) ( ( ))+ = + − + −id id id id gd idv t v t c r p x t c r p x tω   (20) 

( 1) ( ) ( 1)+ = + +id id idx t x t v t   (21) 
 

where d is the dimension of the particle, xi = (xi1, xi2, …, xid ) 
and vi = (vi1, vi2, …, vid) denote the current position and velocity 

of the particle, respectively. vid is within the range [-vmax, vmax], 
where vmax is the maximum particle velocity. pid and pgd are the 
optimal location of particle i and the optimal location of the 
population, respectively. c1 and c2 are cognitive factor and so-
cial factor, respectively, which are constants. r1 and r2 are ran-
dom numbers within [0, 1]. ω is the inertial weight. Currently, 
linear decreasing weight is used more, as shown in Eq. (22). 

 
max min

max
max

−
= − × t

T
ω ωω ω  (22) 

 
where ωmax is the maximum value of ω and typically set within 
[0.9 1.4], ωmin is the minimum and set as 0.4, t is the current 
evolution generation, and Tmax is the maximum evolution gen-
eration. 

To improve the performance of the PSO algorithm, a large 
cognitive factor and a small social factor are set in the early 
evolutionary algorithm, so the individual cognitive accounts for 
a larger proportion, which can traverse the whole search space 
without quickly clustering to the local optimum. In the later 
stage of evolution, the social part dominates, and the smaller 
cognitive factor and larger social factor make the particles ap-
proach the global optimal region gradually. For this purpose, 
the improved PSO is a linear adaptive change for factors c1 
and c2 within the evolution process, and the mathematical ex-
pressions are as follows [17]: 

 
2

1 1
max

= + ×
Rc R t
T

  (23) 

4
2 3

max

= − ×
Rc R t
T

  (24) 

 
where R1, R2, R3, and R4 are the initial values. Through the 
simulation of test function, 0 < R1+R2 ≤ 2, R3-R4 ≥ 1, the algo-
rithm can overcome the disadvantages of local search and 
accelerate the convergence. 

 
3.2 The procedure for kernel function scale 

parameters optimized by the PSO-FC 
The FC discriminant function J(h) is taken as the fitness of 

the improved PSO algorithm, and then the kernel function 
scale parameter h is optimized. The detailed process is shown 
in Fig. 2. 

 
4. Experiment 
4.1 Planetary gearbox testbed 

As shown in Fig. 3, the planetary gearbox fault diagnosis 
testbed consists of a control cabinet, a variable speed drive 
motor, a helical gearbox, a planetary gearbox, a magnetic 
powder brake, and a vibration isolation pad. The planetary 
gearbox includes an inner gear ring, a sun gear, and three 
planetary gears. Table 1 illustrates the equipment’s technical 
parameters. 
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4.2 Planetary gearbox signal acquisition 
The vibration signal was measured by six unidirectional pie-

zoelectric acceleration sensors (CA-YD-186G) in this experi-
ment, and Fig. 4 indicates the layout of the measuring points. 
Among them, four measuring points (1 to 4) were arranged on 
the helical gear-box, and the others (5 to 6) were on the plane-
tary gearbox. In the experiment, the different degrees of wear 
damage of planetary gear were simulated, and four kinds of 
vibration state signals of the planetary gearbox were acquired 
in the experiment, including the normal state (model A), one-
tooth wear (model B), two-tooth wear (model C) and three-
tooth wear (model D). Fig. 5 shows the wear of planetary gear 
teeth. Figs. 5(a)-(c) show one-tooth wear, two-tooth wear, and 
three-tooth wear of planetary gear, respectively. Among them, 
Fig. 5(a) simulates the slight damage and shedding of the sin-
gle tooth tip. Fig. 5(b) simulates moderate wear, that is, when 
the planetary gear is under heavy load or poor lubrication, the 
adjacent tooth surfaces are damaged and the tooth thickness 
is reduced. Fig. 5(c) simulates severe wear, that is, three con-
secutive tooth surfaces are damaged, and tooth profile deforms 
and tooth side clearance increases. The sampling frequency of 
the signal was 10.24 kHz and the sampling points were 4096. 

 
4.3 Vibration signal analysis 

The measured signals were processed and analyzed. When 
the planet gear is running normally, there is always a meshing 
frequency due to the periodic engagement of the teeth. At the 
same time, the rotating vibration signal of gear shaft can form a 
double frequency component, and thus two side bands around 
the meshing frequency and frequency doubling composition 
are formed on the power spectral density curve. According to  

Table 1. The equipment’s technical parameters. 
 
Component Name Parameters 

Gear Big gear: modulus 2, tooth number 77 
Pinion: modules 2, tooth number 55 Helical gear 

box 
Bearing Deep groove rolling ball bearing 6206 

Inner gear ring: modulus 2, tooth number 72

Planetary gears: modulus 2, tooth number 27, 
quantity 3 

Gear 

Sun gear: modules 2, tooth number 18 
Planetary 

gear 

Bearing Deep groove rolling ball bearing: planetary gear 
6202, planetary rack 6206, sun gear 6205 

Brake - The loading form is magnetic, loading torque is 
0-100 N·m 

Motor Converter 
motor 

2.2 kW, rotational speed 1500 RPM, rated 
speed 1410 RPM 

 
 

max min 1 2 3 4 max max, , , , , , , , ,m R R R R T d vω ω

 
Fig. 2. Steps for optimizing kernel parameter with the PSO. 

 

 
Fig. 3. Fault diagnosis testbed of the planetary gearbox (1. Control cabinet, 
2. Motor, 3. Helical gearbox, 4. Planetary gearbox, 5. Magnetic powder 
brake). 

 
 
Fig. 4. The layout of the six measuring points on the planetary gearbox. 

 

(a) One-tooth wear      (b) Two-tooth wear      (c) Three-tooth wear
 
Fig. 5. The wear fault modes of the planetary gear. 
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                                    (a1) Normal state                                              (a2) Normal state 
 

      
                                   (b1) One-tooth wear                                          (b2) One-tooth wear 
 

      
                                   (c1) Two-tooth wear                                          (c2) Two-tooth wear 

      
                                  (d1) Three-tooth wear                                        (d2) Three-tooth wear 
 
Fig. 6. The time-domain curves and power spectral density curves of measuring point 5. 
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the parameters in Table 1, the theoretical meshing frequency 
of planet gear was calculated as 720 Hz. The measuring point 
5 on the planetary gearbox was taken as the research object. 
Figs. 6(a)-(d) show the time-domain curves (marked a1, b1, c1, 
and d1) and the power spectral density (PSD) curves (marked 
a2, b2, c2, and d2) of the four modes, respectively. As seen 
from Fig. 6, the meshing frequency of vibration signal is 763 Hz 
under the normal state, while it is 765.3 Hz, 769 Hz, and 
764.3 Hz, respectively, under the other three kinds of wear 
states, which are close to the theoretical values, but the side 
band and amplitude under the three fault modes (seen in Figs. 
6(b1), (c1) and (d1)) have larger changes compared with the 
normal state. 

It is found that the amplitude of the vibration signal is small 
under normal working conditions, and the maximum PSD is 
4.7523×10-3 m2/s3 and the signal is relatively stable. When the 
planetary gear is worn, the stability of the vibration signal be-
comes poor and the amplitude begins to increase. When a 
tooth is worn, the maximum PSD is twice that of the normal 
state, reaching 8.32×10-3 m2/s3. The PSD of the two-tooth wear 
is 1.481×10-2 m2/s3, reaching 3.11 times the normal state. 
However, when the planetary gear operates with three-tooth 
wear, the maximum PSD is only 2.837×10-3 m2/s3, which is 
smaller than normal and much smaller than the two-tooth wear. 
The reason is that the amplitude modulation and frequency 
modulation will occur when the planet gear wears out, so that 
the amplitude of gear meshing frequency will become larger or 
smaller, and the surrounding edge frequency band will become 
narrower or wider. As can be seen from Figs. 6(b2) and (c2), 
the PSD amplitudes of one-tooth wear and two-tooth wear 
increase to different degrees, and the edge frequency bands 
are narrowed to different degrees compared with the normal 
state. When three-tooth wear occurs, its wear is serious and 
makes the load fluctuations and rotational speed of planet gear 
uneven, so amplitude modulation and frequency modulation 
are presented, and the side frequency components of the 
curve are the results of two modulations. That is, after the side 
frequency components are superimposed with different phases, 
some side frequency amplitudes increase and some decrease, 
which destroys the symmetry of the frequency band under the 
normal state and reduces the overall PSD. Therefore, the sig-
nal energy is neutralized and weakened due to coupling and 
modulation. It is difficult to distinguish the fault modes of B, C, 
and D from the vibration signal and judge the fault degree. 

 
5. Results and discussions 
5.1 Establishment of the feature parameter set 

of the planetary gearbox 
In the fault diagnosis, the acceleration signals collected can 

be used for signal processing and statistical analysis in the 
time domain and frequency domain. There are 27 features 
extracted. They include 21 time-domain features, such as 
mean value, mean square value, maximum value, minimum 
value, variance, root-mean-square value, root amplitude, abso-

lute average amplitude, skewness, kurtosis, peak, six-order 
moments and so on, and six frequency-domain features, such 
as fequency domain variance, correlation factor, power spec-
trum barycenter index, mean square spectrum, harmonic factor, 
origin moment of spectrum. 

Feature extraction has a great influence on the accuracy and 
timeliness of fault diagnosis. Time-domain features can directly 
reflect the change of characteristic parameters with time. But 
they can not obtain the information of signal frequency change. 
Frequency-domain features mainly reflect the energy change 
of vibration signal with global frequency. In fact, a characteristic 
parameter is only sensitive to certain types of faults. Therefore, 
27 feature attributes were selected in this paper, which could 
integrate some sensitive features in the time and frequency 
domain. According to these features, a fast diagnosis of plane-
tary gearbox fault is realized. 

In this paper, the data of measuring point 5 on the shaft bear-
ings of a planetary gearbox were selected as the samples for 
observation and analysis. 60 groups of training samples and 60 
groups of test samples were extracted from the four models, 
respectively, and the kernel parameter of the KPCA was opti-
mized and the sensitive features were extracted after a stan-
dardized treatment. 

 
5.2 Optimization of the scale parameters of the 

kernel function based on the improved 
PSO 

For the data sets of the four models, the scale parameter of 
the kernel function was optimized by the improved PSO. Table 
2 shows the parameters of the improved PSO. Figs. 7(a) and 
(b) indicate the particle evolution process and the kernel pa-
rameter evolution process, respectively. It can be seen that the 
scale parameter h can stabilize at an optimal value of 57.7953 
within 50 iterations, and the minimum value of fitness J(h*) is 
80.2399. Therefore, it may achieve the goal of maximizing 
classes spacing and minimizing intra class spacing by parame-
ter optimization. The optimal value h* is the scientific basis for 
KPCA feature extraction. 

 
5.3 Feature extraction by KPCA based on 

PSO-FC optimization 
Based on the test data of the normal state and three different 

wear failure modes of the planetary gear in the experiment, 
KPCA was used for feature extraction after the kernel parame-
ters were optimized by PSO-FC [18, 19]. Before optimization of 
the kernel parameter, Fig. 8(a) is the projection diagram for h = 
10, and Fig. 8(b) indicates the accumulative contribution rate of 
the kernel principal component. It is found that A can be sepa-

Table 2. Parameters of the improved PSO. 
 

Parameters ωmax ωmin R1 R2 R3 R4 d m Tmax vmax

Values 1.2 0.4 1 0.5 6 2 5 20 50 1.0
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rated from B and C, but there are many cross points among B, 
C, and D, which are mixed together and cannot be recognized. 
The degree of wear and the category cannot be distinguished 
at all. For comparison, the KPCA projection diagram of the four 
states after the optimization is exhibited in Fig. 9(a), and the 
accumulative contribution rate of the kernel principal compo-
nent by KPCA is shown in Fig. 9(b). It is found that the data for 
the normal state are widely distributed but can be clearly dis-
tinguished from the other wear faults. Several sample points 
are in a transitional stage with individual crossover behavior 
from model B to model C. In general, B, C, and D are obviously 
different from each other, and the KPCA projection features 
have smaller intra class spacing. Hence, the projections of the 
KPCA in four states have an obvious scale segmentation effect 
after optimization of the kernel parameter. 

Table 3 illustrates the results of the kernel principal compo-
nent extraction feature. As seen from Table 3 and Fig. 9(b), the 
cumulative contribution rate of the first 10 kernel principal com-
ponents can reach 92.9 %. That is, when the feature attributes 
are compressed from 27 to 10 dimensions, 92.9 % of the origi-
nal features can be retained, which avoids the interference of 
redundant features on fault identification. The ten features can 
be used to form feature vectors for fault identification and clas-
sification, including the root-mean-square value, the absolute 
average amplitude, the variance, the root square amplitude, 
the waveform index, the peak index, the impulsion index, the 

tolerance index, the kurtosis index, and the power spectrum 
barycenter index. However, Fig. 8(b) indicates the cumulative 
contribution rate of the first ten kernel principal components 
cannot reach 80 %. This means the feature attributes cannot 
be completely retained when the feature dimensions are re-
duced. 

 
5.4 Identification and classification of wear 

faults of the planetary gear based on SVM 
Support vector machine (SVM) is a pattern recognition 

method based on kernel learning and widely used in fault diag-
nosis due to its advantages in dealing with small samples and 
uncertain problems [20]. The basic principle is to map the low 
dimensional data into the high dimensional space through 
nonlinear transformation, and to find the classification hyper-
plane with the maximum boundary to minimize the structural 
risk. 

The specific steps are as follows [21, 22]. 
(1) Get training samples and test samples 
The original signal obtained by data acquisition was proc-

 
(a) Particle evolutionary process 

 

 
(b) Kernel parameter evolutionary process 

 
Fig. 7. Evolution of the kernel parameter. 

 

 
(a) KPCA projection diagram 
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(b) Contribution rate of the kernel principal component 

 
Fig. 8. KPCA analysis results for different fault models before optimization 
of kernel parameter h (A: Normal, B: One-tooth wear, C: Two-tooth wear, 
D: Three-tooth wear). 
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essed by time-domain and frequency-domain analysis to ob-
tain corresponding characteristic parameters. After the KPCA 
optimization, ten features were selected. Fifty groups of opti-
mized features were extracted from four states, respectively. 
Among them, 30 groups were used as the training samples 
and another 20 groups were used as the test samples. So a 

total of 120 groups of training samples and 80 groups of test 
samples were provided for fault identification and diagnosis by 
SVM. 

(2) Constructing multi classification model 
SVM belongs to two classifiers. For the complex system of 

planetary gear, there are many fault types. Therefore, it is nec-
essary to construct a multi classifier to diagnose and analyze 
its faults. The basic idea is constructing q(q-1)/2 classifiers to 
solve the problem of q classification, and each classifier can 
classify two kinds of samples. The Libsvm toolbox of SVM 
model can be used to implement classification, which adopts 
the one-to-one multi classification SVM method. In this paper, 
six classifiers were constructed, and RBF kernel function was 
used, and ten features in the time and frequency domain were 
taken as input, and four fault classification labels are obtained 
as output. 

(3) Parameter pre-optimization  
The radial basis kernel function was chosen as the kernel 

function of SVM. The kernel parameter of RBF was 40.34, and 
the penalty factor was 1, which were determined by the cross-
validation method. 

(4) Fault diagnosis 
Eighty groups of test samples were put into the trained multi 

classification model, and the diagnosis results were obtained. 
The classification results before and after feature optimiza-

tion are shown in Figs. 10(a) and (b), where “o” denotes the 
category of the actual test sample and “*” denotes the category 
identified by SVM. If “*” and “o” coincide, the discrimination is 
right, and otherwise, it is wrong. 1, 2, 3, and 4 correspond to 
the state modes A, B, C, and D, respectively. 

Among the 80 groups of test samples, only two were mis-
judged as seen from Fig. 10(b). One was the normal state 
which was misjudged as one-tooth wear, and another was the 
actual two-tooth wear fault, which was misjudged as three-
tooth wear, and the overall accuracy was 97.5 %. However, 
there were 27 features before feature optimization, and due to 
the interference of some redundant features, many misjudg-
ments occurred in the fault diagnosis. Among the 80 groups of 
the test samples, 16 groups were misjudged, and the accuracy 
was only 80 %, as seen from Fig. 10(a). Table 4 shows the 
recognition results of the SVM under both the normal and the 
wear conditions of the planetary gear, and the fault identifica-
tion accuracy of SVM is improved by 17.5 %, which is higher 
than the result of 12.5 % obtained under the same experimen-
tal conditions in the Ref. [23]. This shows the superiority of this 
method. 

The method proposed in this paper has been applied on 

Table 3. KPCA analysis results. 
 

Number Eigenvalue Contribution rate Cumulative  
contribution rate 

1 3.8157 17.8277 17.8277 

2 2.9557 13.8095 31.6372 
3 2.4352 11.3776 43.0138 

4 2.1791 10.1811 53.1949 

5 1.9396 9.0620 62.2569 
6 1.8068 8.4418 70.6987 

7 1.3144 6.1413 76.8400 

8 1.2040 5.6255 82.4655 
9 1.1484 5.3656 87.8311 

10 1.0827 5.0588 92.8899 

 

 
(a) KPCA projection diagram 
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(b) Contribution rate of kernel principal component 

 
Fig. 9. KPCA analysis results for different fault models after optimization of 
kernel parameter h (A: Normal, B: One-tooth wear, C: Two-tooth wear, D: 
Three-tooth wear). 

 

Table 4. The identification results of four states of the planetary gear by 
SVM. 
 

Parameter set Training  
samples 

Test  
samples 

Misjudgment 
numbers Accuracy %

10d feature 120 80 2 97.5 
27d feature 120 80 16 80 
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gearbox (JZQ-250 type) [24], in which the simulation failures 
included the normal working condition of the gearbox, bearing 
outer ring crack in the intermediate shaft, bearing cage fracture, 
gear broken tooth, and gear broken tooth combined with bear-
ing outer ring fracture. The analysis results of gearbox fault 
diagnosis demonstrate its effectiveness. 

 
6. Conclusions 

Particle swarm optimization and other swarm intelligence al-
gorithms have gradually become the research focus for solving 
complex optimization problems. In this paper, modeling optimi-
zation and an engineering case study are implemented to solve 
the nonlinear problems of KPCA. The conclusions are as fol-
lows: 

1) By referring to the Fisher criterion discriminant function in 
pattern recognition, an intelligent optimization model based on 
the PSO-FC is established to optimize the kernel parameters, 
which improves the nonlinear analysis performance of KPCA. 

2) KPCA with optimized kernel parameters is applied to fea-
ture extraction for different wear failure states of planetary 
gears, which compresses the feature dimension and retains 
the feature parameters with 92.9 % contribution rate. The fea-
ture extraction problem of the coupled vibration signals with 
multiple fault modes is effectively solved, and the fault identifi-

cation accuracy of SVM is improved by 17.5 %. Therefore, the 
method has a good recognition effect on the nonlinear behavior 
of fuzzy fault boundaries in mechanical transmission. 
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