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Abstract  Recently, Intelligence-based structural health monitoring (SHM) methods have 
investigated widely. Most of these methods are for detecting and classifying different structural
damages by the means of features extraction from the structural responses signals, for 
instance different back propagation artificial neural networks SHM based methods. However,
automatic features extraction, that eliminates the need for expertise and performing visual
inspection to evaluate structures status is still a big challenge. In this study, therefore, a novel 
convolution neural network-based algorithm along with a hybrid training method has been 
proposed to detect, quantify and localize structural damage. The proposed method has been
evaluated experimentally, many damaged and undamaged structural conditions have been 
conducted, acquiring samples of time-domain PZT impedance response signals from a beam. 
As the results show that, the method obtained a significant execution on damage detection,
damage size evaluation and damage location recognition with high accuracy and reliability.  

 
1. Introduction   

Civil infrastructures such as skyscraper, bridges, etc., are an essential part of the nation’s 
economy due to their dominant role in facilitating the overall situation. Damages in any struc-
tural part may affect the structure functionality, leading economic and epidermal astronomical 
losses [1]. Structural health monitoring (SHM) is the main implemented tool for a damage iden-
tification strategy for any engineering structure [2]. To advance the prevention of any structural 
failure, many SHM methods have been applied to assess the conditions of the civil infrastruc-
ture. The structural dynamic analysis using mathematical or physical models has been widely 
used, however, a nonlinear has raised in most of the real-life implementations. This nonlinearity 
initiated by different factors such as, materials and geometries, etc., makes the used analytical 
model more complicated and overpriced. In this context, many researchers focused on the 
direct damage identification methods performed through the structural responses based on 
sensors networking [3-5]. 

Consequently, the impedance-based method is one of the promising NDE methods, based 
on lightweight, a low-cost and small piezoelectric transducer (lead zirconate titanate) bonded 
onto the critical parts of the structure. This method is widely discussed in the literature which is 
based on concept that a change in the mechanical properties will results in a variation in the 
PZT impedance signature [6-13]. Most of the impedance-based damage assessment devel-
oped approaches are observed to be a sort of feature extraction practice since they consider 
the variations among categories, e.g., the structural conditions before and after the structural 
damage have been accrued or variations in damage sizes. Deep learning was observed as a 
superior intelligence-based tool that has attracted several researchers for pattern recognition 
problems including the damage identification in civil structures.  

Recently, wide investigations have been conducted to apply artificial neural networks in many 
SHM methods to assess the structural status. Different SHM approaches were introduced 
based on the backpropagation and multi-layer perceptron neural networks [14-16]. Subse-
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quently, other sorts of ANN, for example, recurante neural 
network (RNN), fuzzy ARTMAP network (FAN), probabilistic 
neural network (PNN) are introduced. Many research success-
fully explored the methods of applications on several structures 
such as SHM methods are applied to damage detection and 
identification using PPN [17-19]. 

Similarly, one of the most important applications of deep 
learning in SHM methods is convolutional neural network 
(CNN) which has been investigated widely even in real-world 
applications. CNN is considered as one of the most ad-
vanced and effective deep learning models; it has also been 
applied in many areas such as face recognition, processing 
of natural language and engine fault detection [20-22]. The 
difference between CNN and the conventional ANN is the 
ability of CNN’s layers to organize neurons in three dimen-
sional (3D) way: height, width and length. Therefore, CNN is 
successfully utilized in numerous structural health monitoring 
areas based on accelerometer vibration signals. A fast and 
precise method was proposed for early fault detection sys-
tem and motor condition monitoring by applying 1D-CNN 
[23]. The authors have followed the same approaches for 
the same purpose in Ref. [24]. Likewise, another method 
was introduced to address fault identification utilizing CNN 
on raw vibration signals without any preprocessing [25]. 
Similarly, in Ref. [26], a real-time damage detection and 
localization methods based on raw acceleration signals with 
1D-CNN were proposed. Accordingly, in Ref. [27], they col-
lected the raw training process data of CNN from multiple 
accelerometer sensors and analyzed the information tempo-
rally and spatially. In Ref. [28], the authors used a network 
and training process for each of the single assigned 1-D 
CNN for an individual wireless sensor in the sensors network 
using the locally-available data. Similar, in Ref. [29], an en-
hanced approach has been applied based on CNN that 
needs two measurement sets only irrespective of the struc-
tural size, their applied approach was capable of quantifying 
the existing damage quantity prosperously.  

The CNN has been adopted for impedance-based struc-
tural damage detection of a plate with simple damage condi-
tions [30]. However, limited studies based on purely deep 
CNN for impedance-based SHM applications, for example, 
damage identification on a more complex damage cases, 
has been conducted. Inspired by the above observations, a 
novel SHM framework is proposed based on deep CNN to 
achieve effective and efficient feature extraction of time-
domain impedance signals that imitate the true structural 
damages. The proposed method was experimentally tested 
applying the PZT-EMI technique. The methodology was 
validated on a simply supported steel beam which is instru-
mented with five surfaces bonded PZTs transducers. The 
simulated damages were inserted into four scenarios, by 
creating small damage, moderate damage, severe damage 
and multiple damages at different positions. The PZT re-
sponse signals were acquired in the time domain for all the 
mentioned scenarios and converted to time-frequency sca-

lograms as RGB images and fed into hierarchically organ-
ized CNNs. As a results a superior accuracy was achieved 
through an accurate training regarding damage detection, 
quantification, and localization by applying the proposed 
method which operates on the PZT-EMI signals. The main 
contributions of this paper can be summarized as the follow-
ing: 

·A novel automated damage identification method was de-
veloped based on the time domain PZT-EMI response 
signals. A method that utilizes CNN for automatic features 
extraction from the PZT response signals of various struc-
tural conditions. 

·The method organized in hierarchical architecture produc-
ing a two-layer of CNN algorithm, where the first layer is 
for damage detection and the second layer is for damage 
size and location evaluation. 

·Unlike the other damage identification methods based on 
PZT-EMI signals showed in state of the art, the proposed 
methodology needs to operate the impedance time-
domain signals eliminating the requirements of measuring 
the sensitive frequency domain signals within damage 
applied frequency range. 

·A novel hybrid training method for the SHM algorithm, its 
decentralized from a side enabling each of the CNNs to 
detect damage at the corresponding PZT regardless the 
rest of CNNs, and centralized from another side combin-
ing in a single class all of the signals that measured at dif-
ferent damage conditions (damage classes). 

·The EMI technique weakness of low sensitivity to incre-
mental and multiple damages was utilized as an advan-
tage by combining all the PZT response signals through-
out the different damage conditions resulting in a system 
capable of detecting structural damages with several 
sizes and locations directly. 

·A new damage size estimation method was proposed, 
which is based on the soft-max classification layer. 

·Damage localization has been achieved using RMSD in a 
new application which is different in the purpose from its 
conventional application for damages quantification. 

In the meantime, the impedance-based structural health 
monitoring and convolution neural work are described in Sec. 2, 
followed by the explanation of the proposed methodological for 
structural damage detection, quantification and localization and 
EMI time-domain acquisition system and the conversion 
method of the signals to RGB images in Sec. 3. In Sec. 4, de-
scription of the experimental work. Finally, the presentation of 
the experimental results obtained in this study are described in 
in Sec. 5 and compared with other method in Sec. 6, and the 
conclusions in Sec. 7. 

 
2. Related works 

This section presents the associated works including elec-
tromechanical impedance (EMI) technique for structural health 
monitoring (SHM) and the convolution neural network (CNN). 
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2.1 The electromechanical impedance (EMI) 
technique for structural health monitoring 

The electromechanical impedance (EMI) technique utilizes a 
surface bonded or embedded low-cost piezoelectric transducer 
(PZT) on or in critical structural parts of the monitored structure. 
The PZT is capable to produce excitation on the host structure 
with a wide range of applied frequency and acquires the excita-
tion response of the host structure. Therefore, EMI technique 
possess a significant position in the field of SHM [30]. 

The basic concept of the mentioned technique is based on 
measuring the PZT transducer electrical parameters after at-
taching it to the host structure. An electromechanical response 
is conceived due to the interaction of the piezoelectric trans-
ducer and the monitored structure, where the electrical charac-
teristics of the PZT transducer are affected by the mechanical 
response of the structure. PZT transducer covers a wide fre-
quency range (from a few Hz up to GHz) with an effective elec-
tromechanical interaction, suitable stability, high response to 
electric excitation and stiff [30]. The EMI technique has high 
sensitivity to detect early-stage damages, but its actions are 
limited spatially. The EMI method has been applied in various 
SHM systems, including civil structures, industrial machines, 
airplanes, mechanical tools and processes of machining [31-
33]. 

The first one-dimensional equation that formulates the elec-
trical and mechanical impedance relationship was proposed by 
Liang [34]: 

 
2
3

( )( ) [ (1 ) ( ) ( )= − − +
T Es

x
s A

ZY i a d YZ Z
ωω ω ε ιδ ω ω   (1) 

 
where ( )Y ω  is the electrical admittance of the PZT element. 

( )SZ ω  And ( )AZ ω  are the mechanical impedance of the 
host structure and PZT, respectively. By observing the electri-
cal admittance, any changes in this impedance can be de-
tected. a , Tε , 2

3xd , EY  are the constant of transducer geo-
metric, zero stress dielectric constant, dielectric loss tangent, 
piezoelectric coupling constant and complex Young’s modulus 
of the transducer at the zero electric fields, respectively. In the 
EMI method observation and analytical process for electrical 
parameters such as impedance with both of its real and imagi-
nary parts (resistance, reactance) in addition to the admittance 
also with its real and imaginary parts (conductance, suscep-
tance) are conducted. The stat of art shows that the attach-
ment layer between PZT transducer and host structure can be 
assessed using imaginary part of electrical parameters to 
monitor the PZT transducer [35], whereas the real part of elec-
trical parameters is used for monitoring of the under-
assessment structure.  

 
2.2 Structural damage detection based on 

time domain impedance 

By the comparison of the time domain analysis methods and 

the frequency-domain analysis of the EMI technique, it is clear 
that the former is reasonable for structural damages detection. 
Similarly, there is a limited literature on this topic. The damage 
detection can be achieved efficiently by using the time-domain 
method. Inman et al. [35] have successfully detected damages 
by utilizing the wavelet transform through the comparison of 
correlation coefficient deviation metric (CCDM) and root mean 
square deviation (RMSD) indexes of the EMI response in fre-
quency-domain. For the time-domain analysis a circuit of exci-
tation on the PZT and host structure is needed, as shown in 
Fig. 1.  

Mostly in time domain-based damage detection, a compari-
son is conducted in between the electrical voltage changes in 
the PZT transducers response signals and PZT transducer 
surface bonded/embedded on or in the host structure. 

 
2.3 The propose and background of CNN 

CNN has been successfully applied in automatic feature ex-
traction, evidencing its fully supervised learning and standard-
ized gradient descent. In general, the CNN model composed of 
two parts one for feature extraction and other multi-layer per-
ception for classification. 

A convolution layer and a max-pooling layer forming the fea-
ture extraction part. The features of the RGB images are ex-
tracted by the convolution layer, the main function of the max-
pooling layer decreases the consumed time of processing and 
increases the invariability between structure and space pro-
gressively, meanwhile the main properties of the RGB images 
maintained. Accordingly, a multi-layer perceptron classifier’s 
input is the extracted features. Hidden layers and output layers 
are the basic structure of the multi-layer perceptron classifier; 
Fig. 2 shows the typical CNN structure. All of the CNN’s nodes 
having the same activation function, the most popular activa-
tion function is so-called a sigmoid function. The automatic 
feature extraction theoretical concept using the CNN method is 
explained in secstions 2.3.1 and 2.3.2. 

The authors designed a hierarchical CNN model for feature 
extraction and used a hybrid training method for damage de-

 
 
Fig. 1. Electromechanical impedance measurement system for time-
domain signals. 
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tection and quantification phases from the PZT transducer 
response signals. In addition, as shown in Fig. 3, a com-
pressed CNN model is implemented to reduce the time con-
summation and increase the procedure simplicity. Therefore, 
each CNN model is built with image input layer, two convolu-
tion layers, two max-pool layers, fully-connected layers, soft-
max layer, and classification output layer. 

 
2.3.1 Feed-forward operation 

Referring to the time domain PZT transducer signals sam-
ples { , }X Y  assume X  and Y  are the input signals vec-
tors and the target classes, respectively, called the structural 
conditions. The number of data-set samples is N . It is possi-
ble to transform the input signal into an RGB image with vari-
ous dimensions. The convolution layer as per its functionality 
generates new maps of features called features maps, the 
kernels (filters) is convolve the features maps in the mentioned 
layer [36]. Convolution of several input features resulting in the 
output map. The definition of feature maps progress in a con-
volution layer is: 

 
1( )−

∈

= ∗ +∑l l l l
j ij i ij j

i Mj

O f O w bσ  (2) 

 
where 1−l

iO  is the output of the 1−l th layer and l
ijw  the in-

put into the next layer through the feature map i , and l
jo  is 

the thj  feature map of the 1l − th layer. ( )f o  for the sig-
moid function, jM  is a selection of input maps and is the 
kernel weight linking the i th feature map of the 1−l th layer 
with the thj  feature map of the ∗ th layer ∗ denotes the proc-
ess of convolution. An additive bias b , is given to each output 
map. Through several kernels, the input feature maps related 
to a specific out-put feature map are convolved. Within the 
convolution operation, every out-put feature map has the same 
weight distribution and size, for s reduction of the training pa-
rameters. The following formula used is for producing the fea-
tures maps of the sub-sampling layers: 

 
1( ( )−= +l l l l

j j j jO f S o bδ  (3) 
 

where ( )S o  is the function maximizes every class with a spe-
cific size in the feature map which is named as max pooling, 
and l

jδ  is the deviation in the multiplier for the jth  feature 
map of the thl  layer. The important advantage of CNN is the 

ability to extract features automatically through its layers one 
by one. Every layer of CNN is considered as a feature map for 
the next layer. The feature extractors are weights and bias 
linking two of layers. The spatial property of the last feature 
lays in the neurons’ number of CNN’s final layers. The weights 
and bias for all of the layers are updated using gradient de-
scent to achieve the highest performance accuracy. 

 
2.3.2 Back propagation and gradient descent 

Back-propagation is used to compute the loss function gradi-
ent for all layers and weights. The objective function is speci-
fied using a function of squared error loss. The problem is 
multi-class with m  several classes and N  data-set samples. 
As an explanation, after training one sample the function of 
loss is presented in Eq. (4), n  is the calculated loss function 
overall, as follows: 

 
2

1

1 ( )
2 =

= −∑
m

n n n
k k

k

E l y  (4) 

 
where the training sample index is n , and the label index is k. 
Here, in a sample n  the corresponding thk  label is n

kl  and 
the output-layer unit value is n

ky . In problems of classification 
of multiclass, a vector presents the out-put mostly, the positive 
is the class out-put node related to the dimension of the input 
only. The remaining nodes of the class are negative or zero, 
depending on the output layers activation function, where the 
tanh function is 1 and the sigmoid function is 0. Subsequently, 
in a layer from neurons u  to neurons v  the sensitivity of 
neuron l

jϕ  is computed, and the function of loss gradient for 
the kernel weights is calculated by back-propagation as fol-
lows: 

 
1

,( ) ( )−∂= = ∑
∂

l l l
j u v j ijl

ij

Egrd O W
W

ϕ . (5) 

 
2.4 The continuous wavelet transform (CWT) 

The continuous wavelet transform (CWT) is one of the most 

Input layer
(RGB image)

Feature 
maps

Feature 
maps

Feature 
maps

Feature 
maps Output

11/25/2018 - 12/2/2018

Convolutions 11/25/2018 - 12/2/2018

Max
Pooling

11/25/2018 - 12/2/2018

Convolutions 11/25/2018 - 12/2/2018

Max
pooling

11/25/2018 - 12/2/2018

Fully 
connected

 
Fig. 2. Typical convolution neural network (CNN). 
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Pooling
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Output

H
.
.
.

SD

 
Fig. 3. The proposed configuration for the convolution neural network 
(CNN).  
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important tools in signal processing, due to the fundamental 
collaboration between physics and signal processing known by 
Gabor, Morlet, and Grossmann, has led up to the formulation 
of the (CWT) [37]. Continuous wavelet transformer promotes 
the continues variation of the wavelets scale parameter and 
translation producing a professional representation of a signal. 
Based on a mother wavelet ψ  of zero average a wavelet 
dictionary has been constructed  

 

( ) 0
+∞

−∞
=∫ t dtψ ,  (6) 

 
which is translated by u , with a scale parameter s  dilation:  

, ,

1{ ( ) ( )} ∈ >

−= =u s u R s o

t uD t
ss

ψ ψ .  (7) 

 
At any scale s , and position u  the continues wavelet 

transform of f  is equal to the projection of f  on the wavelet 
corresponding atom: 

 
*

,

1( , ) , ( ) ( )
+∞

−∞

−= = ∫u s

t uWf u s f f t dt
ss

ψ ψ .  (8) 

 
It is a one-dimensional representation of signal by lengthy 

timescale images in ( ,u s ). 

 
3. The proposed damage identifications 

method 
As mentioned earlier, four structural damages are experi-

mentally simulated in a simple supported beam, the created 
damages are small damage, moderate damage, severe dam-
age and multiple damages for different positions consequently. 
The proposed EMI-CNN algorithm is aiming to detect the dam-
age in case of incidence, quantify the size of the damage and 
identify the locations of the damages accurately. The imple-
mentation of the EMI-CNN algorithm needs constructing and 
training a single assigned CNN for each one of the five PZT 
transducers. The responsibility of all of the five CNNs is condi-
tion assessment of the beam using time-domain PZT trans-
ducer response signals measured at the beam. Firstly, each of 
the five CNN (CNN 1, CNN 2, CNN 3, CNN 4, and CNN 5) has 
trained to classify into two structural conditions, one is healthy 
condition while the second condition is damages in all sizes 
and locations (the four simulated damage).  

It is considered a single condition by combining the meas-
ures of PZT signals under one class to increase the accuracy 
and centralize the method. Once the signal classified as dam-
age condition class then the testing signals of the first fourth 
CNNs fed to another four CNN of PZT1 to quantify and locate 
the damage (CNN 1-1, CNN 1-2, and CNN 1-3 for damage 
severity evaluation) the (CNN 1-4 for damage localization). So 
on for all the PZTs, irrespective of the methodology and hierar-
chical architecture. Therefore, the EMI-CNN algorithm enabled 
each CNN to detect damages at its PZT separately from the 

other CNNs. The proposed damage detection algorithm decen-
tralized from a side and centralized from another side which 
makes it a hybrid method. 

 
3.1 Damage size quantification 

Next, to the damage detection, four CNNs are implemented 
for each PZT. These four CNNs have constructed with archi-
tecture similar to that of CNN in the damage detection layer, 
due to the similarity of sample dimensions. While, the test RGB 
images forms the input of the mentioned layer after training, 
and a class label along with the probability vector as an output, 
specifying the used sample affiliated to each class and the 
probability of the affiliation simultaneously. A sample label was 
proposed because of the importance of size identification, a 
method of the damage size estimation of each sample. The 
labels of classes are noted as 1, 2, ..., N for a case has N 
classes, the soft-max method is utilized for calculating the 
probability of each sample class and size affiliation as follows: 

 
1 2( ) { , , .... }=i NPo x Po Po Po .  (9) 

 
Consequently, the depth of damage is calculated as follows: 
A probability threshold value has set to be 95 %, in other 

words only the sample classified with higher than 95 % prob-
ability of belonging to thj  class has been considered. Mean 
of probabilities that equal or higher than the set threshold value 
calculated as: 

 
95 %≥∑

= o
j

P
MeanPo

N
.  (10) 

 
While the size of the damage is calculated as: 
 

( ) 0.01= × ∓j jSoD D MeanPo   (11) 
 

where jD  is the specified size of damage for the thj  dam-
age class. jMeanPo  is the affiliation probability of the N sam-
ples to the thj  damage class. ∓ 0.01 is a correction factor 
which is equal to the loss value.  
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Fig. 4. Illustration of the general diagram of the signals acquisition method 
(dimensions in millimeter). 
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3.2 Damage localization using root mean 
square deviation 

Usually, damage index is important for condition assessment 
of structures which depends on the real part of the PZT sen-
sor’s impedance as indicator of condition changes, through 
observing the changes and quantify the damage statistically. 
The mean function is a helpful tool to arrange and analyze big 
data set. When the variations of the quantities are positive and 
negative for example sinusoidal wave, root means square 
(RMS) is a power-full statistical measure to obtain the number 
of variations. For different signals, RMS value can be consid-
ered as samples of equal space. The sum of samples divided 
by the number of these observations (N) resulting in the aver-
age (mean). The reality of damage and the voltage deviation 
can be measured by applying the root mean square. Mostly, 
RMSD as a statistical measure was used for damage quantifi-
cation [8-13]. In this work, root mean square is adapted to lo-
cate the damage by measuring the changes in voltage at each 
PZT with its respective location on the beam and generating an 
illustration similar to the damage map, for each damage loca-
tion and size. Following equation defines the RMSD, 

 

2
1. 2.

1

2
1,

1

( )
% 100=

=

−
= ∗
∑

∑

N

i i
i

N

i
i

Z Z
RMSD

Z
  (12) 

 
where 1Z  and 2Z  are the reference for the measured signals 
and the measured signal used for comparison, respectively, i  
is the measurement interval and N  is the total number of 
samples used for comparison [5].  

4. Experimental work  
We established a method based on the PZT-EMI method for 

obtaining the PZT-EMI response signals in time-domain, which 
considers the response signals of the structure. EMI is applied 
by exciting the monitored structure using a PZT at a frequency 
of wide range and of low amplitude to create an excitation force 
on the monitored structure [6]. Generally, PZT can act as a 
sensor or actuator, EMI technique uses the PZT transducer as 
actuator and sensor at the same time. In our case, a steel 
beam of 1050 mm length, 25 mm width and 25 mm depth was 
simply supported. Five piezoelectric patches (PZT 1, PZT 2, 
PZT 3, PZT 4, and PZT 5) with the size of 10 mm× 
10 mm×1 mm were utilized, that had active elements of type P-
7 PZT ceramics. PZT was attached on the upper surface of the 
beam at five selected positions as shown in Fig. 6, where the 
bonding material used is 3M Scotch-Weld Epoxy Adhesives 
DP460 Off-White. Subsequently, a frequency-range of 0-
500 kHz with an amplitude of 1 V was used to initiate the exci-
tation on the PZT and structure. The properties such as mass, 
shape, boundary condition, and other structural properties all 
effect and control the sensitivity of the EMI signals frequency 
band [7]. Similarly, researches revealed that the high frequen-
cies decrease interactions of global properties in the vibration 
modes of structure [12], which maintain the selected range of 
frequency.  

The electro-mechanical impedance measurement system 
was utilized to produce excitation and acquire the responses of 
the structure. As shown in Fig. 2 the electric current passing 
through the PZT patch was controlled using 47 Ω resistor (R). 
Various structural conditions are implemented, and measure-
ments using the mentioned system were conducted. Firstly, the 
measured signals were saved to create a healthy condition. 
Each PZT measure was sampled independently at a sampling 
rate of 5000 sample/second. Next, four damage cases were 
simulated consequently by creating small damage, moderate 
damage, severe damage and multiple damages for two differ-
ent positions in the structure (Figs. 4 and 6). The size of the 
damage increased gradually started with 5 mm for small, dam-
age 10 mm for moderate damage and 15 mm for severe dam-
age as depth, the first three damage cases (named SD, MD, 
and LD) and in the fourth damage case is a new damage of 
15 mm depth in a different location was created in addition to 
the 15 mm crack at 200 mm from the left support (named mul-
tiD) as portrayed in Table 1.  

 
Fig. 5. Scheme of the data perpetration and the architectural hierarchy of 
CNN. 

 

Table. 1. Experimental damage description. 
 

Structural condition Crack depth Location 

Healthy - - 

Small damage (SD) 5 mm 200 mm to the left support 

Moderate damage (MD) 10 mm 200 mm to the left support 
Severe damage (LD) 15 mm 200 mm to the left support 

Multiple damage (multiD) 15 mm 100 mm to the right support 
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Hence considering SD, the PZT 1 was excited separately, 
and its related signal is acquired on an individual basis, fol-
lowed by all the PZTs with the same procedure. Following this 
method, the measures are obtained individually for each patch 
of the five PZT transducer, by promoting the approach to per-
form on any response signals independently. Then, the dam-
age depth increased to 10 mm MD. Again, the response sig-
nals for PZT 1, PZT 2, PZT 3, PZT 4, and PZT 5 were acquired 
individually. Finally, the same approach was repeated for LD 
and multiD. In total, there were 2500 time-domain PZT-EMI 
signals (500 for each structural condition/ five PZTs). The re-
sponse signals were obtained for 500 seconds from each PZT 
in the respective structural condition. The used sampling rate 
was 5000 sample/second with the signal length 25000 sample. 
Thereby, conducting the measurements 100 times for every 
PZT at each structural condition resulting in acquired PZT re-
sponse signals for about eight minutes. Meanwhile the room 
temperature was maintained at 27 °C during the experiment. 
RGB images were formed using PZT-EMI response signals. 

 
4.1 The continues wavelet transformer (CWT) 

for the PZT time-domain signals to RGB 
(red, green, and blue) images scale 

The state of art SHM approved that there are some rare ap-
plications of CNN as an automatic feature extractor along with 
PZT-EMI based structural health monitoring method due to the 
complexity of converting the PZT transducer responses signal 
to meaning-full images or videos form. While addressing this 
issue, we proposed an effective way to form scalograms (RGB 
images) from time domain PZT-EMI signatures by utilizing 
CWT function filter bank in (MATLAB). The procedure to pro-
duce RGB images is as follows:  

1) Loading all the raw EMI data into a matrix containing all 
the sampled measurements; 

2) All the EMI data stored in structure including an array 
(double) for data (sampled signals) and cell for the training 
labels as (healthy and damage) conditions; 

3) The EMI signals for (healthy (H) and small damage (SD)) 
conditions are grouped in new structure containing a matrix for 

the sampled signals for the mentioned conditions and cell for 
the training labels; 

4) The same procedure in Eq. (3) was repeated for three 
times to prepare the data for the rest of the structural condi-
tions; 

5) Using continuous wavelet transform filter bank function 
(MATLAB), all the EMI data and the grouped data are con-
verted to scalograms as 56x56 RGB images;  

6) Each measured PZT response signals was converted to 
single 56x56 RGB image;  

7) The created images are then stored as a JPEG image in 
pre-made directories named as same to the label names. The 
input of CNN is the images by feeding them through the CNN 
input layer. 

 
5. Experimental results 

In the evaluation of the developed approach, this section 
headlines the results acquired by implementing the experimen-
tal set up. Firstly, the signals of the structural response were 
acquired through the PZTs from the different structural condi-
tions, using the measurement system discussed above. Sam-
ple signals are shown in Fig. 7 where the time-domain imped-
ance for PZT 1 is presented. Signatures are presented for five 
various kinds of structural conditions: healthy (H), small dam-
age (SD), moderate damage (MD), severe damage (LD), and 
multi-damage (multiD). 

As determined, the damage incidence will produce a differ-
ence in the PZT-EMI response signals due to the variations in 
the PZT electro-mechanical impedance. At various structural 
conditions, the incremental accumulative and multiple struc-
tural damages produce only incipient changes in the EMI sig-
natures which need an accurate method for the detection of 
variations in automatic signals.  

Secondly, the acquired signals of the structural response 
were grouped and converted to RGB images applying the con-
tinuous wavelet transform. Fig. 8 illustrates a set of the RGB 
images produced by converting the EMI signatures for PZT1 
using the continuous wavelet transformer. The images shown 
in Fig. 8 are produced for signatures of the healthy (H) and all 

 
Fig. 6. Setup of experiment composed of: steel beam instrumented with five 
PZT patches, arbitrary waveform generator, a reference resistor, and oscil-
loscope. 

 

 
Fig. 7. Sample PZT signals from the healthy and damaged beam. 
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of the damaged structural statuses, respectively. A perceptible 
variation is shown between healthy and damage structural 
conditions through the RGB in Fig. 8. Meanwhile there are 
imperceptible changes which couldn’t be observed by naked 
eye, which demonstrate that we have conducted subtle analy-
sis on the images. Contrarily, if we consider various structural 
damage conditions RGBs, then such variations are hard to 
inspect and need algorithm with a high-efficiency training 
method to overcome. 

Accordingly, this method uses a hybridized training method 
and utilizes the hierarchical architectural arrangement for the 
CNN algorithm to get the benefit of those small variations to 
achieve accuracy and reliability in the damage detection 
method. It is necessary to mention that the created RGB im-
ages are used to make an image data store for training, 
evaluation, and testing of the CNNs, which formed the input to 
the CNN algorithm Table 2. 

In the same way, the dataset (image data store) is fed to the 
proposed CNN model. The CNN trained and tested on a Lap-
top has an Intel C i5-2450 M, 4 GB of RAM and running Win-
dows 7. The training and testing conducted on the mentioned 

laptop CPU without GPU. 
The well-known MATLAB software was used to write and 

run the systematic program of the proposed approach. The 
CNN parameters were set by the trial and error method. The 
size of the batch and the number of the epoch were set to 8 
and 20 consequentially. It has been observed from the earlier 
epoch during the training process coverage. Five CNN models 
were designed to detect any kind of damage, one CNN as-
signed for each PZT sensor in the first layer (damage detection 
layer) of the model. In the second layer (damage quantification 
and localization layer) of the mentioned model, another four 
CNN was implemented for each PZT sensor, each of them 
responsible for detecting one of the simulated damage cases. 
Resulting in a CNN model able to detect any type of damage, 
quantify and localize the later. 

CNN model composed of some layers in general, where 
each layer produces an activation on the input image. The first 
layer of the network captures the basic features of an image 
such as edges. Fig. 9 shows the first convolution layer weights 
after applying 6 kernels onto a certain RGB for PZT 1. As 
shown in Fig. 10, if we compare the healthy (H) and combined 
damaged structural conditions, there are significant variations 
among the feature maps of the healthy and combined struc-
tural damaged states. These variations are a positive indication 
of the fittings of the introduced method.  

Similarly, for the CNNs in the quantification layer (CNN 1-1, 
CNN 1-2, CNN 1-3, and CNN 1-4). Each one of the mentioned 
CNNs assigned to classify into two structural statuses, healthy 
and one of the simulated damages starting with SD. After ap-
plying six kernels to PZT 3 RGB images considering H, SD, 
MD, LD, and multiD structural conditions. Analyzing the results 
shown in Fig. 11 it is clear to perceive how PZT 3 recognizes 
each structural situation. Also, for each RGB image, it is evi-
dent that it is considered as a promising identifiable feature by 
comparing with RGB shown in Fig. 8 for each structural condi-
tion, thus, awarding this method a precise outstanding applica-
tion in SHM. 

After the training and testing processes for each of the CNNs, 
these are already designed for each PZT transducer; CNN is 
observed to be fitted after almost two epochs. All CNNs results 
for each PZT shown in Table 3. These results show clearly that 
the high efficiency of the current approach is with 100 % accu-

Table. 2. The RGB images formed from each PZT transducer response 
signal. 
 

No. Structural condition Training samples Test samples 

1 Healthy (baseline) 70 30 

2 Small damage (SD) 70 30 

3 Moderate damage 
(MD) 70 30 

4 Multi-damage (multiD) 70 30 

 

 
Fig. 8. The created RGBs using CWT for all of the structural conditions 
(healthy, SD, MD, LD and multiD). 

 

 
 
Fig. 9. First convolutional layer weights. 
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racy, revealing that the proposed methodology is capable of 
detecting and quantifying different structural damages condi-
tions. These results were achieved with a simple training set for 
the CNN without any GPU Table 1. It is considered a superior 
and precise solution for practical applications since it depends 
on the training data-set from available measured signals which 
represents the response of the structure. 

In order to locate the damages by quantifying the change in 
the measured voltage due to damages, the RMSD index is 
utilized. All calculations in this work have been derived from the 
measured time domain voltage. The RMSD percentage was 
increased as the crack depth increased. The final comparison 
of RMSD percentage between collected healthy and different 
damages from several PZTs results evidenced that with in-

crease in the damage size and number, the RMSD of the near 
to damage PZT transducer is also increased. RMSD values of 
PZT 5 and PZT 4 were increased significantly when the first 
damage was applied. Similarly, when the second damage cre-
ated the RMSD value of PZT 1 also increased indicating that 
damage has occurred nearby its location. It is concluded from 
these results that the RMSD can be used to locate the damage 
which reveals its another essential application for damage 
localization along with damage quantification Fig. 12. 

 
6. Comparison of the proposed damage 

quantification method with RMSD 
The proposed method for damage size quantification pro-

vides an accurate method of diagnosing damage size which 
demonstrated an efficient way to figure out the issue of dam-
age size evaluation. The performance of the proposed method 
compared to the existing typical RMSD method, to sustain its 
superiority. Fig. 13 illustrates the damage size evaluation 
achieved by the proposed damage quantification method for all 
of the damage sizes (5 mm, 10 mm, 15 mm) using the twenty 
testing samples for each PZT. Similarly, Fig. 14 shows the 

Table 3. The results of damage detection and size evaluation. 
 

Healthy (baseline) Training accuracy % Test accuracy % 

Small damage (SD) 100 100 

Moderate damage (MD) 100 100 

Sever damage (LD) 100 100 
Multi-damage (multiD) 100 100 

 
Healthy Combined Damages

 
Fig. 10. Extracted features from PZT RGB images through the second 
convolution layer. 

 

 
Fig. 11. Extracted features from PZT 3 RGB images of each structural 
condition.  

 

          
(a)                             (b) 

 

          
(c)                             (d) 

 
Fig. 12. RMSD for localization of different damages: (a) small damage; (b) 
moderate damage; (c) sever damage; (d) multi-damage. 

 

 
 
Fig. 13. Testing results of the damage size evaluation. 
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comparison of the damage size evaluation achieved by the 
newly proposed method and the RMSD. The second layer of 
the proposed two-layer CNN model performs better than the 
RMSD method. 

The proposed method offers a more accurate tool of damage 
quantification through automatic extraction features, particularly 
when structural steel members are involved as compared to 
the damage quantification method of RMSD, which is signifi-
cantly limited. The obtained results efficiently sustain the appli-
cability of the proposed CNN model. 

 
7. Conclusions 

In this work, a novel CNN based model is proposed, and the 
utilization of this model to damage detection, damage quantifi-
cation, and damage location evaluation is addressed. First, an 
effective centralized and decentralized training method is intro-
duced, obtaining a CNNs capable to extract features from time-
domain PZT signals automatically. Second, a hierarchical ar-
rangement is implemented and the method is organized hier-
archically to form a CNN model of two-layer. The damage de-
tection is achieved in the first layer and the damage size and 
location assessment regarding three damage size conditions in 
two locations have been done in the second layer. Third, train-
ing and testing samples from a damage detection data-set are 
used to train and test the CNN models, for the mentioned ex-
perimental purposes samples data-set are collected. Moreover, 
the proposed approach was implemented in CPU using a sim-
ple training dataset while neglecting the need for a GPU. 
Fourth, in addition to an accurate damage detection method, 
an efficient damage size quantification method has been pro-
posed, which makes a new use for the CNN’s output. Fifth, a 
new damage localization method has been developed through 
calculating RMSD for each PZT for the different structural con-
ditions. The results demonstrate that we have achieved a huge 

success for SHM using the hybrid CNN’s training method along 
with the hierarchical CNN model. Based on our results, the 
EMI-CNN algorithm for SHM with a hit rate of 100 % was de-
veloped which represents a robust and reliable structural dam-
age identification methodology. 
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