
 Journal of Mechanical Science and Technology 35 (4) 2021 DOI 10.1007/s12206-021-0342-5

1331

Journal of Mechanical Science and Technology 35 (4) 2021

Invited Review Article
DOI 10.1007/s12206-021-0342-5

Keywords:
· Deep neural networks
· Informed deep learning
· Knowledge integration
· Knowledge representation
· Physics-informed
· Taxonomy
· Dynamical system

Correspondence to:
Seungchul Lee
seunglee@postech.ac.kr

Citation:
Kim, S. W., Kim, I., Lee, J., Lee, S. (2021).
Knowledge Integration into deep learning
in dynamical systems: an overview and
taxonomy. Journal of Mechanical Science
and Technology 35 (4) (2021) 1331~1342.
http://doi.org/10.1007/s12206-021-0342-5

Received February 3rd, 2021

Revised February 15th, 2021

Accepted February 19th, 2021

† Recommended by Editor
 No-cheol Park

Knowledge Integration into deep
learning in dynamical systems: an
overview and taxonomy
Sung Wook Kim1, Iljeok Kim1, Jonghwan Lee1 and Seungchul Lee1,2,3
1Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-
ro, Pohang, Korea, 2Graduate School of Artificial Intelligence, Pohang University of Science and Technol-
ogy, 77 Cheongam-ro, Pohang, Korea, 3Institute of Convergence Research and Education in Advanced
Technology, Yonsei University, 50 Yonsei-ro, Seoul, Korea

Abstract Despite the sudden rise of AI, it still leaves a question mark to many newcomers
on its widespread adoption as it exhibits a lack of robustness and interpretability. For instance,
the insufficient amount of training data usually hinders its performance due to the lack of gener-
alization, and the black box nature of deep neural networks does not allow for a precise expla-
nation behind its mechanism preventing a new scientific discovery. Such limitations have led to
the development of several branches of deep learning one of which include physics-informed
neural networks that will be covered in the rest of this paper. In this overview, we defined the
general concept of informed deep learning followed by an extensive literature survey in the field
of dynamical systems. We hope to make a contribution to our mechanical engineering commu-
nity by conveying knowledge and insights on this emerging field of study through this survey
paper.

1. Introduction

Deep learning has recently become the epitome of emerging research studies stimulating its
widespread adoption in nearly every scientific and engineering areas. Due to its inherent nature
to capture high non-linearity between input variables and target variables for various types of
data (e.g. image, text, sound, etc.), it is rapidly becoming a near universal tool for many re-
search studies. From the perspective of engineers at manufacturing sites, the best part of using
deep learning is that it is not mandatory for users to know about the physical meanings of the
parameters of the system of interest, and nor are they required to understand the mechanism
behind it. This is important because often times the combination of input parameters such as
control settings (e.g. speed, pressure, etc.) and change in physical quantities of conditions (e.g.
stress, tensile force, etc.) over time provide an unexpected output.

Although the conventional deep learning approaches, usually regarded as the data-driven
methods, have shown promising results in diverse domains, they still present limitations in sev-
eral aspects that are left to be resolved. For instance, the insufficient amount of training data is
detrimental for the performance of a deep learning model, and it is generally considered the first
and foremost. To make the matter even worse, there is no strict rule-of-thumb for the minimum
amount of data that is necessary as it depends largely on the type of task that needs to be
solved. Furthermore, deep learning approaches are solely data-driven in its nature for discover-
ing the hidden patterns or mechanisms and thereby disobey the physical constraints or govern-
ing laws occasionally. Apart from those mentioned, there are a few other disadvantages such
as the lack of interpretability and a relatively long training time. To overcome these challenges,
scientists and engineers have begun to create additional features in the traditional deep learn-
ing pipeline. As such, several branches in the field of deep learning have emerged, one of
which include the physics-informed deep learning.

Nomenclatures regarding the integration of prior knowledge with deep learning are not unified

© The Korean Society of Mechanical
Engineers and Springer-Verlag GmbH
Germany, part of Springer Nature 2021

 Journal of Mechanical Science and Technology 35 (4) 2021 DOI 10.1007/s12206-021-0342-5

1332

across previous literature. Some of the commonly used ex-
pressions include ‘physics-informed’, ‘physics-based’, ‘physics-
guided’ and ‘theory-guided’. Therefore, for clarity, we used
‘informed deep learning’ in this paper to denote the knowledge
integration with deep learning. The rest of this study is broken
down as follows. In Sec. 2, the general concept of informed
deep learning is introduced and explained in detail. Sec. 3
discusses in depth on how the surveyed literature falls into any
of the categories defined in Fig. 1. The classification of the
surveyed literature is summarized in Table 1. Lastly, Sec. 4
ends this overview with a summary and an insight on possible
future work and suggestions regarding the direction of informed
deep learning especially in the field of dynamical systems.

2. Concept of informed deep learning

In this section, the general concept of the workflow in in-
formed deep learning is explained first to give the readers a
good idea on how it differs from the learning route of the tradi-
tional deep learning. Next, the three different ways of knowl-
edge integration presented in the last part of the taxonomy in
Fig. 1 are explained in detail. It is noteworthy that a similar
concept of knowledge integration was introduced by Reichstein
et al. [1].

2.1 General workflow of knowledge integration

in deep learning

Prior knowledge refers to any type of knowledge about a task,
data, physical model of interest, etc. One of the essential char-
acteristics of prior knowledge is that it is independent of learn-
ing algorithms. The type of knowledge is diverse and a part of
those in dynamical systems we encountered during the litera-
ture survey are differential equation, algebraic equation, knowl-
edge graph, simulation result and human feedback. The defini-
tions for each term are omitted because they are intuitive and
can easily be found in other literature sources. This survey
focuses primarily on where and how the prior knowledge was
utilized in the commonly referred baseline deep neural net-
works.

Fig. 2 illustrates the workflows in both conventional and in-
formed deep learning pipelines. The main difference between
the conventional and the informed deep learning throughout
the entire pipeline is that prior knowledge is explicitly used in
one or more of the steps inside the ‘integration point’. Although
the notion of the ‘integration point’ is similar to what had been

discussed by Rueden et al. [2, 3], we managed to simplify the
four types of ML pipeline into three (i.e. feature engineering,
designing, and regularizing) which we thought were more prac-
tical and intuitive for the kind of taxonomy shown in Fig. 1.

2.2 Prior knowledge integration

The following sections define steps and the scope of process
needed for a method to be categorized as one or more of them.
Feature engineering: Feature engineering in the context of
informed deep learning is meant by obtaining supplementary
attributes using physics-based model (e.g. simulation, govern-
ing equations, etc.) only to have them concatenated with train
data, or processing train data with domain-specific functions
(e.g. Fourier transform). Despite its restricted usage, feature
engineering was found to be a one of the most common ways
of integrating prior knowledge to a deep learning pipeline. Con-
catenating simulation results to the original train data was the
most commonly, yet very powerful, encountered method during
the literature survey. Fig. 3(a) illustrates the process of feature
engineering as part of knowledge integration.
Designing: Designing refers to building a network architecture
that reflects the physical knowledge of a system or the type of
data. Unlike feature engineering, designing was encountered in
a various form. Common cases include constructing a task-
specific autoencoder and a recurrent cell, and designing a
physics-induced convolution filter. The prior knowledge was
usually in the form of a differential equation and a common
sense of the domain. Fig. 3(b) illustrates the workflow in which
the prior knowledge is shown in a dotted line because it is not
physically but indirectly integrated with the designed model

Fig. 1. Taxonomy of informed deep learning.

Fig. 2. Workflows in both conventional and informed deep learning pipe-
lines, which show how the route changes from that of the conventional
deep learning if prior knowledge is integrated in the pipeline. If following the
‘Knowledge-integration’ pipeline, the prior knowledge will be taken account
in one or more of the steps inside the ‘integration point’.

Fig. 3. Process of (a) feature engineering; (b) designing and regularizing as
part of knowledge integration.

 Journal of Mechanical Science and Technology 35 (4) 2021 DOI 10.1007/s12206-021-0342-5

1333

within the scheme.
Regularizing: Regularizing was often coined as physics-
guided learning in many literature [2-6]. The main focus of
regularizing is to constrain the model objective function in the
context of optimization so that the training converges faster and
to a certain degree. This form of knowledge integration was
found in all types of deep neural networks due to its ease of
use. Most of the time, the constraint terms were added to the
standard data-driven loss term. The associated workflow is the
same as that of designing (Fig. 3(b)).

3. Knowledge integration in deep neural

networks
In this section, we provide related studies found in the litera-

ture survey. The methods of the studies is focused and investi-
gated for their categorization in the taxonomy shown in Fig. 1.
All methods introduced in this section is structured according to
the type of deep neural network because we have learned that
the way knowledge representations are integrated into the
network is largely determined by the type of architecture. For
each network, a detailed explanation on how a specific type of
knowledge is integrated is given. Then, we classify the pro-
posed method based on the observed paths as shown in Fig. 5.

3.1 Artificial neural networks (ANNs)

ANN was the most frequently used network that we encoun-
tered during the literature survey. We assume that it is because
of its ease of usage when making modifications to the network
for informing various types of knowledge representations. ANN
typically consists of an input layer, hidden layers and an output
layer. The number of hidden layers, input nodes and output
nodes can be easily modified, making it easily applicable to
various data types such as sensor data, sound data, image
data, and so on.

Zhang et al. [7] presented a way to transfer knowledge
learned from one operating condition, hereby referred to as
‘simulation result’, to model the bearing fault diagnosis in an-
other operating condition. The ‘simulation result’ is acquired by
first constructing an ANN and training it using abundant source
data. The learned parameters of the ANN are passed directly
to another ANN but with a different output layer due to the tar-
get data having different target labels. This process is illus-
trated in Fig. 4. This way of knowledge transfer is called trans-
fer learning and it is widely used in the world of deep learning
for improving the performance in a case where the current task
seems challenging to handle with only small amount of target
data. It should be noted that the source data and the target
data are from different but similar distribution due to different
operating conditions. Suppose sθ and tθ are parameters in
source and target task. They are represented as follows:

0 1= +sθ θ θ (1)

0 2= +tθ θ θ (2)

The aim of transfer learning is to find and utilize the common
parts 0θ of the parameters when training the model in target
task. As such, the prior knowledge (common parts of the pa-
rameters) learned from the source data is used to get a better
understanding of the target data.

Karpatne et al. [3] proposed physics-guided neural network
(PGNN), a more intuitive method to transfer pre-existing scien-
tific knowledge by using a physics-based simulation result as
an additional input to a physics-guided model. A major draw-
back of data-driven approaches is that the models are solely
dependent on the available train data which is often limited in
numerous scientific problems. Therefore, the model has a
chance to learn spurious relationships that look good only on
the train and test sets. Moreover, its predictions may violate the
physical laws of the real world due to error associated with the
train data. On the other hand, a physics-based model is based
on scientific principles such that it enables to explain the rela-
tionship between input and output variables. In this case,
though the predictions are interpretable, such a model often
suffers from inaccurate results due to simplified or missing
physics. Assuming that combining the two distinct approaches
should resolve their complementary deficiencies and leverage
information in both physics and data, a hybrid model HPDf is
used with a physics-based loss function TotalL :

: X ,= →⎡ ⎤⎣ ⎦HPD PHYf D Y Y (3)

() () (),ˆ ˆ ,= + +Total PHY PHYL L Y Y R f L Yλ λ (4)

where D , PHYY , (),ˆL Y Y , ()R f , λ and ()ˆ

PHYL Y repre-
sent input features, simulation output, empirical error, struc-
tural error, relative importance and physical inconsistency

Fig. 4. Process of transfer learning.

Fig. 5. Taxonomy path for ‘ANN – simulation result – regularizing’.

 Journal of Mechanical Science and Technology 35 (4) 2021 DOI 10.1007/s12206-021-0342-5

1334

error, respectively. Similar studies that use simulation result
for a richer representation of train data are presented in Refs.
[8-11]. To obtain the simulation output PHYY , a simulation
model [12] was used. Whereas the empirical error and the
structural error are the typical loss terms of a purely data-
driven model, the physical inconsistency error is specific to the
proposed model. The error can be expressed as a rectified
linear unit function (ReLU) because the density prediction at
time step 1+t is less than or equal to the prediction at the
previous time step t by the law of physics. The study dem-
onstrated that with the help of the additional physics-based
loss term, the generalization performance has been improved
even when the train data is small and not fully representative.
This flow of work corresponds to the ‘ANN – simulation result
– regularizing’ pipeline shown in Fig. 5. Similar studies but
with the designing approach in knowledge integration are
presented by Refs. [13, 14].

Yuan et al. [15] presented a similar approach with regard to
knowledge integration but with a different type of prior knowl-
edge. The key to successful data-driven structural health moni-
toring is to acquire as much data associated with diverse dam-
age scenarios as possible. However, it remains a challenge in
most cases. As an alternative, physics-informed neural network
is presented as a potential remedy in which a partial differential
equation modelling the structural behavior of a beam (Fig. 6) is
informed in the learning process. In this study, the data short-
age scenario is first established by distributing sensors
sparsely across a beam, and the reconstruction of the full dis-
placement field is demonstrated using the limited data and the
proposed physics-informed model. The suggested loss func-
tion used for the task is as follows:

1 2= + + +D B G BMSE MSE MSE MSEL (5)

The loss function can be broken down largely into four

parts. The first term DMSE denotes the purely data-driven
loss. The second term 1BMSE is for the Dirichlet boundary
conditions and the third term GMSE represent the governing
equation. The last term 2BMSE plays the same role as the
second term but for the higher order boundary conditions.
Compared to Ref. [3], the difference is that instead of a loss
term that reflects a mere physical property, the entire govern-
ing equation (partial differential equation) is embedded to
guide the learning. This study shows that embedding the
known physics (Euler-Bernoulli beam theory) improves the
reconstruction of the full displacement field especially when
compared to a purely data-driven model. This flow of work
corresponds to the ‘ANN –differential equation – regularizing’
pipeline in Fig. 1. Studies with the same flow of work are pre-
sented in Refs. [16, 17] while studies with algebraic equations
as prior knowledge are introduced by Refs. [18, 19]. With
ANN as the baseline model, algebraic equations were also
used in Refs. [20-22] while human feedback was concerned
in Refs. [23-26].

3.2 Convolutional neural networks (CNNs)

CNN is a type of ANN but with different body structure com-
posed of convolution layers. This network is most widely used
in case where the training data is in the form of image, but
numerical data can be also used for training if 1D CNN is the
baseline model. The notable feature of CNN is the presence of
a convolution filter, in other words, a kernel that typically has a
shape of 3 by 3, 5 by 5 and so on. This square-shaped filter is
convolved with the input pixels, scanning every squares de-
fined by the user-defined filter size and stride. Since the same
filter is used to convolve the input pixels, the number of hyper-
parameters can be kept small. This filter along with the convo-
lution operation is what makes CNN so unique and powerful
with a lower risk of overfitting in the training process.

The traditional data-driven methods using CNN normally
trains these filters unless a prior knowledge of the filter is
known in advance. For example, when detecting a vertical
edge in an input image, the most probable filter would also
have a similar looking vertical edge in itself. This is because
the convolution operation is the process of finding the similarity
between the input and the filter. Unfortunately, in most of the
real-world applications, the input data is not in the form of what
the user can recognize (e.g. a random matrix), so it is difficult to
define the filter matrix at the beginning. However, some scien-
tists and engineers have come up with a way to go around this
issue. Sadoughi et al. [27] showed that designing a convolution
filter based on a prior knowledge of rotational speed and fault
characteristic frequencies of a bearing can greatly enhance the
overall performance of CNN. For the fault diagnosis of multiple
bearings, the study implements the so-called physics-based
convolutional neural network (PCNN) in which one of its layers
goes through a physics-based convolution. In particular, the
convolution is done with a kernel having a series of reference
signals that have been generated by using the following simu-
lation model:

() () ()0/
0 0

0

/ ,
+∞

− −

=

⎡ ⎤∅ = − ⋅⎣ ⎦∑ k s f

s

k a k s f e ξχ (6)

where k is the time index and is determined by the rotational
speed. 0f is the fault characteristic frequency of the defective
bearings. This flow of work corresponds to the ‘CNN – alge-
braic equation – designing pipeline in Fig. 1.

Zhang et al. [4] presented a physics-guided convolutional
neural network (PhyCNN) for seismic response modeling. Re-

Fig. 6. The structure of a beam with sensor array placed on the beam [15].

 Journal of Mechanical Science and Technology 35 (4) 2021 DOI 10.1007/s12206-021-0342-5

1335

cently, the data-driven approach to modelling structural re-
sponse excited by natural hazards has gained substantial at-
tention in the associated community. The existing conventional
methods mostly focus on extracting domain-specific features
and using them for fitting models such as the state-space
model [28, 29]. Such an updating procedure requires the use of
finite element analysis that is computationally heavy in case of
high-fidelity models. In this study, as an alternative, a machine
learning approach which has proven to be a powerful modeling
tool and approximator [30, 31] is used but in a physics-oriented
manner. In detail, PhyCNN contains an additional loss term
referred to as ‘physical loss’. The physical law that is encoded
is in fact, the equation of motion that models the dynamic sys-
tem of interest. Refs. [32, 33] also show the use of regulariza-
tion terms by adding physical constraints. The author claims
that the reason behind using a CNN instead of other deep
learning models is because it generally performs better in
terms of extracting features from raw signals. Therefore, sev-
eral convolution layer is constructed in addition to a dropout
layer after each convolution layer for reducing the overfitting
issue [34]. The study suggests that by using the proposed
model as a surrogate model for response prediction, issues
regarding data scarcity, physical consistency and overfitting
could be alleviated or solved. On the other hand, Refs. [35-38]
show the usage of simulation output as input to CNNs and
prove that it is an effective and easy way to incorporate prior
knowledge. Similarly, Refs. [39-42] are examples of incorporat-
ing human feedback at the design stage of CNNs.

3.3 Recurrent neural networks (RNNs)

RNN is a class of neural networks suitable for modelling
time-series data. This is due to the recursive structure of its
hidden layers that do not only provide outputs at a certain time
but also pass hidden states to the next hidden layers. Depend-
ing on the type of RNN, the outputs at each time step can also
passed on. Often times, it is simply considered as multiple
copies of a normal ANN, each passing a message to its suc-
cessor. Such modification allows it to model data at every sin-
gle time step and the relations among them. RNNs can have
different structures depending on the type of task to be solved.
RNNs can structurally be one-to-one, one-to-many, many-to-
one and many-to-many. One representative case of where
many-to-many RNN structure is most widely used is machine
translation. For example, if the encoder part of the network
receives words in English, the decoder part of the network
should output corresponding translated words in French.

In dynamical systems, most of the governing equations
model the behavior of a system over time. As such, they are
often expressed as differential equations. Although the govern-
ing equations may be inaccurate, this implies that they can be
a great source of prior knowledge. Nascimento et al. [43] intro-
duced the use of physics-informed recurrent neural network
based on cumulative damage modelling. A cumulative damage
model [44, 45] simply estimates ta , damage at time t by

adding damage at the previous time step to Δ ta , damage
increment.

1−= + Δt t ta a a (7)

This formulation is actually similar to the formulation of a sin-

gle RNN cell where the hidden state of the previous time step
is given as input to the cell and is passed together with the
current observable variables to a perceptron with a sigmoid or
tangent activation function to output the hidden state of the
current time step. Henceforth, the cumulative damage cell can
replace the traditional RNN cell throughout the entire RNN
scheme. The modelling of the damage increment is done by
having two distinct layers one of which represents a data-
driven model while the other does a physics-based one (e.g.
Paris law in corrosion-fatigue propagation). Building on top of
this work, Dourado et al. [46] also presented physics-informed
recurrent neural network for corrosion-fatigue prognosis, in
which the crack growth model (Walker model) is coupled with a
data-driven layer to model the relatively less understood corro-
sion-induced damage accumulation. Fig. 7 illustrates the hybrid
recurrent network cell for the bias estimation caused by corro-
sion. This flow of work corresponds to the ‘RNN – differential
equation – designing’ pipeline in Fig. 1. Studies with the same
flow of work are presented in Refs. [47-49].

Yu et al. [2] used a similar approach but for structural dynam-
ics simulation. It is stated that the prediction of dynamical re-
sponse is significant for tasks such as risk assessments and
topology optimization. The idea is to replace the traditional way
of predicting the dynamical response based on physics-based
models and finite element analysis, which is often computa-
tionally expensive, with the proposed physics-guided machine
learning model based on RNN. In the proposed model, two
distinct layers, physics-based layers and data-driven layers are
placed in order as shown in Fig. 8. The main difference here is
that the physics-based layer is comprised of three of the so-
called ‘residual blocks’ that encode the underlying physics and
compute a residual value that reflects the physical consistency.
A domain-specific residual function is used for the application:

()1 1 1 ,+ + +⎡ ⎤= − − Δ + + Δ⎣ ⎦

pred pred pred
n n n n nr x x t Ax Bz t t (8)

Fig. 7. Hybrid recurrent network cell with an ANN layer for bias estimation
[46].

 Journal of Mechanical Science and Technology 35 (4) 2021 DOI 10.1007/s12206-021-0342-5

1336

where 1+
pred
nx and pred

nx are predicted structural responses,
Δt is time step, ()tz denotes the system excitation input
vector, and A and B represent state matrix and input matrix
of the system, respectively.

There are three residual blocks inside the physics-based
layers because there needs to be one for each of the equations
of motion for a three degree-of-freedom (DOF) spring-dashpot
system. Although the intention is to minimize the residual func-
tion and zero it for the ideal training in the context of deep re-
sidual RNN [50], this is generally hindered due to the system
state being directly unobservable which necessitates an addi-
tional approximation of relationship between the hidden state
and an observable output denoted as y . Henceforth, the data-
driven part handled by two MLP layers is introduced right after
the residual blocks to conduct the approximation for the physi-
cal relationship that is unknown. The study demonstrates that
the proposed model predicts the state response very close to
the true state response under various circumstances.

Jia et al. [5] presented a case study on predicting lake tem-
perature using a physics-guided RNN (PGRNN) which is not a
modified version of the RNN cell like the earlier cases. The
model is simply an ordinary LSTM (an extension to RNN) that
is constrained during optimization by having two additional
physics-induced loss terms. The recurrent model structure in
Fig. 9 illustrates the two distinct parallel flows of the proposed
model. The first flow is a standard RNN flow which captures
the temporal dependency of the given data. The second flow is
an energy flow that keeps track of the variation of energy bal-
ance over time.

In the context of lake temperature modeling, the main factor

of temperature change is known to be heat flux. Heat flux is an
energy, and the law of energy conservation must hold. There-
fore, the change in energy flux should be equal to the total net
amount of incoming and outgoing heat fluxes (terrestrial long-
wave radiation, short-wave radiation, back radiation, sensible
heat fluxes, and latent evaporative heat fluxes) of the system.

,= + +RNN EC EC DC DCλ λL L L L (9)

()≈ Δ − −∑EC t ECReLU U τL F (10)

(), 1,+≈ −∑∑DC d t d t
t d

ReLU ρ ρL (11)

Eq. (9) represents the loss function of the PGRNN. ECλ and
DCλ denote relative importance of the corresponding terms.

The first term RNNL is a standard loss function of mean
squared error. The second ECL and third terms DCL repre-
sent the loss of energy conservation and the density-depth
constraint, and they are defined by Eqs. (10) and (11), respec-
tively. Eq. (10) is a mathematical formulation of the law of en-
ergy conservation. Similarly, Eq. (11) describes the physical
constraint that water density, ρ must not get smaller as it
gets deeper down in a lake. d and t are depth and time,
respectively. In Eq. (10), the ReLU function penalizes cases
where the input value is larger than zero. As such, the model is
optimized such that the change in energy flux, Δ tU is the
nearly the same as the net amount of in-fluxes and out-fluxes,
F . The difference between the two can be allowed by as
much as ECτ , which is a pre-determined threshold value.

As for another example of a physics-based RNN, Yuan et al.
[15] constructed a CNN-RNN model based on two pieces of
domain knowledge about wave propagation that are Huygens’
principle and time-reversal technique for source localization in
the impact diagnosis of a structure. In accordance with Huy-
gens’ principle, multiple time frames of feature vectors ex-
tracted from the corresponding wave fields by CNN were used
in a sequence. Time-reversal is a technique which enables to
discover the source of impact by analyzing the input wave sig-
nal in a reverse direction. This forms the basis for constructing
a many-to-one RNN model consisting of multiple time frame
inputs of feature vectors and a temporal decoder that provides
the impact location.

3.4 Graph neural networks (GNNs)

All the deep learning models introduced until now deal with
data that have a Euclidean structure. Such data type is struc-
turally regular allowing the data to be fed to the network in an
evenly spatial and timely manner. Examples of such data in-
clude image and text. However, some data cannot be struc-
tured the same way, necessitating for another method to for-
mulate an irregular structure. As an alternative, the notion of
graph was introduced and it is widely being studied in the deep
learning community as of now.

In computer science, a graph generally refers to a data type

Fig. 8. Proposed physics-guided RNN cell [2].

Fig. 9. The recurrent flow of the PGRNN [5].

 Journal of Mechanical Science and Technology 35 (4) 2021 DOI 10.1007/s12206-021-0342-5

1337

comprised of two components, nodes and edges. Nodes also
called as vertices encode elements while edges encode rela-
tions between the elements. Each node is represented by a
vector (e.g. a distributed vector representation) which contains
meaningful information about the corresponding element of the
physical system. Edges can be either directed or undirected,
and they can have weights that specify the relative importance
of relations between nodes. Such graph structures are fre-
quently used for modeling situations where multiple elements
are connected in one way or another and thus one may affect
not only the nearby elements but all the rest due to the connec-
tions (e.g. a distributed circuit, a smart grid, water supply net-
works, social networks, etc.). It should be noted that the topol-
ogy of graph structure itself is an essential source of informa-
tion if one hopes to use it as training data [51, 52].

The main issue with using graph data is that it is incompati-
ble with the existing deep learning models because the topol-
ogy should be maintained when it is fed to the models. This
problem has led to the advent of GNNs. A major variant of
GNN, graph convolutional network (GCN) [53] uses graph
Fourier transform to extract features from graphs. Fig. 10 illus-
trates how the output representation of a graph structure is
computed through a GCN. GCN uses graph filters to extract
features that are equivalent to the channels within CNNs. The
graph filter is a diagonal matrix of which the diagonal terms are
also filters parametrized by the eigenvalues of a graph Lapla-
cian matrix, L . L is defined as the difference between the
weighted adjacency matrix and degree matrix of a graph. The
output layer is chosen depending on the task of the model. For
node classification, a fully connected layer is the popular
choice.

In line with the development of GNNs, the issue of integrat-
ing prior knowledge with GNNs has also attracted several re-
searchers over the past few years. Seo et al. [54] developed a
methodology to model a climate dynamical system by incorpo-
rating implicit physics knowledge in latent space. The sug-
gested network is composed of an encoder and a decoder.
The encoder receives a set of attributes of nodes (v), edges

(e), 3-cliques (c), and a whole graph (u) as inputs which are
then transformed into latent spaces. After that, the encoded
graph is updated multiple times until the minimum requirement
is met. It should be noted that the updated graph represents
the state of the graph. For this particular domain of climate
modeling, the user knows that the observations should pos-
sess a diffusive property. For this reason, the diffusion equation
is given as an additional constraint to the total objective func-
tion. Similarly, Seo et al. [55] introduced the concept of spatial
difference layer that adds an additional constraint to the total
loss function.

Zhang et al. [56] proposed a novel graph neural network
named Circuit-GNN that leverages a lot of domain knowledge
for the simulation of distributed circuit design. One of its great
contributions is placed on how it addresses the incompatibility
of models trained on different circuit templates with varying
numbers of resonators by applying a single GNN that takes the
resonators in each circuit as nodes in a graph, and their elec-
tromagnetic coupling as edges between the nodes. By doing
so, the prior knowledge of the circuit is transformed into a form
of structured data called knowledge graph that can be trained
by GNNs. This solves the issue of the requirement of training
multiple separate models per template. At the same time, the
aim is to obtain an optimized circuit design given a particular
electromagnetic specification (e.g. transfer function), which is
known as an inverse problem. To solve it, the author focuses
on the differentiable nature of the model. Knowing that the only
cause of an invalid circuit is the change in resonator center
positions, a few rules are applied to make a constraint in each
optimization step. This is to prevent the collision of two or more
resonators, a case that does not belong to the valid solution
space. Through this approach, the optimal point could be
reached much faster and accurately. Other works that exploit
knowledge graphs for designing graph neural network architec-
ture are presented in Refs. [57-61].

3.5 Generative models

So far, the deep neural networks that have been introduced
fall in the category of discriminative models because they pre-
dict the target variable while observing the input variables. On
the other hand, a generative model refers to a model of the
conditional probability of the observable variable X when the
target Y is given. Mathematically, it can be symbolized as
follows: (|)=P X Y y . Simply put, the user is interested in the
generation of the observable variables by sampling from the
learned probability distributions either implicitly or explicitly. In
this section, the cases of the two most widely adopted genera-
tive models, variational autoencoders (VAEs) [62] and genera-
tive adversarial networks (GANs) [63] are reviewed.

Autoencoder is an unsupervised neural network that learns
to compress and encode input data into latent space of smaller
dimension, and eventually reconstruct the original input data
from the learned latent representation. By the bottleneck de-
sign of the architecture, it reduces the data dimension. While

Fig. 10. General flow of a graph convolutional network for node classifica-
tion. In the hidden layer, every node of the input graph is updated one by
one. Since it is a directed graph, the red colored node is affected only by
the neighboring nodes that direct toward it.

 Journal of Mechanical Science and Technology 35 (4) 2021 DOI 10.1007/s12206-021-0342-5

1338

the former part of the bottleneck network is called an encoder,
the latter part is called a decoder. The names literally suggest
the role of each part. Autoencoders are widely used for anom-
aly detection and the de-noising of input signals. Though many
more exists, one of the popular variants of autoencoders is
VAE. VAE mainly differs from an ordinary autoencoder such
that while an autoencoder maps the input into a fixed vector,
VAE does it into a distribution. To elaborate, instead of learning
a function representing the data, VAE learns the parameters of
a probability distribution representing the data. Though the
purposes of both models are the same, VAEs are known to
provide more control over how the latent space is modeled
which is why they are generally preferred over autoencoders.

Chao et al. [6] introduced the so-called “knowledge induced
variational autoencoder with adaptive sampling” (KIL-AdaVAE),
an extension to VAE, which enables implicit supervision on
learning the latent representation of the healthy conditions for
anomaly detection in an open-set scenario. In open-set diag-
nostics, both the fault detection and the fault segmentation
should be addressed. Therefore, a meticulous learning of latent
representation is needed to identify the healthy condition and
distinguish the faulty conditions. In this study, the prior knowl-
edge which is capitalized on is that there are both healthy data
and potential faulty data (unlabeled) in the available train set,
and thus the representation learning must be balanced for both
classes. First, the author stresses the limitation of an ordinary
autoencoder for anomaly detection that its latent representation
typically shows an entangled representation of the fault types.
Henceforth, the use of VAE for better control over representa-
tion learning is suggested. However, to bring about a more
disentangled representation, implicit supervision by adding a
loss term to the VAE is proposed. This additional loss term is
intended to restrict the representation of healthy data and en-

courages a more distinctive representation of the fault types.
The proposed loss is as follows:

()((|) ||)− = −

TKIL AdaVAE ELBO KL SD q z x p z∅γL L (12)

TS represents the healthy labeled system conditions. The

second loss term forces the representation of the healthy data
to match the factorized unit Gaussian and it acts as the implicit
supervision to the unsupervised learning task of VAE. This flow
of work corresponds to the ‘generative model – human feed-
back – regularizing’ pipeline in Fig. 1.

Generative adversarial networks (GANs) [63] have recently
gained huge popularity in the deep learning community as a
baseline generative model. Composed largely of two compo-
nents that compete with each other, a generator and a dis-
criminator, it runs based on the minimax game. The major ad-
vantage of GANs is that since it is an implicit model, the user
does not need to explicitly designate the form of the underlying
probability distributions for the variables of interest. This is why
GANs are known to be very powerful in imitating the distribu-
tions. Despite its great performance when trained properly,
GANs are also known to suffer from several drawbacks such
as mode collapse and train instability caused by gradient van-
ishing and gradient explosion, which make them difficult to
provide the best performance.

Based on the model, Warner et al. [64] demonstrated phys-
ics-informed generative adversarial networks (PI-GANs) [65] to
inversely estimate the elastic modulus (stiffness) in solid me-
chanics. In this study, the proposed model encodes physical
laws in the form of stochastic partial differential equations
(PDEs) onto the generator so that it provides realistic and
physically coherent outputs. The focus lies on the estimation of

Table 1. Classification of previous studies according to the taxonomy of informed deep learning. FE, D and R stand for feature engineering designing and
regularizing, respectively.

 Differential equation Algebraic equation Knowledge graph Simulation result Human feedback

FE - [20] - [7-11] [23, 24]

D - [21, 22] - [13, 14] [23, 25, 26] ANN

R [15-17] [18, 19] - [3] -

FE - - - [35] -

D - [27] - [36] [15, 39-42] CNN

R [4, 32, 33] - - [36-38] -

FE - - - [35] -

D [2, 46-49] [43] - - [15] RNN

R [32] [5] - - -

FE - - - - -

D [57] [57] [56-61] [57, 60, 61] [56, 60, 61] GNN

R [54, 55] [69] [54, 69] - -

FE - [70] - [35] -

D [71] - - [72] - Generative model

R [32, 64, 65, 67, 68] - - [37, 38] [6]

 Journal of Mechanical Science and Technology 35 (4) 2021 DOI 10.1007/s12206-021-0342-5

1339

spatially and randomly varying elastic modulus, (),E x ω in
the form of probability distribution based on its relation to an-
other, observed quantity (two-dimensional observations of
material deformation). The governing equation along with
boundary conditions, which models the deformation under load
at varying space x and random event ω is known in ad-
vance, but the distribution of elastic modulus is unknown. The
training dataset is generated by solving the governing equation
with the boundary conditions using the finite element method.
As for the network architecture, two generators (one for

(),u x ω and the other for (),E x ω) are constructed and
trained in parallel. There is a single discriminator in the network.
The loss functions are represented as follows:

() () () ()ω

, , ,= + +PI
G u E G u PDE u E BC u Eθ θ θ θL L L L (13)

() ()ω
, ,, ,=PI

D u E D u Eθ ϕ θ ϕL L (14)

The above equations represent the generator loss and the

discriminator loss. The networks are parameterized by θ and
φ , respectively. The first terms of the equations denote the
WGAN with gradient penalty loss that replaced a standard
GAN losses because of their power to solve the training stabil-
ity issue of the vanilla GANs [66]. It should be noted that the
physics-induced loss terms are added only to the combined
generator loss to impose physical constraints only on the gen-
erator. Using the aforementioned methodology, it is reported
that the distribution of the elastic modulus similar to the true
distribution was generated. This flow of work corresponds to
the ‘generative model – differential equation – regularizing’
pipeline shown down below. Similar studies are shown in Refs.
[67, 68].

4. Categorization of previous studies

In this section, we provide a summary of the aforementioned
literature by putting them into categories to which each study
belongs to. The categories are determined based on the tax-
onomy in Fig. 1. From the Table 1, it is notable that there has
been a substantial amount of research in incorporating various
types of knowledge with deep learning. There have been cases
where the reported works belong to more than just a single
category because of a mixture of different deep neural net-
works (e.g. coupling CNN with RNN) and more than one type
of prior knowledge was used in a single case study (e.g. differ-
ential equation and algebraic equation are both used). Numer-
ous slots are missing in the table, implying that the field of
study is still in its infancy and more research is encouraged.

5. Conclusions

In this overview, we defined the general concept and the
taxonomy of informed deep learning followed by an extensive
literature survey in the field of dynamical systems on the

knowledge integration in deep learning pipelines. As for the
general concept, we first defined the meaning of prior knowl-
edge and identified the types of prior knowledge (differential
equation, algebraic equation, knowledge graph, simulation
result and human feedback) that we encountered during the
literature survey. Then, the conventional deep learning and the
informed deep learning are compared by their respective work-
flows. The taxonomy of informed deep learning which we de-
fined in this overview is largely divided into three conceptual
steps: deep neural networks, knowledge representation and
knowledge integration. Since the notion of deep neural net-
works and knowledge representation are relatively well under-
stood, they have been explained briefly while the elements of
knowledge integration have been explained one by one with
some examples in Sec. 2. Although the taxonomy defined in
this paper could have included extra features as in some other
literatures, we intended to simplify the taxonomy and the
knowledge integration part in order to easily convey the knowl-
edge and vision in the emerging field of informed deep learning
to our mechanical engineering community. The application of
deep learning in the engineering field is still in its infancy not
only because of its solely data-driven nature, but also because
there has yet been sufficient amount of research for infusing
scientific knowledge into deep learning by the related domain
experts. For those mechanical engineers who are still very
suspicious about data-driven approaches and deep learning
may look into this new area of research and obtain good in-
sights on leveraging the benefits of both physics-based models
retrieved from dynamical systems and deep learning.

Acknowledgments

This work was partly supported by the National Research
Foundation of Korea (NRF) grant funded by the Korea Gov-
ernment (MSIT) (No. 2020R1A2C1009744), Institute for Infor-
mation & communications Technology Panning & Evaluation
(IITP) grant funded by the Korea government (MSIP) (No.
2019-0-01906, Artificial Intelligence Graduate School Program
(POSTECH)), the Institute of Civil Military Technology Coop-
eration funded by the Defense Acquisition Program Administra-
tion and Ministry of Trade, Industry and Energy of Korean gov-
ernment under grant No. 19-CM-GU-01, the Korea Institute of
Energy Technology Evaluation and Planning (KETEP) Grant
funded by the Korean Government (MOTIE) under Grant
20206610100290.

Nomenclature---

sθ : Source parameters
tθ : Target parameters

HPDf : Hybrid model
PHYL : Physics-based loss
()k∅ : Convolution filter

ta : Damage at time t
1nr + : Residual at 1n + step

 Journal of Mechanical Science and Technology 35 (4) 2021 DOI 10.1007/s12206-021-0342-5

1340

References
[1] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Den-

zler and N. Carvalhais, Deep learning and process under-
standing for data-driven Earth system science, Nature, 566
(7743) (2019) 195-204.

[2] Y. Yu, H. Yao and Y. Liu, Structural dynamics simulation using
a novel physics-guided machine learning method, Engineering
Applications of Artificial Intelligence, 96 (2020) 103947.

[3] A. Karpatne, W. Watkins, J. Read and V. Kumar, Physics-
guided neural networks (pgnn): an application in lake tempera-
ture modeling, arXiv preprint arXiv:1710.11431 (2017).

[4] R. Zhang, Y. Liu and H. Sun, Physics-guided convolutional
neural network (PhyCNN) for data-driven seismic response
modeling, Engineering Structures, 215 (2020) 110704.

[5] X. Jia, J. Willard, A. Karpatne, J. Read, J. Zwart, M. Steinbach
and V. Kumar, Physics guided RNNs for modeling dynamical
systems: a case study in simulating lake temperature profiles,
Proceedings of the 2019 SIAM International Conference on
Data Mining, SIAM (2019) 558-566.

[6] M. A. Chao, B. T. Adey and O. Fink, Implicit supervision for
fault detection and segmentation of emerging fault types with
deep variational autoencoders, arXiv:1912.12502 (2020).

[7] R. Zhang, H. Tao, L. Wu and Y. Guan, Transfer learning with
neural networks for bearing fault diagnosis in changing working
conditions, IEEE Access, 5 (2017) 14347-14357.

[8] M. A. Chao, C. Kulkarni, K. Goebel and O. Fink, Fusing phys-
ics-based and deep learning models for prognostics, arXiv
preprint arXiv:2003.00732 (2020).

[9] M. A. Chao, C. Kulkarni, K. Goebel and O. Fink, Hybrid deep
fault detection and isolation: combining deep neural networks
and system performance models, arXiv preprint arXiv:1908.
01529 (2019).

[10] J. Pfrommer, C. Zimmerling, J. Liu, L. Kärger, F. Henning and
J. Beyerer, Optimisation of manufacturing process parameters
using deep neural networks as surrogate models, Procedia
CiRP, 72 (2018) 426-431.

[11] S. J. Leary, A. Bhaskar and A. J. Keane, A knowledge-based
approach to response surface modelling in multifidelity optimi-
zation, Journal of Global Optimization, 26 (3) (2003) 297-319.

[12] M. Hipsey, L. Bruce and D. Hamilton, General Lake Model
Overview and User Information, The University of Western
Austrailia (2014).

[13] H. S. Kim, M. Koc and J. Ni, A hybrid multi-fidelity approach to
the optimal design of warm forming processes using a knowl-
edge-based artificial neural network, International Journal of
Machine Tools and Manufacture, 47 (2) (2007) 211-222.

[14] F. Wang and Q.-J. Zhang, Knowledge-based neural models
for microwave design, IEEE Transactions on Microwave The-
ory and Techniques, 45 (12) (1997) 2333-2343.

[15] F.-G. Yuan, S. A. Zargar, Q. Chen and S. Wang, Machine
learning for structural health monitoring: challenges and oppor-
tunities, Sensors and Smart Structures Technologies for Civil,
Mechanical, and Aerospace Systems 2020, International Soci-
ety for Optics and Photonics (2020) 1137903.

[16] M. Raissi, P. Perdikaris and G. E. Karniadakis, Physics in-
formed deep learning (part i): data-driven solutions of nonlinear
partial differential equations, arXiv preprint arXiv:1711.10561
(2017).

[17] I. E. Lagaris, A. Likas and D. I. Fotiadis, Artificial neural net-
works for solving ordinary and partial differential equations,
IEEE Transactions on Neural Networks, 9 (5) (1998) 987-1000.

[18] S. Greydanus, M. Dzamba and J. Yosinski, Hamiltonian neu-
ral networks, Advances in Neural Information Processing Sys-
tems (2019) 15379-15389.

[19] N. Muralidhar, M. R. Islam, M. Marwah, A. Karpatne and N.
Ramakrishnan, Incorporating prior domain knowledge into
deep neural networks, 2018 IEEE International Conference on
Big Data (Big Data), IEEE (2018) 36-45.

[20] R. Swischuk, L. Mainini, B. Peherstorfer and K. Willcox, Pro-
jection-based model reduction: formulations for physics-based
machine learning, Computers & Fluids, 179 (2019) 704-717.

[21] Y. Lu, M. Rajora, P. Zou and S. Y. Liang, Physics-embedded
machine learning: case study with electrochemical micro-
machining, Machines, 5 (1) (2017) 4.

[22] C. Bauckhage, C. Ojeda, J. Schücker, R. Sifa and S. Wrobel,
Informed machine learning through functional composition,
LWDA (2018) 33-37.

[23] J. Ling, A. Kurzawski and J. Templeton, Reynolds averaged
turbulence modelling using deep neural networks with embed-
ded invariance, Journal of Fluid Mechanics, 807 (2016) 155-
166.

[24] C.-S. Huang, S.-L. Hung, C. Wen and T. Tu, A neural network
approach for structural identification and diagnosis of a building
from seismic response data, Earthquake Engineering & Struc-
tural Dynamics, 32 (2) (2003) 187-206.

[25] A. Butter, G. Kasieczka, T. Plehn and M. Russell, Deep-
learned top tagging with a Lorentz layer, SciPost Phys, 5 (28)
(2018) 1707.08966.

[26] D. L. Bergman, Symmetry constrained machine learning,
Proceedings of SAI Intelligent Systems Conference, Springer
(2019) 501-512.

[27] M. Sadoughi and C. Hu, Physics-based convolutional neural
network for fault diagnosis of rolling element bearings, IEEE
Sensors Journal, 19 (11) (2019) 4181-4192.

[28] B. Moaveni, J. P. Conte and F. M. Hemez, Uncertainty and
sensitivity analysis of damage identification results obtained
using finite element model updating, Computer‐Aided Civil and
Infrastructure Engineering, 24 (5) (2009) 320-334.

[29] S. Yousefianmoghadam, I. Behmanesh, A. Stavridis, B.
Moaveni, A. Nozari and A. Sacco, System identification and
modeling of a dynamically tested and gradually damaged
10‐story reinforced concrete building, Earthquake Engineering
& Structural Dynamics, 47 (1) (2018) 25-47.

[30] K. Hornik, Approximation capabilities of multilayer feedfor-
ward networks, Neural Networks, 4 (2) (1991) 251-257.

[31] C. Tianping and C. Hong, Approximations of continuous func-
tions by neural networks with application to dynamic system,
IEEE Transition Neural Networks, 4 (6) (1993) 910-918.

[32] E. de Bezenac, A. Pajot and P. Gallinari, Deep learning for

 Journal of Mechanical Science and Technology 35 (4) 2021 DOI 10.1007/s12206-021-0342-5

1341

physical processes: incorporating prior scientific knowledge,
Journal of Statistical Mechanics: Theory and Experiment, 2019
(12) (2019) 124009.

[33] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis and P. Perdikaris,
Physics-constrained deep learning for high-dimensional surro-
gate modeling and uncertainty quantification without labeled
data, Journal of Computational Physics, 394 (2019) 56-81.

[34] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R.
Salakhutdinov, Dropout: a simple way to prevent neural net-
works from overfitting, The Journal of Machine Learning Re-
search, 15 (1) (2014) 1929-1958.

[35] R. King, O. Hennigh, A. Mohan and M. Chertkov, From deep
to physics-informed learning of turbulence: diagnostics, arXiv
preprint arXiv:1810.07785 (2018).

[36] Y. Du, Z. Liu, H. Basevi, A. Leonardis, B. Freeman, J.
Tenenbaum and J. Wu, Learning to exploit stability for 3d
scene parsing, Advances in Neural Information Processing
Systems, 31 (2018) 1726-1736.

[37] K.-H. Lee, G. Ros, J. Li and A. Gaidon, Spigan: Privileged
adversarial learning from simulation, arXiv preprint arXiv:1810.
03756 (2018).

[38] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang
and R. Webb, Learning from simulated and unsupervised im-
ages through adversarial training, Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(2017) 2107-2116.

[39] T. Cohen and M. Welling, Group equivariant convolutional
networks, International Conference on Machine Learning
(2016) 2990-2999.

[40] S. Dieleman, J. De Fauw and K. Kavukcuoglu, Exploiting
cyclic symmetry in convolutional neural networks, arXiv pre-
print arXiv:1602.02660 (2016).

[41] J. Li, Z. Yang, H. Liu and D. Cai, Deep rotation equivariant
network, Neurocomputing, 290 (2018) 26-33.

[42] D. E. Worrall, S. J. Garbin, D. Turmukhambetov and G. J.
Brostow, Harmonic networks: deep translation and rotation
equivariance, Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition (2017) 5028-5037.

[43] R. G. Nascimento and F. A. Viana, Fleet prognosis with phys-
ics-informed recurrent neural networks, arXiv preprint arXiv:
1901.05512 (2019).

[44] A. Fatemi and L. Yang, Cumulative fatigue damage and life
prediction theories: a survey of the state of the art for homoge-
neous materials, International Journal of Fatigue, 20 (1) (1998)
9-34.

[45] D. M. Frangopol, M. J. Kallen and J. M. v. Noortwijk, Probabil-
istic models for life‐cycle performance of deteriorating struc-
tures: review and future directions, Progress in Structural En-
gineering and Materials, 6 (4) (2004) 197-212.

[46] A. Dourado and F. A. Viana, Physics-informed neural net-
works for corrosion-fatigue prognosis, Proceedings of the An-
nual Conference of the PHM Society (2019).

[47] A. D. Dourado and F. Viana, Physics-informed neural net-
works for bias compensation in corrosion-fatigue, AIAA Scitech
2020 Forum (2020) 1149.

[48] Y. Long, X. She and S. Mukhopadhyay, HybridNet: integrat-
ing model-based and data-driven learning to predict evolution
of dynamical systems, arXiv preprint arXiv:1806.07439 (2018).

[49] M. Lutter, C. Ritter and J. Peters, Deep lagrangian networks:
using physics as model prior for deep learning, arXiv preprint
arXiv:1907.04490 (2019).

[50] J. N. Kani and A. H. Elsheikh, DR-RNN: A deep residual re-
current neural network for model reduction, arXiv preprint
arXiv:1709.00939 (2017).

[51] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li and
M. Sun, Graph neural networks: a review of methods and ap-
plications, arXiv preprint arXiv:1812.08434 (2018).

[52] A. Ortega, P. Frossard, J. Kovačević, J. M. Moura and P.
Vandergheynst, Graph signal processing: overview, challenges,
and applications, Proceedings of the IEEE, 106 (5) (2018) 808-
828.

[53] T. N. Kipf and M. Welling, Semi-supervised classification with
graph convolutional networks, arXiv preprint arXiv:1609.02907
(2016).

[54] S. Seo and Y. Liu, Differentiable physics-informed graph net-
works, arXiv preprint arXiv:1902.02950 (2019).

[55] S. Seo, C. Meng and Y. Liu, Physics-aware difference graph
networks for sparsely-observed dynamics, International Con-
ference on Learning Representations (2019).

[56] G. Zhang, H. He and D. Katabi, Circuit-GNN: graph neural
networks for distributed circuit design, International Conference
on Machine Learning (2019) 7364-7373.

[57] A. Mojallal and S. Lotfifard, Multi-physics graphical model-
based fault detection and isolation in wind turbines, IEEE
Transactions on Smart Grid, 9 (6) (2017) 5599-5612.

[58] H. Khorasgani, A. Hasanzadeh, A. Farahat and C. Gupta,
Fault detection and isolation in industrial networks using graph
convolutional neural networks, 2019 IEEE International Con-
ference on Prognostics and Health Management (ICPHM),
IEEE (2019) 1-7.

[59] K. Chen, J. Hu, Y. Zhang, Z. Yu and J. He, Fault location in
power distribution systems via deep graph convolutional net-
works, IEEE Journal on Selected Areas in Communications,
38 (1) (2019) 119-131.

[60] Z. Gao, G. Lu and P. Yan, Graph-based change detection for
condition monitoring of industrial machinery: an enhanced
framework for non-stationary condition signals, Measurement
Science and Technology, 30 (11) (2019) 115002.

[61] T. Wang, G. Lu, J. Liu and P. Yan, Graph-based change
detection for condition monitoring of rotating machines: tech-
niques for graph similarity, IEEE Transactions on Reliability, 68
(3) (2018) 1034-1049.

[62] D. P. Kingma and M. Welling, Auto-encoding variational
bayes, arXiv preprint arXiv:1312.6114 (2013).

[63] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville and Y. Bengio, Generative adver-
sarial nets, Advances in Neural Information Processing Sys-
tems (2014) 2672-2680.

[64] J. E. Warner, J. Cuevas, G. F. Bomarito, P. E. Leser and W.
P. Leser, Inverse estimation of elastic modulus using physics-

 Journal of Mechanical Science and Technology 35 (4) 2021 DOI 10.1007/s12206-021-0342-5

1342

informed generative adversarial networks, arXiv preprint arXiv:
2006.05791 (2020).

[65] L. Yang, D. Zhang and G. E. Karniadakis, Physics-informed
generative adversarial networks for stochastic differential
equations, SIAM Journal on Scientific Computing, 42 (1)
(2020) A292-A317.

[66] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin and A. C.
Courville, Improved training of wasserstein gans, Advances in
Neural Information Processing Systems, 30 (2017) 5767-5777.

[67] Y. Yang and P. Perdikaris, Physics-informed deep generative
models, arXiv preprint arXiv:1812.03511 (2018).

[68] Y. Yang and P. Perdikaris, Adversarial uncertainty quantifica-
tion in physics-informed neural networks, Journal of Computa-
tional Physics, 394 (2019) 136-152.

[69] X. Jia, J. Zwart, J. Sadler, A. Appling, S. Oliver, S. Markstrom,
J. Willard, S. Xu, M. Steinbach and J. Read, Physics-guided
recurrent graph networks for predicting flow and temperature in
river networks, arXiv preprint arXiv:2009.12575 (2020).

[70] V. H. Nguyen, J. S. Cheng, Y. Yu and V. T. Thai, An architec-
ture of deep learning network based on ensemble empirical
mode decomposition in precise identification of bearing vibra-
tion signal, Journal of Mechanical Science and Technology, 33
(1) (2019) 41-50.

[71] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum
and J. Z. Kolter, End-to-end differentiable physics for learning
and control, Advances in Neural Information Processing Sys-
tems (2018) 7178-7189.

[72] A. S. Qureshi, A. Khan, A. Zameer and A. Usman, Wind
power prediction using deep neural network based meta re-
gression and transfer learning, Applied Soft Computing, 58
(2017) 742-755.

Sung Wook Kim received a B.S. degree
in Mechanical Engineering from Han-
yang University, Seoul, South Korea, in
2016. He then received his M.S. degree
in Mechanical Engineering from Pohang
University of Science and Technology,
Pohang, South Korea, in 2018. He is
now a Ph.D. candidate at the Industrial

AI Lab. of Pohang University of Science and Technology. His
research interests include industrial artificial intelligence with
mechanical systems, and deep learning for smart manufactur-
ing.

Iljeok Kim received a B.S. degree in
Mechanical Engineering from Chungnam
National University, Daejeon, South Ko-
rea, in 2017. He then received his M.S.
degree in Mechanical Engineering from
Pohang University of Science and Tech-
nology, Pohang, South Korea, in 2020.
He is now a Ph.D. student at the Indus-

trial AI Lab. of Pohang University of Science and Technology.
His research interests include industrial artificial intelligence
with mechanical systems, and deep learning for smart manu-
facturing.

Jonghwan Lee received a B.S. degree
in Mechanical Engineering from Kyung-
pook National University, Daegu, South
Korea, in 2018. He is now a M.S. candi-
date at the Industrial AI Lab. of Pohang
University of Science and Technology.
His research interests include industrial
artificial intelligence with mechanical

systems, and deep learning for smart manufacturing.

Seungchul Lee received a B.S. degree
from Seoul National University in 2001.
He then received his M.S. and Ph.D.
degrees from the University of Michigan,
Ann Arbor, USA, in 2008, and 2010,
respectively. He was an Assistant Pro-
fessor with the Ulsan National Institute of
Science and Technology, South Korea.

He is currently an Assistant Professor at the Department of
Mechanical Engineering at Pohang University of Science and
Technology in Pohang, South Korea, since 2018. His research
interests include industrial artificial intelligence with mechanical
systems, deep learning for machine healthcare, and the IoT-
based smart manufacturing.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

