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Abstract  Despite the sudden rise of AI, it still leaves a question mark to many newcomers 
on its widespread adoption as it exhibits a lack of robustness and interpretability. For instance, 
the insufficient amount of training data usually hinders its performance due to the lack of gener-
alization, and the black box nature of deep neural networks does not allow for a precise expla-
nation behind its mechanism preventing a new scientific discovery. Such limitations have led to
the development of several branches of deep learning one of which include physics-informed 
neural networks that will be covered in the rest of this paper. In this overview, we defined the
general concept of informed deep learning followed by an extensive literature survey in the field
of dynamical systems. We hope to make a contribution to our mechanical engineering commu-
nity by conveying knowledge and insights on this emerging field of study through this survey
paper.  

 
1. Introduction   

Deep learning has recently become the epitome of emerging research studies stimulating its 
widespread adoption in nearly every scientific and engineering areas. Due to its inherent nature 
to capture high non-linearity between input variables and target variables for various types of 
data (e.g. image, text, sound, etc.), it is rapidly becoming a near universal tool for many re-
search studies. From the perspective of engineers at manufacturing sites, the best part of using 
deep learning is that it is not mandatory for users to know about the physical meanings of the 
parameters of the system of interest, and nor are they required to understand the mechanism 
behind it. This is important because often times the combination of input parameters such as 
control settings (e.g. speed, pressure, etc.) and change in physical quantities of conditions (e.g. 
stress, tensile force, etc.) over time provide an unexpected output.  

Although the conventional deep learning approaches, usually regarded as the data-driven 
methods, have shown promising results in diverse domains, they still present limitations in sev-
eral aspects that are left to be resolved. For instance, the insufficient amount of training data is 
detrimental for the performance of a deep learning model, and it is generally considered the first 
and foremost. To make the matter even worse, there is no strict rule-of-thumb for the minimum 
amount of data that is necessary as it depends largely on the type of task that needs to be 
solved. Furthermore, deep learning approaches are solely data-driven in its nature for discover-
ing the hidden patterns or mechanisms and thereby disobey the physical constraints or govern-
ing laws occasionally. Apart from those mentioned, there are a few other disadvantages such 
as the lack of interpretability and a relatively long training time. To overcome these challenges, 
scientists and engineers have begun to create additional features in the traditional deep learn-
ing pipeline. As such, several branches in the field of deep learning have emerged, one of 
which include the physics-informed deep learning.  

Nomenclatures regarding the integration of prior knowledge with deep learning are not unified   
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across previous literature. Some of the commonly used ex-
pressions include ‘physics-informed’, ‘physics-based’, ‘physics-
guided’ and ‘theory-guided’. Therefore, for clarity, we used 
‘informed deep learning’ in this paper to denote the knowledge 
integration with deep learning. The rest of this study is broken 
down as follows. In Sec. 2, the general concept of informed 
deep learning is introduced and explained in detail. Sec. 3 
discusses in depth on how the surveyed literature falls into any 
of the categories defined in Fig. 1. The classification of the 
surveyed literature is summarized in Table 1. Lastly, Sec. 4 
ends this overview with a summary and an insight on possible 
future work and suggestions regarding the direction of informed 
deep learning especially in the field of dynamical systems. 

 
2. Concept of informed deep learning 

In this section, the general concept of the workflow in in-
formed deep learning is explained first to give the readers a 
good idea on how it differs from the learning route of the tradi-
tional deep learning. Next, the three different ways of knowl-
edge integration presented in the last part of the taxonomy in 
Fig. 1 are explained in detail. It is noteworthy that a similar 
concept of knowledge integration was introduced by Reichstein 
et al. [1]. 

 
2.1 General workflow of knowledge integration 

in deep learning 

Prior knowledge refers to any type of knowledge about a task, 
data, physical model of interest, etc. One of the essential char-
acteristics of prior knowledge is that it is independent of learn-
ing algorithms. The type of knowledge is diverse and a part of 
those in dynamical systems we encountered during the litera-
ture survey are differential equation, algebraic equation, knowl-
edge graph, simulation result and human feedback. The defini-
tions for each term are omitted because they are intuitive and 
can easily be found in other literature sources. This survey 
focuses primarily on where and how the prior knowledge was 
utilized in the commonly referred baseline deep neural net-
works.  

Fig. 2 illustrates the workflows in both conventional and in-
formed deep learning pipelines. The main difference between 
the conventional and the informed deep learning throughout 
the entire pipeline is that prior knowledge is explicitly used in 
one or more of the steps inside the ‘integration point’. Although 
the notion of the ‘integration point’ is similar to what had been 

discussed by Rueden et al. [2, 3], we managed to simplify the 
four types of ML pipeline into three (i.e. feature engineering, 
designing, and regularizing) which we thought were more prac-
tical and intuitive for the kind of taxonomy shown in Fig. 1. 

 
2.2 Prior knowledge integration 

The following sections define steps and the scope of process 
needed for a method to be categorized as one or more of them. 
Feature engineering: Feature engineering in the context of 
informed deep learning is meant by obtaining supplementary 
attributes using physics-based model (e.g. simulation, govern-
ing equations, etc.) only to have them concatenated with train 
data, or processing train data with domain-specific functions 
(e.g. Fourier transform). Despite its restricted usage, feature 
engineering was found to be a one of the most common ways 
of integrating prior knowledge to a deep learning pipeline. Con-
catenating simulation results to the original train data was the 
most commonly, yet very powerful, encountered method during 
the literature survey. Fig. 3(a) illustrates the process of feature 
engineering as part of knowledge integration.  
Designing: Designing refers to building a network architecture 
that reflects the physical knowledge of a system or the type of 
data. Unlike feature engineering, designing was encountered in 
a various form. Common cases include constructing a task-
specific autoencoder and a recurrent cell, and designing a 
physics-induced convolution filter. The prior knowledge was 
usually in the form of a differential equation and a common 
sense of the domain. Fig. 3(b) illustrates the workflow in which 
the prior knowledge is shown in a dotted line because it is not 
physically but indirectly integrated with the designed model 

 
Fig. 1. Taxonomy of informed deep learning. 

 

 
Fig. 2. Workflows in both conventional and informed deep learning pipe-
lines, which show how the route changes from that of the conventional 
deep learning if prior knowledge is integrated in the pipeline. If following the 
‘Knowledge-integration’ pipeline, the prior knowledge will be taken account 
in one or more of the steps inside the ‘integration point’. 
 

 
Fig. 3. Process of (a) feature engineering; (b) designing and regularizing as 
part of knowledge integration. 
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within the scheme. 
Regularizing: Regularizing was often coined as physics-
guided learning in many literature [2-6]. The main focus of 
regularizing is to constrain the model objective function in the 
context of optimization so that the training converges faster and 
to a certain degree. This form of knowledge integration was 
found in all types of deep neural networks due to its ease of 
use. Most of the time, the constraint terms were added to the 
standard data-driven loss term. The associated workflow is the 
same as that of designing (Fig. 3(b)). 

 
3. Knowledge integration in deep neural 

networks 
In this section, we provide related studies found in the litera-

ture survey. The methods of the studies is focused and investi-
gated for their categorization in the taxonomy shown in Fig. 1. 
All methods introduced in this section is structured according to 
the type of deep neural network because we have learned that 
the way knowledge representations are integrated into the 
network is largely determined by the type of architecture. For 
each network, a detailed explanation on how a specific type of 
knowledge is integrated is given. Then, we classify the pro-
posed method based on the observed paths as shown in Fig. 5. 

 
3.1 Artificial neural networks (ANNs) 

ANN was the most frequently used network that we encoun-
tered during the literature survey. We assume that it is because 
of its ease of usage when making modifications to the network 
for informing various types of knowledge representations. ANN 
typically consists of an input layer, hidden layers and an output 
layer. The number of hidden layers, input nodes and output 
nodes can be easily modified, making it easily applicable to 
various data types such as sensor data, sound data, image 
data, and so on.  

Zhang et al. [7] presented a way to transfer knowledge 
learned from one operating condition, hereby referred to as 
‘simulation result’, to model the bearing fault diagnosis in an-
other operating condition. The ‘simulation result’ is acquired by 
first constructing an ANN and training it using abundant source 
data. The learned parameters of the ANN are passed directly 
to another ANN but with a different output layer due to the tar-
get data having different target labels. This process is illus-
trated in Fig. 4. This way of knowledge transfer is called trans-
fer learning and it is widely used in the world of deep learning 
for improving the performance in a case where the current task 
seems challenging to handle with only small amount of target 
data. It should be noted that the source data and the target 
data are from different but similar distribution due to different 
operating conditions. Suppose sθ  and tθ  are parameters in 
source and target task. They are represented as follows: 

 
0 1= +sθ θ θ  (1) 

0 2= +tθ θ θ  (2) 

The aim of transfer learning is to find and utilize the common 
parts 0θ  of the parameters when training the model in target 
task. As such, the prior knowledge (common parts of the pa-
rameters) learned from the source data is used to get a better 
understanding of the target data.  

Karpatne et al. [3] proposed physics-guided neural network 
(PGNN), a more intuitive method to transfer pre-existing scien-
tific knowledge by using a physics-based simulation result as 
an additional input to a physics-guided model. A major draw-
back of data-driven approaches is that the models are solely 
dependent on the available train data which is often limited in 
numerous scientific problems. Therefore, the model has a 
chance to learn spurious relationships that look good only on 
the train and test sets. Moreover, its predictions may violate the 
physical laws of the real world due to error associated with the 
train data. On the other hand, a physics-based model is based 
on scientific principles such that it enables to explain the rela-
tionship between input and output variables. In this case, 
though the predictions are interpretable, such a model often 
suffers from inaccurate results due to simplified or missing 
physics. Assuming that combining the two distinct approaches 
should resolve their complementary deficiencies and leverage 
information in both physics and data, a hybrid model HPDf  is 
used with a physics-based loss function TotalL : 

 
: X ,= →⎡ ⎤⎣ ⎦HPD PHYf D Y Y  (3) 

( ) ( ) ( ),ˆ ˆ ,= + +Total PHY PHYL L Y Y R f L Yλ λ  (4) 

 
where D , PHYY , ( ),ˆL Y Y , ( )R f , λ  and ( )ˆ

PHYL Y  repre-
sent input features, simulation output, empirical error, struc-
tural error, relative importance and physical inconsistency 

 
Fig. 4. Process of transfer learning. 

 
 

 
Fig. 5. Taxonomy path for ‘ANN – simulation result – regularizing’. 
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error, respectively. Similar studies that use simulation result 
for a richer representation of train data are presented in Refs. 
[8-11]. To obtain the simulation output PHYY , a simulation 
model [12] was used. Whereas the empirical error and the 
structural error are the typical loss terms of a purely data-
driven model, the physical inconsistency error is specific to the 
proposed model. The error can be expressed as a rectified 
linear unit function (ReLU) because the density prediction at 
time step 1+t  is less than or equal to the prediction at the 
previous time step t  by the law of physics. The study dem-
onstrated that with the help of the additional physics-based 
loss term, the generalization performance has been improved 
even when the train data is small and not fully representative. 
This flow of work corresponds to the ‘ANN – simulation result 
– regularizing’ pipeline shown in Fig. 5. Similar studies but 
with the designing approach in knowledge integration are 
presented by Refs. [13, 14]. 

Yuan et al. [15] presented a similar approach with regard to 
knowledge integration but with a different type of prior knowl-
edge. The key to successful data-driven structural health moni-
toring is to acquire as much data associated with diverse dam-
age scenarios as possible. However, it remains a challenge in 
most cases. As an alternative, physics-informed neural network 
is presented as a potential remedy in which a partial differential 
equation modelling the structural behavior of a beam (Fig. 6) is 
informed in the learning process. In this study, the data short-
age scenario is first established by distributing sensors 
sparsely across a beam, and the reconstruction of the full dis-
placement field is demonstrated using the limited data and the 
proposed physics-informed model. The suggested loss func-
tion used for the task is as follows:  

 
1 2= + + +D B G BMSE MSE MSE MSEL  (5) 

 
The loss function can be broken down largely into four 

parts. The first term DMSE  denotes the purely data-driven 
loss. The second term 1BMSE  is for the Dirichlet boundary 
conditions and the third term GMSE  represent the governing 
equation. The last term 2BMSE  plays the same role as the 
second term but for the higher order boundary conditions. 
Compared to Ref. [3], the difference is that instead of a loss 
term that reflects a mere physical property, the entire govern-
ing equation (partial differential equation) is embedded to 
guide the learning. This study shows that embedding the 
known physics (Euler-Bernoulli beam theory) improves the 
reconstruction of the full displacement field especially when 
compared to a purely data-driven model. This flow of work 
corresponds to the ‘ANN –differential equation – regularizing’ 
pipeline in Fig. 1. Studies with the same flow of work are pre-
sented in Refs. [16, 17] while studies with algebraic equations 
as prior knowledge are introduced by Refs. [18, 19]. With 
ANN as the baseline model, algebraic equations were also 
used in Refs. [20-22] while human feedback was concerned 
in Refs. [23-26]. 

3.2 Convolutional neural networks (CNNs) 

CNN is a type of ANN but with different body structure com-
posed of convolution layers. This network is most widely used 
in case where the training data is in the form of image, but 
numerical data can be also used for training if 1D CNN is the 
baseline model. The notable feature of CNN is the presence of 
a convolution filter, in other words, a kernel that typically has a 
shape of 3 by 3, 5 by 5 and so on. This square-shaped filter is 
convolved with the input pixels, scanning every squares de-
fined by the user-defined filter size and stride. Since the same 
filter is used to convolve the input pixels, the number of hyper-
parameters can be kept small. This filter along with the convo-
lution operation is what makes CNN so unique and powerful 
with a lower risk of overfitting in the training process.  

The traditional data-driven methods using CNN normally 
trains these filters unless a prior knowledge of the filter is 
known in advance. For example, when detecting a vertical 
edge in an input image, the most probable filter would also 
have a similar looking vertical edge in itself. This is because 
the convolution operation is the process of finding the similarity 
between the input and the filter. Unfortunately, in most of the 
real-world applications, the input data is not in the form of what 
the user can recognize (e.g. a random matrix), so it is difficult to 
define the filter matrix at the beginning. However, some scien-
tists and engineers have come up with a way to go around this 
issue. Sadoughi et al. [27] showed that designing a convolution 
filter based on a prior knowledge of rotational speed and fault 
characteristic frequencies of a bearing can greatly enhance the 
overall performance of CNN. For the fault diagnosis of multiple 
bearings, the study implements the so-called physics-based 
convolutional neural network (PCNN) in which one of its layers 
goes through a physics-based convolution. In particular, the 
convolution is done with a kernel having a series of reference 
signals that have been generated by using the following simu-
lation model: 

 

( ) ( ) ( )0/
0 0

0

/ ,
+∞

− −

=

⎡ ⎤∅ = − ⋅⎣ ⎦∑ k s f

s

k a k s f e ξχ  (6) 

 
where k  is the time index and is determined by the rotational 
speed. 0f  is the fault characteristic frequency of the defective 
bearings. This flow of work corresponds to the ‘CNN – alge-
braic equation – designing pipeline in Fig. 1. 

Zhang et al. [4] presented a physics-guided convolutional 
neural network (PhyCNN) for seismic response modeling. Re-

 
Fig. 6. The structure of a beam with sensor array placed on the beam [15].
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cently, the data-driven approach to modelling structural re-
sponse excited by natural hazards has gained substantial at-
tention in the associated community. The existing conventional 
methods mostly focus on extracting domain-specific features 
and using them for fitting models such as the state-space 
model [28, 29]. Such an updating procedure requires the use of 
finite element analysis that is computationally heavy in case of 
high-fidelity models. In this study, as an alternative, a machine 
learning approach which has proven to be a powerful modeling 
tool and approximator [30, 31] is used but in a physics-oriented 
manner. In detail, PhyCNN contains an additional loss term 
referred to as ‘physical loss’. The physical law that is encoded 
is in fact, the equation of motion that models the dynamic sys-
tem of interest. Refs. [32, 33] also show the use of regulariza-
tion terms by adding physical constraints. The author claims 
that the reason behind using a CNN instead of other deep 
learning models is because it generally performs better in 
terms of extracting features from raw signals. Therefore, sev-
eral convolution layer is constructed in addition to a dropout 
layer after each convolution layer for reducing the overfitting 
issue [34]. The study suggests that by using the proposed 
model as a surrogate model for response prediction, issues 
regarding data scarcity, physical consistency and overfitting 
could be alleviated or solved. On the other hand, Refs. [35-38] 
show the usage of simulation output as input to CNNs and 
prove that it is an effective and easy way to incorporate prior 
knowledge. Similarly, Refs. [39-42] are examples of incorporat-
ing human feedback at the design stage of CNNs. 

 
3.3 Recurrent neural networks (RNNs) 

RNN is a class of neural networks suitable for modelling 
time-series data. This is due to the recursive structure of its 
hidden layers that do not only provide outputs at a certain time 
but also pass hidden states to the next hidden layers. Depend-
ing on the type of RNN, the outputs at each time step can also 
passed on. Often times, it is simply considered as multiple 
copies of a normal ANN, each passing a message to its suc-
cessor. Such modification allows it to model data at every sin-
gle time step and the relations among them. RNNs can have 
different structures depending on the type of task to be solved. 
RNNs can structurally be one-to-one, one-to-many, many-to-
one and many-to-many. One representative case of where 
many-to-many RNN structure is most widely used is machine 
translation. For example, if the encoder part of the network 
receives words in English, the decoder part of the network 
should output corresponding translated words in French.  

In dynamical systems, most of the governing equations 
model the behavior of a system over time. As such, they are 
often expressed as differential equations. Although the govern-
ing equations may be inaccurate, this implies that they can be 
a great source of prior knowledge. Nascimento et al. [43] intro-
duced the use of physics-informed recurrent neural network 
based on cumulative damage modelling. A cumulative damage 
model [44, 45] simply estimates ta , damage at time t  by 

adding damage at the previous time step to Δ ta , damage 
increment. 

 
1−= + Δt t ta a a  (7) 

  
This formulation is actually similar to the formulation of a sin-

gle RNN cell where the hidden state of the previous time step 
is given as input to the cell and is passed together with the 
current observable variables to a perceptron with a sigmoid or 
tangent activation function to output the hidden state of the 
current time step. Henceforth, the cumulative damage cell can 
replace the traditional RNN cell throughout the entire RNN 
scheme. The modelling of the damage increment is done by 
having two distinct layers one of which represents a data-
driven model while the other does a physics-based one (e.g. 
Paris law in corrosion-fatigue propagation). Building on top of 
this work, Dourado et al. [46] also presented physics-informed 
recurrent neural network for corrosion-fatigue prognosis, in 
which the crack growth model (Walker model) is coupled with a 
data-driven layer to model the relatively less understood corro-
sion-induced damage accumulation. Fig. 7 illustrates the hybrid 
recurrent network cell for the bias estimation caused by corro-
sion. This flow of work corresponds to the ‘RNN – differential 
equation – designing’ pipeline in Fig. 1. Studies with the same 
flow of work are presented in Refs. [47-49]. 

Yu et al. [2] used a similar approach but for structural dynam-
ics simulation. It is stated that the prediction of dynamical re-
sponse is significant for tasks such as risk assessments and 
topology optimization. The idea is to replace the traditional way 
of predicting the dynamical response based on physics-based 
models and finite element analysis, which is often computa-
tionally expensive, with the proposed physics-guided machine 
learning model based on RNN. In the proposed model, two 
distinct layers, physics-based layers and data-driven layers are 
placed in order as shown in Fig. 8. The main difference here is 
that the physics-based layer is comprised of three of the so-
called ‘residual blocks’ that encode the underlying physics and 
compute a residual value that reflects the physical consistency. 
A domain-specific residual function is used for the application: 

 
( )1 1 1 ,+ + +⎡ ⎤= − − Δ + + Δ⎣ ⎦

pred pred pred
n n n n nr x x t Ax Bz t t  (8) 

 
Fig. 7. Hybrid recurrent network cell with an ANN layer for bias estimation 
[46]. 
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where 1+
pred
nx  and pred

nx  are predicted structural responses, 
Δt  is time step, ( )tz  denotes the system excitation input 
vector, and A  and B  represent state matrix and input matrix 
of the system, respectively.  

There are three residual blocks inside the physics-based 
layers because there needs to be one for each of the equations 
of motion for a three degree-of-freedom (DOF) spring-dashpot 
system. Although the intention is to minimize the residual func-
tion and zero it for the ideal training in the context of deep re-
sidual RNN [50], this is generally hindered due to the system 
state being directly unobservable which necessitates an addi-
tional approximation of relationship between the hidden state 
and an observable output denoted as y . Henceforth, the data-
driven part handled by two MLP layers is introduced right after 
the residual blocks to conduct the approximation for the physi-
cal relationship that is unknown. The study demonstrates that 
the proposed model predicts the state response very close to 
the true state response under various circumstances. 

Jia et al. [5] presented a case study on predicting lake tem-
perature using a physics-guided RNN (PGRNN) which is not a 
modified version of the RNN cell like the earlier cases. The 
model is simply an ordinary LSTM (an extension to RNN) that 
is constrained during optimization by having two additional 
physics-induced loss terms. The recurrent model structure in 
Fig. 9 illustrates the two distinct parallel flows of the proposed 
model. The first flow is a standard RNN flow which captures 
the temporal dependency of the given data. The second flow is 
an energy flow that keeps track of the variation of energy bal-
ance over time.  

In the context of lake temperature modeling, the main factor 

of temperature change is known to be heat flux. Heat flux is an 
energy, and the law of energy conservation must hold. There-
fore, the change in energy flux should be equal to the total net 
amount of incoming and outgoing heat fluxes (terrestrial long-
wave radiation, short-wave radiation, back radiation, sensible 
heat fluxes, and latent evaporative heat fluxes) of the system.  

 
,= + +RNN EC EC DC DCλ λL L L L  (9) 

( )≈ Δ − −∑EC t ECReLU U τL F  (10) 

( ), 1,+≈ −∑∑DC d t d t
t d

ReLU ρ ρL  (11) 

 
Eq. (9) represents the loss function of the PGRNN. ECλ  and 
DCλ  denote relative importance of the corresponding terms. 

The first term RNNL  is a standard loss function of mean 
squared error. The second ECL  and third terms DCL  repre-
sent the loss of energy conservation and the density-depth 
constraint, and they are defined by Eqs. (10) and (11), respec-
tively. Eq. (10) is a mathematical formulation of the law of en-
ergy conservation. Similarly, Eq. (11) describes the physical 
constraint that water density, ρ  must not get smaller as it 
gets deeper down in a lake. d  and t  are depth and time, 
respectively. In Eq. (10), the ReLU function penalizes cases 
where the input value is larger than zero. As such, the model is 
optimized such that the change in energy flux, Δ tU  is the 
nearly the same as the net amount of in-fluxes and out-fluxes, 
F . The difference between the two can be allowed by as 
much as ECτ , which is a pre-determined threshold value.  

As for another example of a physics-based RNN, Yuan et al. 
[15] constructed a CNN-RNN model based on two pieces of 
domain knowledge about wave propagation that are Huygens’ 
principle and time-reversal technique for source localization in 
the impact diagnosis of a structure. In accordance with Huy-
gens’ principle, multiple time frames of feature vectors ex-
tracted from the corresponding wave fields by CNN were used 
in a sequence. Time-reversal is a technique which enables to 
discover the source of impact by analyzing the input wave sig-
nal in a reverse direction. This forms the basis for constructing 
a many-to-one RNN model consisting of multiple time frame 
inputs of feature vectors and a temporal decoder that provides 
the impact location. 

 
3.4 Graph neural networks (GNNs) 

All the deep learning models introduced until now deal with 
data that have a Euclidean structure. Such data type is struc-
turally regular allowing the data to be fed to the network in an 
evenly spatial and timely manner. Examples of such data in-
clude image and text. However, some data cannot be struc-
tured the same way, necessitating for another method to for-
mulate an irregular structure. As an alternative, the notion of 
graph was introduced and it is widely being studied in the deep 
learning community as of now. 

In computer science, a graph generally refers to a data type 

 
Fig. 8. Proposed physics-guided RNN cell [2]. 

 

 
Fig. 9. The recurrent flow of the PGRNN [5]. 
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comprised of two components, nodes and edges. Nodes also 
called as vertices encode elements while edges encode rela-
tions between the elements. Each node is represented by a 
vector (e.g. a distributed vector representation) which contains 
meaningful information about the corresponding element of the 
physical system. Edges can be either directed or undirected, 
and they can have weights that specify the relative importance 
of relations between nodes. Such graph structures are fre-
quently used for modeling situations where multiple elements 
are connected in one way or another and thus one may affect 
not only the nearby elements but all the rest due to the connec-
tions (e.g. a distributed circuit, a smart grid, water supply net-
works, social networks, etc.). It should be noted that the topol-
ogy of graph structure itself is an essential source of informa-
tion if one hopes to use it as training data [51, 52].  

The main issue with using graph data is that it is incompati-
ble with the existing deep learning models because the topol-
ogy should be maintained when it is fed to the models. This 
problem has led to the advent of GNNs. A major variant of 
GNN, graph convolutional network (GCN) [53] uses graph 
Fourier transform to extract features from graphs. Fig. 10 illus-
trates how the output representation of a graph structure is 
computed through a GCN. GCN uses graph filters to extract 
features that are equivalent to the channels within CNNs. The 
graph filter is a diagonal matrix of which the diagonal terms are 
also filters parametrized by the eigenvalues of a graph Lapla-
cian matrix, L . L  is defined as the difference between the 
weighted adjacency matrix and degree matrix of a graph. The 
output layer is chosen depending on the task of the model. For 
node classification, a fully connected layer is the popular 
choice.  

In line with the development of GNNs, the issue of integrat-
ing prior knowledge with GNNs has also attracted several re-
searchers over the past few years. Seo et al. [54] developed a 
methodology to model a climate dynamical system by incorpo-
rating implicit physics knowledge in latent space. The sug-
gested network is composed of an encoder and a decoder. 
The encoder receives a set of attributes of nodes ( v ), edges 

( e ), 3-cliques ( c ), and a whole graph ( u ) as inputs which are 
then transformed into latent spaces. After that, the encoded 
graph is updated multiple times until the minimum requirement 
is met. It should be noted that the updated graph represents 
the state of the graph. For this particular domain of climate 
modeling, the user knows that the observations should pos-
sess a diffusive property. For this reason, the diffusion equation 
is given as an additional constraint to the total objective func-
tion. Similarly, Seo et al. [55] introduced the concept of spatial 
difference layer that adds an additional constraint to the total 
loss function. 

Zhang et al. [56] proposed a novel graph neural network 
named Circuit-GNN that leverages a lot of domain knowledge 
for the simulation of distributed circuit design. One of its great 
contributions is placed on how it addresses the incompatibility 
of models trained on different circuit templates with varying 
numbers of resonators by applying a single GNN that takes the 
resonators in each circuit as nodes in a graph, and their elec-
tromagnetic coupling as edges between the nodes. By doing 
so, the prior knowledge of the circuit is transformed into a form 
of structured data called knowledge graph that can be trained 
by GNNs. This solves the issue of the requirement of training 
multiple separate models per template. At the same time, the 
aim is to obtain an optimized circuit design given a particular 
electromagnetic specification (e.g. transfer function), which is 
known as an inverse problem. To solve it, the author focuses 
on the differentiable nature of the model. Knowing that the only 
cause of an invalid circuit is the change in resonator center 
positions, a few rules are applied to make a constraint in each 
optimization step. This is to prevent the collision of two or more 
resonators, a case that does not belong to the valid solution 
space. Through this approach, the optimal point could be 
reached much faster and accurately. Other works that exploit 
knowledge graphs for designing graph neural network architec-
ture are presented in Refs. [57-61]. 

 
3.5 Generative models 

So far, the deep neural networks that have been introduced 
fall in the category of discriminative models because they pre-
dict the target variable while observing the input variables. On 
the other hand, a generative model refers to a model of the 
conditional probability of the observable variable X  when the 
target Y  is given. Mathematically, it can be symbolized as 
follows: ( | )=P X Y y . Simply put, the user is interested in the 
generation of the observable variables by sampling from the 
learned probability distributions either implicitly or explicitly. In 
this section, the cases of the two most widely adopted genera-
tive models, variational autoencoders (VAEs) [62] and genera-
tive adversarial networks (GANs) [63] are reviewed.  

Autoencoder is an unsupervised neural network that learns 
to compress and encode input data into latent space of smaller 
dimension, and eventually reconstruct the original input data 
from the learned latent representation. By the bottleneck de-
sign of the architecture, it reduces the data dimension. While 

 
Fig. 10. General flow of a graph convolutional network for node classifica-
tion. In the hidden layer, every node of the input graph is updated one by 
one. Since it is a directed graph, the red colored node is affected only by 
the neighboring nodes that direct toward it. 
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the former part of the bottleneck network is called an encoder, 
the latter part is called a decoder. The names literally suggest 
the role of each part. Autoencoders are widely used for anom-
aly detection and the de-noising of input signals. Though many 
more exists, one of the popular variants of autoencoders is 
VAE. VAE mainly differs from an ordinary autoencoder such 
that while an autoencoder maps the input into a fixed vector, 
VAE does it into a distribution. To elaborate, instead of learning 
a function representing the data, VAE learns the parameters of 
a probability distribution representing the data. Though the 
purposes of both models are the same, VAEs are known to 
provide more control over how the latent space is modeled 
which is why they are generally preferred over autoencoders.  

Chao et al. [6] introduced the so-called “knowledge induced 
variational autoencoder with adaptive sampling” (KIL-AdaVAE), 
an extension to VAE, which enables implicit supervision on 
learning the latent representation of the healthy conditions for 
anomaly detection in an open-set scenario. In open-set diag-
nostics, both the fault detection and the fault segmentation 
should be addressed. Therefore, a meticulous learning of latent 
representation is needed to identify the healthy condition and 
distinguish the faulty conditions. In this study, the prior knowl-
edge which is capitalized on is that there are both healthy data 
and potential faulty data (unlabeled) in the available train set, 
and thus the representation learning must be balanced for both 
classes. First, the author stresses the limitation of an ordinary 
autoencoder for anomaly detection that its latent representation 
typically shows an entangled representation of the fault types. 
Henceforth, the use of VAE for better control over representa-
tion learning is suggested. However, to bring about a more 
disentangled representation, implicit supervision by adding a 
loss term to the VAE is proposed. This additional loss term is 
intended to restrict the representation of healthy data and en-

courages a more distinctive representation of the fault types. 
The proposed loss is as follows: 

 
( )( ( | ) || )− = −

TKIL AdaVAE ELBO KL SD q z x p z∅γL L  (12) 

 
TS  represents the healthy labeled system conditions. The 

second loss term forces the representation of the healthy data 
to match the factorized unit Gaussian and it acts as the implicit 
supervision to the unsupervised learning task of VAE. This flow 
of work corresponds to the ‘generative model – human feed-
back – regularizing’ pipeline in Fig. 1. 

Generative adversarial networks (GANs) [63] have recently 
gained huge popularity in the deep learning community as a 
baseline generative model. Composed largely of two compo-
nents that compete with each other, a generator and a dis-
criminator, it runs based on the minimax game. The major ad-
vantage of GANs is that since it is an implicit model, the user 
does not need to explicitly designate the form of the underlying 
probability distributions for the variables of interest. This is why 
GANs are known to be very powerful in imitating the distribu-
tions. Despite its great performance when trained properly, 
GANs are also known to suffer from several drawbacks such 
as mode collapse and train instability caused by gradient van-
ishing and gradient explosion, which make them difficult to 
provide the best performance.  

Based on the model, Warner et al. [64] demonstrated phys-
ics-informed generative adversarial networks (PI-GANs) [65] to 
inversely estimate the elastic modulus (stiffness) in solid me-
chanics. In this study, the proposed model encodes physical 
laws in the form of stochastic partial differential equations 
(PDEs) onto the generator so that it provides realistic and 
physically coherent outputs. The focus lies on the estimation of 

Table 1. Classification of previous studies according to the taxonomy of informed deep learning. FE, D and R stand for feature engineering designing and 
regularizing, respectively. 
 

 Differential equation Algebraic equation Knowledge graph Simulation result Human feedback 

FE - [20] - [7-11] [23, 24] 

D - [21, 22] - [13, 14] [23, 25, 26] ANN 

R [15-17] [18, 19] - [3] - 

FE - - - [35] - 

D - [27] - [36] [15, 39-42] CNN 

R [4, 32, 33] - - [36-38] - 

FE - - - [35] - 

D [2, 46-49] [43] - - [15] RNN 

R [32] [5] - - - 

FE - - - - - 

D [57] [57] [56-61] [57, 60, 61] [56, 60, 61] GNN 

R [54, 55] [69] [54, 69] - - 

FE - [70] - [35] - 

D [71] - - [72] - Generative model 

R [32, 64, 65, 67, 68] - - [37, 38] [6] 
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spatially and randomly varying elastic modulus, ( ),E x ω  in 
the form of probability distribution based on its relation to an-
other, observed quantity (two-dimensional observations of 
material deformation). The governing equation along with 
boundary conditions, which models the deformation under load 
at varying space x  and random event ω  is known in ad-
vance, but the distribution of elastic modulus is unknown. The 
training dataset is generated by solving the governing equation 
with the boundary conditions using the finite element method. 
As for the network architecture, two generators (one for 

( ),u x ω  and the other for ( ),E x ω ) are constructed and 
trained in parallel. There is a single discriminator in the network. 
The loss functions are represented as follows: 

 
( ) ( ) ( ) ( )ω

, , ,= + +PI
G u E G u PDE u E BC u Eθ θ θ θL L L L  (13) 

( ) ( )ω
, ,, ,=PI

D u E D u Eθ ϕ θ ϕL L  (14) 

 
The above equations represent the generator loss and the 

discriminator loss. The networks are parameterized by θ  and 
φ , respectively. The first terms of the equations denote the 
WGAN with gradient penalty loss that replaced a standard 
GAN losses because of their power to solve the training stabil-
ity issue of the vanilla GANs [66]. It should be noted that the 
physics-induced loss terms are added only to the combined 
generator loss to impose physical constraints only on the gen-
erator. Using the aforementioned methodology, it is reported 
that the distribution of the elastic modulus similar to the true 
distribution was generated. This flow of work corresponds to 
the ‘generative model – differential equation – regularizing’ 
pipeline shown down below. Similar studies are shown in Refs. 
[67, 68]. 

 
4. Categorization of previous studies  

In this section, we provide a summary of the aforementioned 
literature by putting them into categories to which each study 
belongs to. The categories are determined based on the tax-
onomy in Fig. 1. From the Table 1, it is notable that there has 
been a substantial amount of research in incorporating various 
types of knowledge with deep learning. There have been cases 
where the reported works belong to more than just a single 
category because of a mixture of different deep neural net-
works (e.g. coupling CNN with RNN) and more than one type 
of prior knowledge was used in a single case study (e.g. differ-
ential equation and algebraic equation are both used). Numer-
ous slots are missing in the table, implying that the field of 
study is still in its infancy and more research is encouraged.  

 
5. Conclusions 

In this overview, we defined the general concept and the 
taxonomy of informed deep learning followed by an extensive 
literature survey in the field of dynamical systems on the 

knowledge integration in deep learning pipelines. As for the 
general concept, we first defined the meaning of prior knowl-
edge and identified the types of prior knowledge (differential 
equation, algebraic equation, knowledge graph, simulation 
result and human feedback) that we encountered during the 
literature survey. Then, the conventional deep learning and the 
informed deep learning are compared by their respective work-
flows. The taxonomy of informed deep learning which we de-
fined in this overview is largely divided into three conceptual 
steps: deep neural networks, knowledge representation and 
knowledge integration. Since the notion of deep neural net-
works and knowledge representation are relatively well under-
stood, they have been explained briefly while the elements of 
knowledge integration have been explained one by one with 
some examples in Sec. 2. Although the taxonomy defined in 
this paper could have included extra features as in some other 
literatures, we intended to simplify the taxonomy and the 
knowledge integration part in order to easily convey the knowl-
edge and vision in the emerging field of informed deep learning 
to our mechanical engineering community. The application of 
deep learning in the engineering field is still in its infancy not 
only because of its solely data-driven nature, but also because 
there has yet been sufficient amount of research for infusing 
scientific knowledge into deep learning by the related domain 
experts. For those mechanical engineers who are still very 
suspicious about data-driven approaches and deep learning 
may look into this new area of research and obtain good in-
sights on leveraging the benefits of both physics-based models 
retrieved from dynamical systems and deep learning. 

 
Acknowledgments 

This work was partly supported by the National Research 
Foundation of Korea (NRF) grant funded by the Korea Gov-
ernment (MSIT) (No. 2020R1A2C1009744), Institute for Infor-
mation & communications Technology Panning & Evaluation 
(IITP) grant funded by the Korea government (MSIP) (No. 
2019-0-01906, Artificial Intelligence Graduate School Program 
(POSTECH)), the Institute of Civil Military Technology Coop-
eration funded by the Defense Acquisition Program Administra-
tion and Ministry of Trade, Industry and Energy of Korean gov-
ernment under grant No. 19-CM-GU-01, the Korea Institute of 
Energy Technology Evaluation and Planning (KETEP) Grant 
funded by the Korean Government (MOTIE) under Grant 
20206610100290. 

 
Nomenclature----------------------------------------------------------------------------------- 

sθ      : Source parameters 
tθ      : Target parameters 

HPDf    : Hybrid model 
PHYL    : Physics-based loss 
( )k∅  : Convolution filter 

ta      : Damage at time t  
1nr +      : Residual at 1n +  step 
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