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Abstract  Recently, several studies tried to develop fault identification models for rolling
element bearing based on unsupervised learning techniques. However, an accurate intelligent 
fault diagnosis system is still a big challenge. In this study, a deep functional auto-encoders 
(DFAEs) model with SoftMax classifier was designed for valuable feature extraction from mas-
sive raw vibration signals. To maximize the unsupervised feature learning ability of the pro-
posed model, various activation functions were applied in an effective methodology, these hid-
den activation functions enhance significantly the sparsity of the training data-set. The pro-
posed method was validated using the raw vibration signals measured from the machine with
different bearing conditions. The achieved results showed that the high-superiority of the pro-
posed model comparing to standard deep learning and other traditional fault diagnosis methods 
in terms of classification accuracy even with massive input data sets.  

 
1. Introduction   

Rotating machinery is extensively used in the newly industry. The key components of the ro-
tating machinery can develop diverse faults under rigorous working situations such as large 
load, strong impact, high speed, and high background noise [1, 2]. Rolling element bearings 
are vital components of most rotating machinery and electrical apparatuses. The latter’s failures 
may cause significant losses and serious economic casualties. Therefore, it is worth to diag-
nose the different bearing faults precisely and automatically that may occur in rotating machin-
ery. Intelligent fault diagnosis of rolling element bearings is an exemplary pattern recognition 
problem. It designed to analyse the measured vibration data excellently and automatically de-
liver the diagnosis performance that indicated in classification results. Intelligent fault diagnosis 
became a new concern directional in the health monitoring (HM) applications [3]. Traditional 
diagnosis models usually show shallow feature learning in big data. Artificial neural networks 
(ANNs) and support vector machines (SVMs) are two common traditional methods that used to 
solve rolling bearings fault diagnosis classification problems and to extract the sensitive and 
meaningful characterized features from collected vibration signals [4-8]. The developed models 
of the ANNs used for observing and detecting the health circumstances of machinery tools, 
such as electric motors, rolling element bearings, gearboxes, etc. The ellipsoid-ARTMAP model 
and hybrid FAM model improved the network structures which widely utilized to raise the classi-
fication performance. These methods supposed that the feature parameters exhibited to FAM 
had significant point to the categories. However, a big workload of expense and low diagnosis 
accuracy may occur when fed whole learning features together to models, and the likelihood of 
some features are irrelevant or extra to the classification architecture [9]. Kernel marginal   
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Fisher analysis (KMFA) model was utilized in the data learning 
field, which can extract low-dimensional features rooted in the 
high-dimensional sphere. Nevertheless, it is unable to resolve 
the overlap problem in supervised fault diagnosis methods 
because the supervised learning methods always need a 
large intake of termed data for fault recognition and it is not 
available in most work cases [10]. The MODWPT approach is 
used for rolling vibration signals, and then the cumulative FER 
value of each frequency band signal is determined and used 
to produce the FERgram to be used for envelope analysis [11]. 
The ODL algorithm was used to enhance the fault features 
extraction. The sparse coding period misses the power to 
learn information signals, so a large amount of intermingled 
redundant hype is still in the signal after the sparse coding 
period. Thus, the standard ODL algorithm cannot effectively 
explore weak fault feature consolidation of rolling bearings [12]. 
In Ref. [13], the singular value decomposition (SVD) technique 
is used to provide a tool for automatically extracting abrupt 
information from aero-engine signals to identify typical faults. 
However, most traditional intelligent diagnosis methods still 
working on shallow architectures lack powerful representation 
in fault diagnosis tasks and have two intrinsic limitations [14]: 
feature extraction and selection. These limitations are the 
main duty of traditional methods to evaluate the diagnosis 
performance [15]. The measured vibration signals of various 
fault types, various fault size and various fault locations are 
always non-linear, and non-stationary escorted high back-
ground noise [16, 17]. It is a complex mission to specify the 
most delicate attributes from the unique characteristic set for 
diverse diagnosis executions by depending on only engineer-
ing experience. Thus, several advanced signal processing 
methods must be worked versatility to extract useful features. 
Therefore, powerful feature learning models are seriously 
necessary to pick up automatically that useful fault features 
and ensure fitting results. Consequently, this process leads to 
depreciated time in analyzing tasks to select the most delicate 
attributes in different diagnosis methods without plentiful prior 
acquaintances [18]. According to Refs. [19, 20], traditional 
intelligent fault diagnosis methods cannot eliminate high intri-
cacy pattern recognition problems by applying shallow archi-
tecture learning models [21]. Accordingly, there is an impera-
tive issue needed to develop deep unsupervised feature learn-
ing architecture to achieve a better intelligent fault diagnosis 
system. In order to conquer the substance inadequacies of 
traditional intelligent diagnosis methods, deep learning is an 
advanced approach of the artificial intelligence (AI) field and it 
is a good choice to learn the data [22]. The core objective of 
most deep learning models is that they can automatically learn 
decisive features from the raw vibration signals directly [23-25]. 
A deep belief network (DBN) is one of the deep leaning meth-
ods used to learn various data sets to extract the features. 
Also, the convolutional neural network (CNN) and deep auto-
encoder (DAE) have same advantages to eliminate the reli-
ance on a variety of developed signal processing techniques 
and engineering prior-knowledge [26], which can cause more 

concern and has been increasingly applied in health monitor-
ing systems for near passed years [27-29]. DBN is used to 
prevent the intricate layout of a deep neural network and to 
detect roller bearing faults [30]. DAE is a perfectly unsuper-
vised feature learning method unlike DBN and CNN. It is cre-
ated from manifold auto-encoders (AEs), which has been a 
more effective and easier learned model in various applica-
tions [31]. However, there still exist some problems and many 
challenges when using the standard DAE directly for intelli-
gent bearing fault diagnosis. These problems can be defined 
as a shallow training performance and low generalization abil-
ity. Standard DAE usually uses a sigmoid function as the acti-
vation function in feature learning stages which probably can-
not re-presentative the sufficient information from the raw 
input signals, and it is incapable of generating a precise map-
ping association between the many classes and the input 
signals [32]. 

In most traditional practical engineering, the effectiveness of 
a standard DAE run decreases gradually because of the 
measured vibration signals are invariably non-stationary and 
non-linear with high background of redundant information. Also, 
it is influenced by different operating conditions [33, 34]. How-
ever, existing deep learning models still rely on the functioning 
research of the standard individual models and manual signal 
processing techniques. As well as, the capability of automati-
cally capturing useful information from raw vibration data will be 
rare or ignored, which makes a complex issue that perform a 
proper deep learning model for input data-set. Therefore, it is 
useful to upgrade the standard DAE and create a new deep 
learning model that can yield full privileges of deep learning 
functionality. 

In this paper, a deep functional auto-encoders (DFAEs) 
model with SoftMax classifier was designed to extract valu-
able features from massive raw vibration signals. In order to 
increase the ability of the unsupervised feature learning, 
different activation functions were implemented in an effec-
tive methodology. The designed method is proposed in this 
paper to describe three major steps: First, various activation 
functions were used to design each functional auto-encoder 
(FAE) of the deep learning model. Second, DFAEs are con-
structed with multiple FAEs for more reinforced of unsuper-
vised feature learning. Finally, SoftMax is utilized to get high 
accurately classification for the normal and defective bearing. 
The proposed method was applicable to analyze the empiri-
cal measured raw vibration signals of the testing bearings, it 
was effectively confirmed to overcome the limitations men-
tioned above by comparing with existing intelligent diagnosis 
methods and successfully eliminated the reliance on manual 
feature extraction. 

The remainder of this paper is organized as follows. The ba-
sic concepts of standard auto-encoder are concisely described 
in Sec. 2. The proposed method is detailed in Sec. 3. In Sec. 4, 
the experimental diagnosis results of a bearing data set are 
studied and deliberated. Finally, in Sec. 5 the conclusions and 
additional work are summarized. 
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2. Basic concepts of auto-encoder 
An autoencoder (AE) is an asymmetrical purely unsuper-

vised feature learning neural network which is assembled from 
three key layers. These layers represent input, hidden and 
output layers in sequential [35, 36]. The AE attempts to dimin-
ish the reconstruction error of the learning data between these 
layers. The typical structure of AE is shown in Fig. 1. The raw 
input data are unlabeled training samples, described as 

1 2[ , ,..., ]= T
mx x x x . The sigmoid function (.)sigm  is the gen-

eral transfer function of the standard AEs that diverts the input 
data into a new vector of hidden representation, h =  

1 2[ , ,..., ]T
ph h h , as follows: 

 
( )sigm Wx b= +h                         (1) 

1 / (1 )−= + ssigm e                        (2) 

 
whereW is denoted the weight matrix of NN, b is denoted the 
bias vector and {W, b}=θ represented the generated pa-
rameter assign between the first layer and second layer. Then, 
the hidden representation vector, h , is mapping reformatted 
into a reconstruction data vector, * * * *

1 2[ , ,..., ]= T
mx x x x , through ݉݃݅ݏ process as below:  

 
* * *( )sigm W b= +x h                   (3) 

 
where * * *{W , b }=θ represented the generated parameter 
index between the second (hidden) layer and last (output) layer.  

The optimization task of the parameter assign *θ =  
* * *{ , }={W, b,W , b }θ θ  is performed in the AE training to 

minimize the reconstruction error. The loss function of the 
standard AE usually was the mean square error (MSE) used to 
shape the training reconstructed error. For unlabelled training 
sample set 1 2{ , ,..., , }m Mx x x x , the training error is defined as: 

 
* 2

1
1

(θ) 1/ (1/2 ( ) )
=

=

= −∑ ∑
m

d m m
AE i ii

i

E M x x        (4) 

 
where 1 2[ , ,..., , ]=m m m m M T

i dx x x x x , (1,2,..., )=m M  is mth input 
sample vector, M is the number of unlabelled input data of 
training samples and for  each sample assigned d dimensional. 

m
ix  is the ith dimension input data of the mth training sam-

ple mx and *m
ix  is the ith dimension outputs that reconstructed 

for the mth samples. 

 
3. The proposed method 

The (DFAEs) with SoftMax classifier combination is pro-
posed based on designing the deep functional auto-encoders 
to develop the intelligent bearing fault diagnosis. The combina-
tion involves the following procedures: DFAE construction, fault 
pattern recognition-based fine-tuning and SoftMax classifier, 
and the main strategy of the proposed method.   

3.1 DFAE construction    
A single standard AE has both simplicity in regulation and 

ability in unsupervised feature learning for massive measured 
vibration data. Simple transactions in standard AE cause diffi-
culties in parameter selection for deep learning features. 
Adopting various activation functions plays a significant role in 
nonlinear modelling ability, and it has potential to overcome the 
restrictions of a standard AE. This role is important and effec-
tive in the performance of deep neural networks [37, 38]. Thus, 
most of these structures are robust in feature learning and can 
produce a new representation of raw vibration data.  

During the past years, many activation functions have been 
applied in the neural network learning. In the present study, 
nine dissimilar activation functions are used to design AE mod-
els. The equations of the nine activation functions are de-
scribed in Table 1. The exponential functions, such as the sig-
moid (Logsig) function and hyperbolic tangent (TanH) function 
have been widely applied in the diverse structure of NNs in the 
past years, however, their implementation always has inade-
quacies of wasting time through extreme computational and 
pheasants vanishing issue [38]. Training a linear activation 
function (purelin) always produces only positive numbers over 
the entire real number range which cannot dodge the vanishing 
gradient issue. The Elliott (Elliotsig) function is a higher-speed 
approximation of TanH with a 0-1 output range which is not 
zero-centred and sometimes may not be stable [39].  

In the deep learning process, the rectified linear unit (ReLU), 
can be used as a non-exponential function to transfer for data 
transformation [39, 40]. ReLU can overcome the vanishing gra-
dient issue which allowing models to learn faster and can be 
implemented more accurately. It can be used in default activa-
tion when developing multilayer neural networks. Adopting 
ReLU may easily be considered one of the few sights in the 
deep learning uprising, e.g. the techniques that now permit the 
routine expansion of very deep neural networks. A saturating 
linear (Satlin) function is one of the well-known NN learning 
functions. Although NNs with the (Satlin) function may take 
extensive time to train, their learning ability is better than other 
networks. In addition, these networks can give better pattern 
recognition and higher average classification accuracy (ACA) 
than neural networks with other activation functions [41]. Among 
the various activation functions, Satlin and ReUL are widely 
used for neural networks due to their advantages with machin-
ery vibration. According to our experimental tasks (test each 
activation function with the other activation functions), 9×9 = 81 
experiments were conducted to produce a better deep learning 
model. In this paper, the Satlin activation function and ReUL 
activation function were adopted as the activation functions in 
FAE in order to allow more efficient network training than the 
default function. And as a result, using these functions causes 
increasing of the sparsity to obtain better useful features from 
raw data [42]. Their waveforms are shown in Fig. 2.   

A DAE with different activation functions has a powerful ca-
pability for deep feature learning. Thus, a new method of unsu- 
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pervised learning, named FAE, is developed in this study. 
Two of the DAEs with dissimilar activation functions are com-
bined to establish a DFAE model which has a strong potential 
to capture the representative information of the useful features 
from raw input data. The structure of the DFAE is shown in Fig. 
3. Instead of the traditional sigmoid function, the DFAE model 
used Satlin and ReLU as the activation functions in the first and 
second of the AE, respectively. The DFAE model can record 
different signal properties with different resolutions. FAE is 
trained to reconstruct the unlabeled sample, into through differ-
ent activation functions. h = [h1, h2, . . ., hm]T is the reconstructed 
data of the unlabeled sample 1 2[ , ,..., ]= T

mx x x x as follows: 
 

1
( )m

j Sat jk kk
W xψ

=
= ∑h                    (5) 

 
where Satψ  denotes the Satlin activation functions of the first 
DAE, m is the unit number of the input layer and output layer (i, 
k = 1, 2, . . . , m), kx is the kth dimension input of the training 
sample and jkW  is the connection weight between input unit k 
and hidden unit j. 

From Table 1, Re / (1 )= +k kx xψ  is the activation function 
of the second hidden layer. For ( )1, ...,h j p= , the representa-
tive data can be calculated similarly to the standard AE formu-

lation. Thus, the FAE2 output can be represented as: 
 

*
Re 1

( )
=

= +∑ p

i ij ijj
x W bψ                    (6) 

 
where *

ix is the ith outputs dimension of the input training 
samples and ijW is the shared weight between hidden node j 
and output node i.    

To improve the sparsity representation, the divergence func-
tion of Kullback–Leibler (KL) is adopted to enhance the feature 
learning in different AEs and is used for measuring the differ-
ence between the activation charge of the hidden node and 
sparse restriction. The definition of the sparsity regularization 
loss function is explained in Ref. [43]. Therefore, the sparsity 
loss function can modify the FAE reconstruction error function. 
For unlabelled sample with m-dimension training examples 
which set as 1 2{x , x , ..., x , ..., x }m M , all reconstruction error 
functions can be rewritten as:  

 
* 2

1

* *1

(θ) 1/ 1/2 ( )

1(1 )
1

d m m
AE i ii

p

j
j j

E M x x

ρ ρβ ρ ρ
ρ ρ

=

=

⎡ ⎤= −⎣ ⎦
⎛ ⎞−+ + −⎜ ⎟⎜ ⎟−⎝ ⎠

∑

∑ log log
        (7) 

Table 1. Equations of the applied activation functions. 
 

Function names Equations of the functions 

Saturating linear (Satlin) g(x) = 0 if 0 ≤ x, 1 if x ≥ 1, x if 0 ≤ x ≤ 1

Rectified linear unit (ReLU) g(x) = x/(1+ x ) 

Sigmoid (Logsig) g(x) = x/(1+ − xe ) 

Symmetric saturating (Satlins) g(x) = -1 if -1 ≥ x, 1 if x ≥ 1,  
x if -1 ≤ x ≤ -1 

Linear (Purelin) g(x) = x 

Radial basis (Radbas) g(x) =
2xe−  

Hyperbolic tangent sigmoid 
(Tansig) g(x) = 2/(1+ ( )2* ) 1xe − −  

Elliot symmetric sigmoid  
(Elliotsig) g(x) = (x/2)/(1+ x )+0.5 

Sinusoid (sin) g(x) = sin (x) 

 
 

 
 
Fig. 3. The structure of DFAEs. 

 
Fig. 1. Standard auto-encoder structure. 

 
 

 
 
Fig. 2. The two wave forms of activation functions: (a) satlin; (b) ReLU. 
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where β is the sparse restriction factor,  *
j ρ  is the activation rate 

of hidden node j, ρ  is a sparse parameter, m
ix  with ith di-

mension and the x*m
i with mth represents the inputs and re-

constructed outputs, respectively.  

 
3.2 Fault pattern recognition-based fine-tuning 

and SoftMax classifier   

Basically, N of the hidden layers in the DAEs were trained 
through stacked DAEs with SoftMax layer training. After enter-
ing the vibration data mx , the mapping of the input layer fol-
lowed by the first hidden layer can be considered AE1 of the 
deep network. Through the AE1 training, the reconstruction 
error in Eq. (7) was minimized based on parameter set 1θ and 
the first feature vector ( 1hm ) which initialized from the first hid-
den layer in the DAE network as:  

 
1 ( ) .m mxθψ=h                              (8) 

 
Then, the first feature vector ( 1

mh ) is considered the input 
data of the forthcoming hidden layer. Moreover, AE2 is pre-
sented the second auto-encoder in the deep network. The 
second hidden layer was generated through training AE2 to 
initialize the second feature vector with a different activation 
function. This process was sequential and conducted until the 
final hidden layer was initialized for N AEs to train the DAE 
network. In other words, based on hidden layers, the Nth fea-
ture vectors ( N

mh ) can be calculated as:  
 

1( )
N

m m
N Nθψ −=h h   (9) 

 
where Nθ  is denote the W, and b parameters of the series 
Nth AE. Better classification task can be obtained by pre-
training performance effectively.  

This performance is demonstrated to produce better local 
minima than accidental initialization in deep learning algorithms 
[44, 45]. And then, a fine-tuning operation is conducted in the 
feature deep learning. The output layer usually works with the 
output targets for the pattern recognition task. The output of the 
input signal xm  for the deep network is described as:  

  

1θψ
+ Ν= ( )Nm my h                 (10) 

 
where 1+Nθ  is the output layer parameter.  

In order to further output target convergence, backpropaga-
tion (BP) is a widespread algorithm which usually used for 
repeating  fed back the data in training the neural network that 
aims to optimize the parameter set { },= =θFAEs ij jkθ θ  

{ }, , ,ij ij jk jkW b W b . Therefore, the reconstruction error will be 

minimized by the BP algorithm during feature training. Based 
on Eq. (7), further minimizing for the loss function is performed  

by analyzing the gradient of ( )θE with respect to W.  
Finally, the updated parameter rules can be stated as:  
 

( ), ( 1) , ( ), ( )∂+ = − + Δ Δ
∂ij ij ij ij ij ij

ij

EW b I W b W I b I
W

θη α  (11)
 

( ), ( 1) , ( ), ( )∂+ = − + Δ Δ
∂ik ik ik ik ik ik

ik

EW b I W b W I b I
W

θη α    (12) 

 
where W and b in Eqs. (11) and (12) are the weight and bias 
matrix in each AE model, respectively. I is the iterations num-
ber, η is a learning rate for the fine-tuning process, α is the 
momentum factor belong to [0.9, 1] and ( )E θ is the recon-
struction error of AE models through each iteration I.  

Due to the simplicity of unsupervised feature learning for the 
AE, it was requisite to build a deep construction based on a 
string of trained FAEs and to follow Hinton’s training proce-
dures. The DFAEs was established with multiple AEs that have 
different characteristics, and it attained via the sequential train-
ing efforts of each single AE. Fig. 4 shows the layer-by-layer 
structure progression of a DFAE with two FAEs. First, the 
samples of measured raw vibration signal x  are used as 
input data to train the first functional autoencoder (FAE1), and 
then, low-level features 1hm are learned. Second, the feature 
vector 1hm  is fed into the second tracking functional autoen-
coder (FAE2) to learn 2hm with the highest-dimensional fea-
tures. The DFAEs training stage is over. Then, the learned 
features of FAE2 are used to train the SoftMax for much accu-
rate fault identification. This process enables the trained con-
struction to extract the inherent characteristics from raw vibra-
tion signals and setting up an intricate non-linear mapping be-
tween the learned features and bearing classes. Hence, the 
designated architecture can effectively achieve better fault 
characteristic extraction and robust fault classification for rolling 
element bearings.  

 
 
Fig. 4. The structure of DFAEs for two functional auto-encoders.  
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Note: DR, FL, DF, TrS and TeS represents the diagnosis result of feature learning, deep features, training samples and testing samples, respectively. 
 
Fig. 5. The illustration of the proposed method. 
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3.3 Main strategy of the proposed method 

The proposed method is detailed as a diagram illustrated in 
Fig. 5 and the fundamental execution steps are defined as 
follows: 

·Step 1: The rolling bearing vibration signals are collected 
by acceleration sensors and acquisition instruments. 

·Step 2: The raw vibration signals are divided into relative 
training samples and testing samples without any signal 
pre-processing or manual feature selection and extraction. 

·Step 3: Different FAE models are constructed with differ-
ent pairs of activation functions to build a better DAE. 

·Step 4: The model DFAEs is established from two FAEs 
with Satlin and ReLU in FAE1 and FAE2, respectively. 

·Step 5: The model DFAEs is completely trained for unsu-
pervised feature learning using the training samples. 

·Step 6: The learned deep features are utilized to train the 
SoftMax classification layer. 

·Step 7: A fine-tuning and BP training algorithm are used 
to reduce the training error in feature deep learning. 

·Step 8: Visualizing the high-dimensional deep learned 
features using the t-SNE algorithm. 

·Step 9: The trained DFAEs is verified using the test sam-
ple to prove that the strongly proposed method. 

 
4. Experimental rolling element bearing 

fault diagnosis 
4.1 Experimental rolling element bearing data 

set 

In this study, the bearing vibration data is given by experi-
ments at a Case Western Reserve University (CWRU) testbed 
[46]. The experimental test-rig consists of four main parts: in-
duction motor, sensor, different defective bearings, and a 
changeable load motor as shown in Fig. 6. The experiments 
examined 6205-2RS JEM SKF bearings under diverse loads (0, 
1, 2 and 3 hp) and the measured signals corresponding to 
bearing with fault sizes of 0.1778 mm, 0.3556 mm, 0.5334 mm 
and 0.7112 mm. One sensor was located near the drive end 
bearing to collect the vibration signals accurately.  

The collected vibration signals at 1772 rpm motor speed 
(1 hp load) with a sampling frequency of 12 kHz were applied 

for identification of the fault in the DFAEs structure and simu-
late the real-life applications. The fourteen signals of various 
bearing working conditions were chosen including different 
faulty components, fault sizes, and fault trends. 300 samples 
are created for each signal and each sample contains 400 
sampling data points. 

For each condition, 210 randomly selected samples were 
used for training and the residual 90 for testing. Further details 
of the fourteen bearing signals were described in Table 2. In 
Fig. 7, the raw time-signals of the first 5000 sampling points for 
each bearing operation are plotted.  

 
4.2 The creation of the proposed method and 

diagnosis results  

The advantages and superiority of the proposed method can 
be demonstrated by comparison with three deep learning meth-
ods. First, it is compared with different DAE models of two kinds 
of activation functions. Second, the proposed method is com-
pared with three standard intelligent deep learning methods. A 
400-dimensional for each input data set of vibration signals is 
used to train the networks. In this paper, unsupervised learning 
is used by the new model of deep learning. The feature extrac-
tion is enhanced by the following points: 

·The proposed method is wholly dissimilar to the traditional 
intelligent methods. It is performed without any signal pre-
processing or feature extraction for improving the intelli-
gent diagnosis systems. 

 
Fig. 6. The rolling bearing experimental setup. 

 

 
Fig. 7. Vibration signals (5000 data points) of the fourteen rolling bearing 
operating conditions ((1) Healthy condition, (2) Ball defect condition (0.007),
(3) Ball defect condition (0.014), (4) Ball defect condition (0.021), (5) Inner 
race defect condition (0.007), (6) Inner race defect condition (0.021), (7) 
Inner race defect condition (0.028), (8) Outer race defect condition 
(0.007Centered@6:00), (9) Outer race defect condition (0.014Centered
@6:00), (10) Outer race defect condition (0.021Centered@6:00), (11) 
Outer race defect condition (0.007Orthogonal@3:00), (12) Outer race 
defect condition (0.007Opposite@12:00), (13) Outer race defect condition 
(0.021Orthogonal@3:00), (14) Outer race defect condition (0.021Opposite
@12:00). 
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·The saturated linear (Satlin) and rectified linear unit 
(ReLU) functions are selected as activation functions to 
learn the proposed method while two other different acti-
vation functions are used in the DAE models. 

·The recent studies always compared only with shallow 
learning methods. Whereas, the proposed method is 
compared with various DAE models, standard deep 
learning methods and traditional fault diagnosis methods 
which is quite different from previous studies. 

·The proposed method architecture is constructed based 
on two different activation functions while previous studies 
are used only one activation function in deep learning fea-
tures, i.e. [47]. 

As mentioned above, this procedure is validated in two ex-
periments (1, 2). Based on our experimental trials and accord-
ing to Fig. 5, each activation function is tested with eight differ-
ent activation functions to construct DAE models from model 1 
to model L. Only ten DAE models are over the threshold value. 
The proposed method is selected according to the highest 
accuracy reported from these models and it is constructed from 
the Satlin function with the ReLU function as a hidden activa-
tion function in DAE1 and DAE2, respectively. The 14 bearing 
data sets with different fault severities and orientations are 
used to train the deep networks. The experiments are de-
scribed as follow: 

Experiment 1: Ten trials are implemented to illustrate the ro-
bustness steady of the proposed method compared with other 
deep AE learning models. The results of the proposed method 
and those other DAE models for each trial are shown in Fig. 8. 
Table 3 described the types of the used activation functions of 
DAE models and their results. In diagnosis results, the average 
testing accuracy is the criteria to determine the fault diagnosis 
performance which is 99.44 % for the proposed method and it is 
slightly higher than other models numbered 1-9 which are 
95.39 %, 96.1 %, 95.97 %, 97.33 %, 96.98 %, 97.05 %, 

96.56 %, 94.22 %, and 93.33 %, respectively. In performance 
comparison, the other DAE models still have limitations in deal-
ing with massive data while the present method has the poten-
tial to overcome this constraint. The standard deviation of the  

Table 3. Descriptions of the classification results for the various deep AE 
learning models. 
 

Type of activation 
function DAE models 

AE1   AE2 

Average testing 
samples accuracy 

(%) ±standard  
deviation 

Average 
testing 
time (s)

The proposed model Satlin ReLU 99.44±1.81 0.1018
Model 1 Satlin Satlin 95.39±2.02 0.1423

Model 2 Satlin Purelin  96.1±2.04 0.1077

Model 3 Satlin Rabas  95.97±2.08 0.1458
Model 4 Satlin Tansig  97.33±1.99 0.1130

Model 5 Satlin Satlins 96.98±2.1 0.1073

Model 6 Satlin Elliotsig 97.05±2.07 0.1019
Model 7 Satlin  Hardlim  96.56±2.21 0.1255

Model 8 Satlins Satlin  94.22±2.34 0.1362

Model 9 ReLU ReLU 93.33±3.01 0.1522

                 

 
Fig. 8. Detailed classification results of different deep AE models for ten 
trials in experiment 1. 

Table 2. Descriptions of the training and testing samples for fourteen bearing conditions. 
 

Bearing operating conditions Fault diameter (mm) Outer race fault orientation Training samples & testing samples Condition label 
Healthy 0 – 210/90 1 

Ball defect 0.1778 – 210/90 2 

Ball defect 0.3556 – 210/90 3 
Ball defect 0.5334 – 210/90 4 

Inner race defect 0.1778 – 210/90 5 

Inner race defect 0.3556 – 210/90 6 
Inner race defect 0.5334 – 210/90 7 

Outer race defect 0.1778 Centered@6:00 210/90 8 

Outer race defect 0.3556 Centered@6:00 210/90 9 
Outer race defect 0.5334 Centered@6:00 210/90 10 

Outer race defect 0.1778 Orthogonal@3:00 210/90 11 

Outer race defect 0.1778 Opposite@12:00 210/90 12 
Outer race defect 0.021 Orthogonal@3:00 210/90 13 

Outer race defect 0.021 Opposite@12:00 210/90 14 
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proposed method is 1.81 which is the least value compared 
with other DAE models which were 2.02, 2.04, 2.08, 1.99, 2.1, 
2.07, 2.21, 2.34 and 3.01, respectively. This comparison 
proved that the selection reason for the proposed method 
among different DAE models to distinguish the fault type of 
rolling-element bearing. In Table 3, the testing time of the pro-
posed method is (0.1018 s) which is less than other DAE mod-
els. It’s worth mention that this work is conducted by (Core i5, 
12-GB memory, MATLAB R2018b (PC)) that contains the fault 
classification stage while the testing times of the other methods 
were 0.1423 s, 0.1077 s, 0.1458 s, 0.1130 s, 0.1073 s, 
0.1015 s, 0.1255 s, 0.1362 s, and 0.1522 s, respectively. 

Experimental 2: For further classification robustness con-
firmation, the training of the proposed method and three ad-
vanced deep learning methods are carried out. These methods 
are applied to diagnose and identify the same data set includ-
ing convolution neural network (CNN), long short-term memory 
(LSTM) deep network and the standard DAE. The main pa-
rameters of these methods are described as follows:  

·Method 1 (standard CNN): Its construction comprises of 
an input layer with size 28 ⁄ 28. Two convolutional layers 
with 4 kernels for each one and two pooling layers have 
scale value 3 for each one. The learning rate is 1×10-4 
and the epoch number is 120. SoftMax layer was as-
sumed as a classification layer to identify the bearing fault 
condition at the end of the structure. 

·Method 2 (standard LSTM): The architecture of the LSTM 
deep learning method consists of sequence input layer 
with 400-input size. Two LSTM layers are included with 
two hidden units of 100 neurons for each layer. The mini-
mum batch size is set to 27. The maximum epoch number 
is 120 and the SoftMax layer is employed after fully con-
nected layer to identify the bearing fault condition. 

·Method 3 (standard DAE): The architecture of the stan-
dard DAE is 400-200-100-14 which is determined by ex-
perimentation. The log-sigmoid function is utilized as a 
hidden unit in hidden layers. The learning rate is 0.1 and 
the max-iteration number is 150. SoftMax layer is used to 
identify and classify the bearing fault condition.  

Five trials are carried out to show the superiority and the di-
agnosis identification accuracy for the proposed method and 
compared with other deep learning methods. The average 
testing accuracies, the standard deviation and computed test-
ing time for each method are listed in Table 4. For each trial, all 
diagnosis results of compared methods are completely pre-
sented in Fig. 9. From Table 4, the highest average testing 
accuracy of the proposed method is 99.52 % while all other 
methods (standard CNN, standard LSTM and standard DAE) 
obtain 95.5 %, 96.78 %, and 90.93 %, respectively. Moreover, 
the standard deviation of the proposed method is 1.79 which is 
the smallest compared with other methods which are 2.52, 
2.34, and 3.78, respectively. The average testing time of the 
proposed method is 0.1021 s which is the lowest computed 
time to validate the testing samples of the proposed method. 
Whereas, the average computed time of the testing samples 

for other methods are 7.4131 s, 1.5387 s and 0.1179 s as 
shown in Table 4, respectively. 

These results are given clearly that the proposed method 
can classify powerfully several fault types with several fault 
orientations of element rolling bearings with the lowest testing 
time. For the first trial, the confusion matrix of the proposed 
method is shown in Fig. 10. The actual and predicted bearing 
classification labels are represented in the ordinate and the 
abscissa of a confusion matrix, respectively. In the confusion  

Table 4. Descriptions of the classification results for the proposed method 
and other deep learning methods. 
 

Methods description 
Average testing samples  

accuracy (%) 
±standard deviation 

Average testing 
time (s) 

DFAEs 99.52±1.79 0.1021 

Method 1  
(standard CNN) 95.51±2.52 7.4131 

Method 2  
(standard LSTM) 96.78±2.34 1.5387 

Method 3  
(standard DAE) 90.93±3.78 0.1179 

Note: The proposed method and all methods have similar dimension (400-
dimensional). 

 

 
Fig. 9. Detailed classification results of different deep learning methods for 
five trials in experiment 2. 

 

 
Fig. 10. The confusion matrix of the proposed method in the first trial. 
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matrix, the component on the right column presents the classi-
fication accuracy of the classified conditions. The lowest accu-
racy occurs in condition 14 (95.6 %). The results of the pro-
posed method confirmed that it produced the highest robust-
ness and stability in different numbers of trials and it can effec-
tively learn the vital features using raw vibration data. The main 
reasons relate to the following notes:  

1) The meaningful information can effectively be captured 
due to the deep feature learning task of the proposed method. 

2) The DFAE training accuracy and testing accuracy re-
ported higher results than other methods because it can take 
full advantages of DAE and two activation functions (satlin, 
ReLU) with SoftMax classifier which can further encourage 
deep learning performance and enhance the classification 
accuracy for non-stable signals. Otherwise, it is very time-
consuming and heavy labor to design a master architecture for 
deep learning with massive raw data. All parameters of the 
proposed method are offered in Table 5 with full architecture 
involves DFAEs with SoftMax classifier which used to train the 
raw bearing vibration signals. From Eq. (7), two substantial 
constraints of the DFAEs, which are the sparse penalty con-
straint, β, and the sparse constraint, ρ, were used to optimize 
the representative in the network. The optimal parameters β 
and ρ were determined by the cross-validation method, in 
which the nominee set of β was chosen as [1-9] and ρ was 
[0.1-0.9]. For the first trial, a better correlation between the 
accuracy and parameter set (β, ρ) is shown in Fig. 11. It gives 
a great idea that the accuracy is very delicate to the sparse 
constraint ρ slighter values of sparse can be induced to provide 
recovering choices.  

The training of each FAE attempts to reduce the reconstruction 
error with the optimized parameters. In Fig. 12, the proposed 
method and the standard DAE method reconstruction error 
curves are shown from the first only eighty trial iterations are 
selected from 120 iterations to present the gradient curves. The 
proposed method training shows high convergence and faster 
gradient for reconstruction error compared with standard DAE. 
   For further evaluation, 100 is the dimension number of the 

extracted features learned by the proposed method and the 
standard DAE. All are high-dimensional data (second-layer 
feature). The t-distributed stochastic neighbor embedding (t-
SNE) method is used for feature visualization by reducing the 
dimensionality of the high-dimensional features. The main 
learned deep features are visualized to illustrate the effective-
ness of each learning method. Fig. 13 shows that the two-
dimensional and three-dimensional visualizations of the fea-
tures in the first trial which t-SNE1, t-SNE2, and t-SNE3 denote 
that the first three principal components of 14 corresponding 
bearing condition labels. From Fig. 13, the deep features 
learned by DFAEs have more ability to represent the input 
vibration data recognizably compared with learned deep fea-
tures of the standard DAE. These results confirm that a DFAEs 
model was more vigorous for feature learning than the stan-
dard DAE with massive input raw data.  

 
4.3 The impact of data set dimension and 

number of hidden units on the proposed 
architecture   

In this section, the influence of the sample dimension and the 
first AE hidden size on the presentation of the proposed  

 
 
Fig. 11. The relationship between accuracy and parameter set (β, ρ) for the 
first trial. 

 

 
 
Fig. 12. The reconstruction error curves of the proposed method and stan-
dard DAE method. 

 

Table 5. Main parameters used in rolling bearing fault diagnosis. 
 

Descriptions Value 

The dimension of each input sample 400 

The number of hidden layers 2 

The number units of the FAE1 200 
The number units of the second FAE2 100 

Learning rate of each FAE 0.001 

Iteration number of each FAE 120 
Sparsity parameter of each FAE 0.1 

Sparse penalty factor of each FAE 7 

The threshold of the allowed accuracy 90 % 
The number of repeated trials 10 

The input units of SoftMax classifier 100 

The output units of SoftMax classifier 14 
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method is investigated. The testing accuracy is calculated with 
different selected dimensions of each sample, 150, 200, 250, 
300, 400, 500, 500, 600 and 800. The curve of the testing ac-
curacy shows that the highest accuracy is 98 % with the 400-
dimensional sample as shown in Fig. 14. In the results, better 
neural network construction can be trained with 400-
dimensional raw vibration data. After the sample dimension is 
determined, the next step is finding the accurate number of the 
hidden units in each layer of the proposed method architecture. 
The number of hidden units in each layer of the proposed deep 
architecture is very important for diagnostic accuracy. There-
fore, the number of hidden units is increased in each layer of 
FAE1 and FAE2 from 50 to 500 by 50 units. Fig. 15 shows that 
the testing accuracy curves for each number of hidden layers 
in the proposed method of determined raw data dimension.  

The evaluated accuracy demonstrates that only two hidden 
layers are more robust to represent the massive raw data than 
others. Therefore, the performance of diagnosis results is very 
affected by the number of hidden units in the first auto-encoder 
and the optimal architecture of the proposed method is se-
lected as (400-200-100-14). Flexibility in changing the hidden 
layer number and units can be provided to permit the designer 
a lot of freedom. From Figs. 14 and 15, we can determine that 
the optimal structure and optimal setting of deep learning 
methods rely on a certain diagnosis issue [3].  

Different deep learning methods can show non-stable classi-
fication performance for bearing element condition in each trial. 
In this section, quantitative performance is evaluated by F-
measure, which is utilized extensively for assessing the bear-

 
 
Fig. 13. Dimensional visualizations of different features using t-SNE: (a) two dimensional deep features learned by DFAEs; (b) two dimensional deep features 
learned by standard DAE; (c) three dimensional deep features learned by DFAEs; (d) three dimensional deep features learned by standard DAE. 

 

 
 
Fig. 14. The classification accuracy corresponding to the dimension of each 
training sample. 

 
 

 
 
Fig. 15. The classification accuracy of the proposed model corresponding 
to the number of hidden layer. 
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ing condition classification performance of various learning 
methods [14] and can be expressed as: 

 

PR precesion 100TP
TP FP

= = ×
+

                 (13)  

RE recall 100TP
TP FN

= = ×
+

                    (14)  

2F measure 100
2

TP
TP FP FN

− = ×
+ +

              (15)  

 
where TP symbolizes the number of correct positive cases, FP 
symbolizes the number of incorrect positive cases and FN sym-
bolizes the number of false-negative cases. From Eq. (15), the 
index of F-measure covers the precision rate and recall rate 
since its value varieties from the worst (0) to the best (1). From 
Table 4, method 1, method 2 and method 3 show that varying 
performances in deep learning features of the raw signals. 
Therefore, these methods are utilized for evaluating the func-
tioning in each method using the F-measure index for each 
signal of element bearing condition. In Table 6, the precision 
and recall rates for the fourteen bearing conditions are de-
scribed and the corresponding F-measure values are shown in 
Fig. 16. The mean value of F-measure values for the proposed 
method, method 1, method 2 and method 3 are 98.9 %, 
94.57 %, 96.63 %, and 94.1 %, respectively. In the results, the 
F-measure of the present method is more superior to the other 
methods which has advantages in dealing with massive data to 
represent the effective model in intelligent fault diagnosis. 

 
4.4 The diagnosis results of the proposed 

method and different traditional intelligent 
methods 

In this section, the power of the proposed method was com-

pared with different eight traditional machine learning methods 
to show its effectiveness, robustness, and stability. The training 
of these methods has been done using the same input raw 
data set (400- dimensional). All data set included the signals of 
fourteen element bearing conditions with different severities 
and orientations. The main parameters of these methods are 
defined as follows: 

·Backpropagation neural network (BPNN): The log-sigmoid 
was used as an activation function in the hidden layer and  
the number of neurons in the hidden layer is 80, 
80softmax layer is adopted as an output layer. The main 
parameters of the network are 400-80-14 (input size, hid-
den size and output size). It is important to note that the 
mentioned parameters have determined by the prior 
knowledge and experiences. The number of epochs and 
learning rate are set to 1000, 0.4, respectively.   

·Support vector machine (SVM): In this method, the type of 
kernel is (RBF), the numbers of penalty factor and epsilon 
are 1000, 0.001, respectively.  

·Random forest (RF): The numbers of trees and minimum 
leaf size are 1000, 0.001, respectively. The number of 

Table 6. The precision and recall rate of the proposed method and other deep learning methods in the first trial. 
 

The proposed method Method 1 Method 2 Method 3 
Bearing condition label 

PR(%)     RE(%) PR(%)   RE(%) PR(%)   RE(%) PR(%)    RE(%) 

Condition 1 100 100 100 100 94.73 98.9 100 89.33 
Condition 2 98.96 100 100 92.38 93.97 98.73 98.93 93.93 

Condition 3 100 97.37 100 89.52 98.19 99.09 100 97.84 

Condition 4 97 98.98 96.6 96.6 96.29 92.85 93.54 100 
Condition 5 97.94 97.94 85.9 99 98.78 96.42 92.39 98.83 

Condition 6 98.94 100 93.61 96.7 96.51 100 96.93 95.95 

Condition 7 100 100 96.51 88.3 98.94 97.91 94.11 80 
Condition 8 100 100 100 87.1 100 100 98.71 91.66 

Condition 9 100 100 92.1 95.9 97.61 90.1 85.04 96.8 

Condition 10 100 100 84.84 96.55 97.64 100 86.17 94.18 
Condition 11 100 96.3 100 96.55 95.69 100 95.14 97.02 

Condition 12 97.96 90.38 89 96.42 94.84 92 93.25 97.64 

Condition 13 94.05 98.75 86.66 97 91.86 87.77 86.25 95.83 
Condition 14 100 97.78 100 95.7 97.87 100 100 90 

          

 
 
Fig. 16. F-measures of the proposed method, method 1, method 2 and 
method 3 in Table 4. 
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predictors to samples is set to 20. 
·Linear discriminant analysis (LDA), the delta and gamma 

values are set to be 0.00025, 0.997, respectively. 
·The minimum leaf size in decision trees (DT) is 1, which is 

also decided based on the prior knowledge and experi-
ences.   

·Adaptive boost (AB): The number of trees and a maxi-
mum number of splits are 100, 80, respectively.  

·Naive Bayes (NB), the distribution name is set to normal.  
·K-nearest neighbors (K-NN): The number of neighbors(k) 

is 4, and distance is set to cosine, which is decided by the 
prior knowledge and experiences.  

Five trials were carried out for the proposed method and all 
of these traditional machine learning methods to show the di-
agnosis result for each method. Table 7 describes the fault 
diagnosis results in detail. For each trial, Fig. 17 shows that the 
diagnosis results of all methods. In these trials, the average 
testing accuracy of the proposed method is 99.67 % which is 
higher than the highest accuracy of the (RF) method, which is 
94.05 %. The other methods BPNN, SVM, AB, DT, DA, NB, 
and K-NN, have obtained an accuracy of 88.79 %, 73.45 %, 
84.6 %, 26.69 %, 19.01 %, 90.21 %, and 92.23 %, respectively.  

As in Table 7, the average standard deviation of the pro-
posed method is 1.71 of these trials, which is less than other 
methods, which have values 2.86, 3.21, 2.01 2.95, 5.58, 6.07, 
2.56 and 2.11, respectively. The average testing time of the 
proposed method is 0.1034 s which is lowest all other com-

pared methods. From this comparison, it clear that the pro-
posed method is more accurate and stable in multiple trials 
than other intelligent traditional methods. The robustness and 
reliability of the proposed method stand out due to two main 
facts. (1) The deep architecture of the proposed model has a 
greater capacity to learn and extract meaningful features from 
the raw input data of each bearing condition. Nevertheless, 
other traditional methods have weakness to extract valuable 
features from the raw massive data. It has prominent power-
ful in automatic learning and taking full advantage of the non-
missing important information features due to different char-
acteristics of the DAEs. Other traditional methods have many 
constraints in automatic learning. They could miss important 
information features during their process. (2) The proper se-
lection of the activation function has awarded the model 
power and effective learning ability to encourage sparse acti-
vation.  

 
5. Conclusions 

A novel deep network architecture is proposed. A deep func-
tional auto-encoders (DFAEs) have designed with SoftMax 
classifier for an accurate deep learning-based intelligent bear-
ing fault diagnosis method. The proposed method is carried out 
on following main steps:  

First, the designed functional auto-encoder (FAE) is per-
formed better in capturing the signal characteristics through the 
adoption of the saturating linear (Satlin) and rectified linear unit 
(ReLU) as activation functions for a hidden layer. Second, the 
DFAE architecture is built with multiple FAEs based on various 
DAE models performances for further enhancing the unsuper-
vised feature learning method. Third, based on DFAEs training, 
the learned deep features are utilized as dataset to train the 
Softmax classifier for an accurate categorization pattern of 
bearing fault classification. Fourth, the results have shown that 
the Satlin function always shows a higher accuracy in deep 
network learning and it gives a new phenomenon that leads to 
advantages in using this function with dissimilar activation func-
tions to develop the deep neural network learning methods. It 
is powerful for capturing useful information from raw vibration 
data and get the best-learned features. Finally, the experimen-
tal research has approved that the proposed methodology has 
robustness in the identification of massive data on various 
rolling element bearing conditions, which could give us more 
opportunity to use this model with other datasets calculated 
from machine components to achieve a highly accurate system 
in the field of intelligent fault diagnostics. 
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Table 7. Descriptions of the classification results for the proposed method 
and traditional machine learning methods. 
 

Method Average testing samples accuracy (%) 
±standard deviation  

Average testing time 
(s) 

DFAEs 99.67±1.71 0.1034 

BPNN 88.79±2.86 10.325 
SVM 73.45±3.21 6.8952 
RF 94.05±2.01 3.2287 
AB 84.6±2.95 2.5821 
DT 26.69±5.58 4.8925 
DA 19.01±6.07 2.1467 
NB 90.21±2.56 2.0648 

K-NN 92.23±2.11 3.0748 

 

 
 
Fig. 17. Detailed classification results of the proposed method and eight 
traditional learning methods for five trials. 
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