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Abstract  This paper presents a numerical study on the low-amplitude responses of an 
infinite Bernoulli-Euler beam resting on a viscoelastic foundation subjected to harmonic line
loads. To simulate the linear response, a semi-analytical solution procedure that was 
theoretically proposed by Jang (2016) is utilized and several numerical experiments are
conducted to investigate the influence of key model parameters characterizing stiffness and 
damping. The properties of the viscoelastic foundation are based on theoretical and empirical
values for cohesionless sand type foundation. According to the numerical experiments, the
obtained responses are compared with those from the closed-form solution and found to have 
a good agreement with them.  

 
1. Introduction   

The behavior of an infinite beam resting on a flexible foundation subjected to dynamic loads 
has attracted much interest among both researchers and engineers. It has been widely investi-
gated for its technological importance especially in various branches of civil engineering, for 
instance, geotechnical engineering, railway engineering, high-way, tunneling engineering and 
bridge engineering, among others. There are two basic approaches, that is, analytical and nu-
merical methods, for the investigation of the dynamic response of an infinite beam resting on a 
flexible foundation.  

Among the analytic approaches, there exists a closed-form solution of steady-state vibrations 
of an infinite Bernoulli-Euler beam on Winkler foundation for moving load first proposed by 
Kenney [1]; Mathews [2, 3] also carried out similar analytical studies. Stadler and Shreeves [4] 
obtained a solution for the transient and steady-state response of an infinite Bernoulli-Euler 
beam with damping resting on an elastic foundation; this was further developed by Sheehan 
and Debnath [5]. Closed-form, transient and steady-state solutions for an infinite Bernoulli-Euler 
beam on viscoelastic foundation subjected to harmonic line loads [6], moving loads [7-9], mov-
ing line loads [10] and arbitrary dynamic loads [11, 12] were also proposed. 

Concerning numerical approaches, Andersen et al. [13] suggested a finite element solution 
for the response of an infinite beam subjected to moving loads and supported by a linear elastic 
Kelvin foundation with linear viscous damping. Nguyen and Duhamel [14, 15] proposed finite 
element procedures for the solution of infinite Bernoulli-Euler beams resting on Winkler founda-
tions under moving axial and harmonic loads. Koh et al. [16] studied the train‐track interaction 
problems based on the idea of a moving coordinate system implemented through the moving 
element method (MEM). 

There are many valuable articles addressing potential applications. Lee [17] investigated the 
free vibration analysis of circularly curved multi-span beams using a pseudo-spectral method 
for various boundary conditions. Lee [18, 19] also analyzed the free vibration of the Bernoulli-
Euler and the Timoshenko beams with non-ideal clamped boundary conditions. Akgöz and   
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Civalek [20, 21] showed the behavior of a size-dependent mi-
cro-beam model on the basis of hyperbolic shear deformation 
and modified strain gradient theorem. Numanoğlu et al. [22] 
presented the longitudinal free vibration behavior of one-
dimensional nanostructures based on Eringen's nonlocal the-
ory. Naghinejad and Ovesy [23] investigated the nano-scaled 
viscoelastic Bernoulli-Euler beam via the finite element method 
using the principle of total potential energy and nonlocal inte-
gral theory. 

Recently, Jang [24] proposed a new semi-analytic procedure 
for a nonlinear infinite Bernoulli-Euler beam loaded by lateral 
nonlinear force (and its nonlinear reaction force) and examined 
both the convergence and uniqueness of the solution by show-
ing the contraction of the nonlinear operator with an appropri-
ate function space. In the procedure, a pseudo-stiffness pa-
rameter plays a crucial role in constructing the integrated inte-
gral equation that may be directly linked to the iterative solution 
method under the generalized external loads. In addition, the 
utilized semi-analytic solution procedure may be contrasted 
with the static analysis of a nonlinear beam to solve a general 
form of 4th order nonlinear ODE [25-29]. The present study can 
be regarded as an extension of the previously proposed semi-
analytic procedure for water wave problems of 4th order nonlin-
ear PDE [30-34].  

This work explores the potential of a numerical solution to 
compute the time-dependent displacement and, without addi-
tional computational effort, the velocity response of a Bernoulli-
Euler beam resting on a viscoelastic foundation under har-
monic line loads using the semi-analytic solution procedure 
proposed by Jang [24]. The numerical solutions can be ob-
tained by combining well-known integration methods, that is, 
Simpson’s rule and Trapezoidal rule, implemented through a 
computer software program, such as MATLAB ver. 9.6.0 [35]. 
The performance of the solution procedure is also assessed by 
the comparison of their predictions with those obtained from 
the conventional closed-form solution [6, 11]. 

 
2. Method 
2.1 Statement of the problem 

An infinite Bernoulli-Euler beam of uniform cross-section 
resting on viscoelastic foundation undergoes a transverse dis-
placement ( , )u x t  when subjected to an external load 

( , )W x t . The resisting forces against the beam’s transverse 
deflection due to the spring, damper characteristics of the 
foundation and its own mass are assumed to be proportional to 
displacement u , velocity /∂ ∂u t  and acceleration 2 2/∂ ∂u t , 
respectively. Then the transverse vibration of an infinite beam 
is governed by 4th order partial differential equation [4, 5, 9, 11, 
12, 36]: 

 
4 2

4 2( , )∂ ∂ ∂= − − −
∂ ∂ ∂
u u uEI W x t A C Ku
x t t

ρ . 

−∞ < < ∞x , 0>t .           (1) 

Here, >EI 0, >Aρ 0, C  and K  are the flexural rigidity 
and the mass per unit length of the beam, the damper and the 
spring coefficients of the viscoelastic foundation, respectively, 
as shown in Fig. 1. The beam is assumed to be at rest at =t 0 
s, then the dynamic loads are sufficiently localized and are 
applied over time >t 0 s, i.e., the initial displacement and ve-
locity are null. So the initial-boundary conditions are stated as 
below, 

 
( , ) 0→u x t  as → ∞x ,                     (2) 

0∂ →
∂

n

n

u
x

 as → ∞x  for 1,2,3=n ,         (3) 

( ,0) ( ,0) 0∂= =
∂
uu x x
t

.                       (4) 

 
2.2 Solution procedure 

By employing the pseudo-parameter technique of Jang [24], 
a pseudo spring coefficient >pK 0 is introduced and it will help 
transforming the original equation into equivalent integral equa-
tions. The pseudo spring force term, ⋅pK u , is added to both 
sides of Eq. (1), which then can be modified as follows: 

 
4 2

4 2 ( , )∂ ∂+ + = Φ
∂ ∂ p
u uEI A K u x t
x t

ρ                      (5) 

 
with a new loading function ( , )Φ x t  defined by 

 

( , ) ( , ) ( )∂Φ ≡ − + − ⋅
∂ p
ux t W x t C K K u
t

.                (6) 

 
Here, Eq. (5) describes a system of an infinite Bernoulli-Euler 

beam on linear elastic foundation of pseudo spring stiffness 
pK  subjected to the external dynamic load  ( , )Φ x t  which 

incorporates the damping and nonlinear stiffness characteris-
tics of the foundation. Although it seems to be quite different 
from Eq. (1) governing the original system, Eq. (5) is still 
equivalent to Eq. (1). The incorporated pseudo parameter pK  
will play an important role in the integral representation of the 
solution obtained from the PDE system Eq. (5) and directly 
leads to the iterative solution procedure presented by Jang [24].  

Dividing Eq. (5) by mass per unit length Aρ , results in  

 
Fig. 1. An infinite Bernoulli-Euler beam on a viscoelastic foundation sub-
jected to harmonic line loads ( , )W x t . 
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4 2
4

4 2 ( , )∂ ∂+ + =
∂ ∂ p

u u k u x t
x t

α φ                        (7) 

 
where ( , ) ( , ) /≡ Φx t x t Aφ ρ  and, from Eq. (6),  

 

( , ) ( , ) ( )∂= − + − ⋅
∂ p

ux t w x t c k k u
t

φ                (8) 

 
while 4 /≡ EI Aα ρ  and the other variables are defined as 
follows: 

 
1( , , , ) ( , , , )≡p pw c k k W C K K
Aρ

.                 (9) 

 
Following the integral formalism with the zero initial dis-

placement and velocity as expressed by Eq. (4) leads to an 
integral equation equivalent to the PDE (7) [24]: 

 

( )
0 0

( , ) ( , , , , ; ) ,
∞ ∞

−∞

= ⋅∫ ∫ ∫
t

pu x t G x t k d d dξ τ ω φ ξ τ ξ ω τ       (10) 

 
where the kernel function, G , is defined by 

 

( )
sin ( )1( , , , , ; ) cos

⎡ ⎤⋅ −⎣ ⎦≡ ⋅ ⎡ ⋅ − ⎤⎣ ⎦
p

p
p

t
G x t k x

β τ
ξ τ ω ω ξ

π β
  (11) 

 
where 4( ) ( )≡ +p pkβ ω αω  with G : ℝ×ℝ+×ℝ×ℝ+×ℝ+→ ℝ, ℝ 
is the set of real numbers. 

Substituting the load ( , )x tφ  given by Eq. (8) to the equiva-
lent integral Eq. (10) yields the integral  

 

0 0

( , ) ( , , , , ; )

( , ) ( ) .

∞ ∞

−∞

=

∂⎡ ⎤⋅ − ⋅ + − ⋅⎢ ⎥∂⎣ ⎦

∫ ∫ ∫
t

p

p

u x t G x t k

uw c k k u d d d
t

ξ τ ω

ξ τ ξ ω τ
  (12) 

 
Letting the time derivative of ( , )u x t  be denoted by a new 

variable ( , )v x t  ( /≡ ∂ ∂u t ), the displacement ( , )u x t  is ex-
pressed as  

 

0 0

( , ) ( , , , , ; )

( , ) ( ) .

∞ ∞

−∞

=

⎡ ⎤⋅ − ⋅ + − ⋅⎣ ⎦

∫ ∫ ∫
t

p

p

u x t G x t k

w c v k k u d d d

ξ τ ω

ξ τ ξ ω τ
   (13) 

 
The velocity ( , )v x t  can be obtained from 
 

0 0

( , ) ( , , , , ; )

( , ) ( )

∞ ∞

−∞

=

⎡ ⎤⋅ − ⋅ + − ⋅⎣ ⎦

∫ ∫ ∫
t

t p

p

v x t G x t k

w c v k k u d d d

ξ τ ω

ξ τ ξ ω τ
    (14) 

 
where the subscript t  denotes differentiation of G ( x , t , ξ , 

τ ,ω ; pk ) with respect to time, thus tG  is defined by 
 

( )1 cos ( ) cos .⎡ ⎤≡ ⋅ − ⋅ ⎡ ⋅ − ⎤⎣ ⎦⎣ ⎦t pG t xβ τ ω ξ
π

                (15) 

 
Now, the modified iterative solution procedure for the cou-

pled integral Eqs. (13) and (14) yields new estimates 1+nu  and 
1+nv  from nu  and nv , where 0,1,2,...=n  is the iteration 

number according to the iterative solution procedure [24]: 
 

1
0 0

( , ) ( , , , , ; ) [ ( , )

( ) ] ,

∞ ∞

+
−∞

= ⋅

− ⋅ + − ⋅

∫ ∫ ∫
t

n p

n p n

u x t G x t k w

c v k k u d d d

ξ τ ω ξ τ

ξ ω τ
       (16) 

1
0 0

( , ) ( , , , , ; ) [ ( , )

( ) ] .

∞ ∞

+
−∞

= ⋅

− ⋅ + − ⋅

∫ ∫ ∫
t

n t p

n p n

v x t G x t k w

c v k k u d d d

ξ τ ω ξ τ

ξ ω τ
      (17) 

 
The iteration begins with initial guesses 0u  and 0v  which 

satisfy the initial and boundary condition Eqs. (2)-(4). 

 
3. Numerical experiments 
3.1 Elastic foundation 

The relations developed by Vlasov & Leont’ev [37] and Lys-
mer [38] provide the means to estimate two parameters of the 
elastic foundation. The (Winkler) spring coefficient K (in N/m2), 
which was derived by using the principle of virtual displace-
ment under the assumption of the foundation being an elastic 
continuum [9, 37], is given by 

 
(1 )

2(1 )(1 2 )
−=

+ −
s s

s s

E bK γ ν
ν ν

                             (18) 

 
where sE , b , γ  and sν  are the Young’s modulus (MPa) of 
the foundation (i.e., soil), the width of the beam cross-section 
(m), the rate of the vertical displacement in the ground de-
creasing with depth which has a typical range of 1.0-2.0 (in m-1) 
[9] and the Poisson’s ratio of the foundation, respectively.  

Typically, for a European rail track to be laid, the foundation 
is required to be sufficiently stiff. So a reasonable range for the 
modulus of the foundation ( sE ) is 0.1 MPa - 100 MPa while for 
the Poisson’s ratio ( sν ), it is 0.1 - 0.4 [39]. The range of the two 
parameters for specific foundations is listed in Refs. [40-42]. 
Finaly, a typical range of the parameter γ  is 1.0 - 2.0 m-1 [37]. 

The damping coefficient C  (in N·s/m2) may be estimated 
from the following relation proposed by Lysmer [38] as in Refs. 
[9, 42]: 

 

0.5

0.765 /
.

(1 )(1 )
s s

s s

b E g
C

γ
ν ν

=
− +

                                 (19) 

 
Here, sγ  is the unit weight of soil (N/m3) and g  the accel-

eration due to gravity (taken equal to 9.81 m/s2). 
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3.2 Harmonic line load 

It is assumed that the beam is at rest prior to the external 
loads being applied (i.e., initial condition Eq. (4)). The harmonic 
line load is expressed as follows [6, 11, 12]: 

 
2 2

0

0

( )( , )
2

−= ⋅ i tP H r xw x t e
A r

κ

ρ
                      (20) 

 
where 0r , κ , P  and H  are, respectively, the half-width of 
the line load (in m), the loading frequency (in rad/s), the ampli-
tude of the applied load (in N) and the Heaviside step function 
using the half-maximum convention which is defined by 

 
0

0 0

0

0 for
( ) 1 / 2 for

1 for

<⎧
⎪− = =⎨
⎪ >⎩

x x
H x x x x

x x
.                    (21) 

 
Since the load is applied symmetrically with respect to mean 

position ( =x 0) with a span range 0 0[ , ]−r r , the response pro-
file of beam will also be symmetric with respect to =x 0, i.e., 
the response profiles of u  in Eq. (13) and v  in Eq. (14) are 
even functions in the space domain [-∞, ∞]. Then, the iterations 
in Eqs. (16) and (17) can be eventually written with modified 
kernel functions as follows 

 
1

0 0 0

( , )

sin ( )2 cos cos

( , ) ( ) ,

+

∞ ∞ ⎡ ⎤⋅ −⎣ ⎦= ⋅ ⋅

⎡ ⎤⋅ − ⋅ + − ⋅⎣ ⎦

∫ ∫ ∫

n

t
p

p

n p n

u x t

t
x

w c v k k u d d

β τ
ω ωξ

π β

ξ τ ξ ωδτ

     (22) 

1

0 0 0

( , )

2 cos ( ) cos cos

( , ) ( ) ,

+

∞ ∞

⎡ ⎤= ⋅ − ⋅ ⋅⎣ ⎦

⎡ ⎤⋅ − ⋅ + − ⋅⎣ ⎦

∫ ∫ ∫

n

t

p

n p n

v x t

t x

w c v k k u d d

β τ ω ωξ
π

ξ τ ξ ωδτ

     (23) 

 
due to the relation cos[ω(x-ξ)] = cosωx·cosωξ+ sinωx·sinωξ 
and the evenness of the integrands. In Eqs. (22) and (23), the 
integration domain with respect to ξ  is thus shortened from   
[-∞, ∞] to [0, ∞].  

The closed-form solution, cf.H ( , )u x t , of the initial-boundary 
value problem governed by Eqs. (1)-(4) is given as follows [6, 
11, 12]: 

 

[ ]
cf,H

0 0 0

( )/2

( , )

sin ( ) ( )2 cos
( )

cos ( , )

∞ ∞

− −

⋅ −
= ⋅

⋅ ⋅ ⋅

∫ ∫ ∫
t

c t

u x t

t
x

e w d d dτ

β ω τ
ω

π β ω
ωξ ξ τ ξ ω τ

           (24) 

 
where 4 2( ) ( ) / 4= + −k cβ ω αω . The exact beam response 

is calculated from the closed-form solution Eq. (24) by using 
general numerical integration methods, such as Simpson’s rule, 
Newton-Cotes formulas and Gaussian integration. In this work, 
for every calculation, the Simpson’s rule will be utilized for 
space and frequency domain integrations and the Trapezoidal 
rule for time domain. 

 
3.3 Numerical setup 

To simulate the response of a beam under harmonic line 
loads by the iterative solution procedure based on relation Eqs. 
(22) and (23), the space and time domains are selected as  
0 m < <x 70 m (increment Δ =x 0.2 m) and 0 s < <t 0.1 s 
( Δ =t 0.002 s), respectively. The spatial domain is considered 
sufficiently long relative to the adopted value of 0 =r 1 m. The 
results from both the proposed iterative method in Eqs. (22) 
and (23) and the closed-form solution Eq. (24) are computed 
using the software package MATLAB ver. 9.6.0. The magni-
tude of the initial guess entered into the iterative scheme is 
assumed to be 0 0= =u v 0.1exp(-0.1x2) and the pseudo spring 
stiffness pK  is taken as 1.2K  where K  is the spring coef-
ficient.  

An infinite beam of rectangular uniform cross-section with 
breadth b = 3 m and height h = 0.2 m is considered. The 
beam is assumed linear elastic, homogeneous and isotropic 
with the physical parameters: density =ρ 7850 kg/m3 and 
Young’s modulus =E 210 GPa. Next, the viscoelastic founda-
tion is assumed cohesionless sand [40] with Young's modulus 
of soil sE , the rate of the displacement in the ground decreas-
ing with depth γ , the Poisson's ratio sν  and an average 
value of soil unit weight sγ . The harmonic line load is applied 
with amplitude P  and frequency =κ 40π rad/s. Table 1 
shows the range of the principal parameters with which the 
beam response will be simulated in the following subsections.  

Fig. 2(a) shows results from the exact solution Eq. (24) using 
the parameters listed in Table 1 (case 2) which is the response 
of the beam resting on a viscoelastic foundation subjected to a 
harmonic line load given by Eq. (20). Fig. 2(b) presents two 
beam profiles at times =t 0.06 s and 0.1 s in the space do-
main ∈x  [0 m, 20 m] and Fig. 2(c) shows two responses at 
locations =x 0 m and 4 m in the time domain ∈t  [0 s, 0.1 s].  
 

3.4 Effect of spring coefficient 

As shown in relation Eq. (18), the spring coefficient K  de-
pends on four parameters. Among them, in the present sub-
section, the rate of the vertical displacement decreasing with 
soil depth ( γ ) is varied while fixing all other parameters to 
investigate only the effect of spring coefficient. For that, we 
compare the simulation results using two sets (cases 1-4) of 
parameters from Table 1. These values are empirical ones 
taken from Ref. [40]. For instance, for the empirical properties 
of loose sand, the unit weight of soil ( sγ ) ranges from 14 to 18 
kN/m3, the Poisson’s ratio from 0.2 to 0.35 and the Young’s 
modulus of foundation ( sE ) from 10 to 25 MPa. Moreover, for  
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dense sand, ∈sγ [17 kN/m3, 22 kN/m3], ∈sν [0.3, 0.4] and 
∈sE [50 MPa, 81 MPa] (Tables 2-7, 2-8 and 3-4 presented in 

Ref. [40]).  
Cases 1 and 2 show the effect of spring coefficient K  for 

cohesionless loose sand type foundation and cases 3 and 4 for 
cohesionless dense foundation. Fig. 3 presents the numerical 
solution from case 2 compared to the corresponding closed-
form solution given by Eq. (24). In addition, Fig. 4 demon-
strates the converged space domain solution at times =t 0.06 
s and 0.1 s compared to the closed-form solution Eq. (24). It is 

Table 1. Properties of a beam rectangular uniform cross-section with breadth b = 3.0 m and depth h = 0.2 m. 
 

Cases 
Item Notation 

1 2 3 4 5 6 7 8 

Beam 
Young’s modulus (GPa) E 210 
Mass density (kg/m3) ρ 7850 

Second moment of area (m4) I 0.002 (b = 3 m, h = 0.2 m) 

Foundation 
Young’s modulus (MPa) Es 25 25 50 50 25 50 25 50 

Rate of the vertical displacement decreas-
ing with depth (m-1) γ 1.0 1.5 1.0 1.5 1.5 1.5 1.5 1.5 

Unit weight of soil (kN/m3) γs 18 18 17 17 14 22 18 17 

Poisson’s ratio  νs 0.25 0.25 0.30 0.30 0.25 0.30 0.25 0.30 

Spring coefficient (MN/m2) K 45.0 67.5 101.0 151.4 67.5 151.4 67.5 151.4 
Damping coefficient (kN ⋅ s/m2) C 586.2 586.2 846.4 846.4 517.0 962.9 586.2 846.4 

Harmonic line load 

Load (kN) P 21 21 21 21 21 21 105 105 
Half-width of the line load (m) r0 1.0 

Frequency (rad/s) κ 40π 

 

 
(a) 

 

 
(b) 

 
Fig. 3. Responses of the beam obtained from the closed-form solution (solid 
line) and the numerical one (circle) for case 2: (a) variations in space at time 
increments of 0.02 s; (b) variations in time at space increments of 1.0 m. 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 2. Exact solution obtained from Eq. (24) using the material and loading 
data given in Table 1 (case 2). 
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noted that higher stiffness of the foundation results in smaller 
oscillation amplitudes of the beam. Here, the numerical solu-
tions have a good agreement with the closed-form solutions.  

 
3.5 Effect of damping coefficient 

As a second experiment, the effect of damping coefficient of 
the foundation, which, according to Eq. (19), is influenced by 
five parameters (i.e., b , sE , sγ , g  and sν ), is investigated. 
Compared to the stiffness coefficient, the damping of the foun-
dation is affected by the unit weight of soil. In Table 1, cases 5 
and 2, the magnitude of the damping characteristic of soil 
foundation differs due to relation Eq. (19). For example, the 
magnitude of the damping coefficient C  of case 2 whose unit 
weight of soil =sγ 18 kN/m3 is bigger than that of case 5 
( =sγ  14 kN/m3). Cases 5 and 2 reflect the cohesionless loose 

sand type foundation. To take into account the cohesionless 
dense sand type foundation, cases 4 and 6 are also analysed. 
Fig. 5 shows the converged solutions compared to the corre-
sponding closed-form solutions at each time 0.06 s and 0.1 s 
for two sets of parameters in Table 1 (cases 5 and 2, 4 and 6). 
Since the damping coefficient C , given by (19), is proportional 
to the square root of unit weigh of soil, the profiles in Fig. 5 do 
not show evident deviation, however, the numerical solutions 
converge to the closed-form ones well. 

 
3.6 Effect of the load amplitude  

As a final experiment, the effect of amplitude of the external 
load on the solution is assessed. Actually, since the present 
work is for a linear problem and the excitation is steady state, 
the solution will be proportional to the amplitude of the load. 
Table 2 demonstrates the predicted maximum amplitude of the  

 

 
(a) =t 0.06 s 

 

 

 
(b) =t 0.1 s 

 
Fig. 4. The response profiles of cases 1-4 in Table 1 at times t = 0.06 s,
0.1 s in space domain x∈ [0 m, 20 m]. 

 

 

 
(a) =t 0.06 s 

 

 

 
(b) =t 0.1 s 

 
Fig. 5. The response profiles of cases 5 and 2, 4 and 6. 
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response profiles. Two different amplitudes are considered, 
that is, =P 21 kN, 105 kN while the properties for loose/dense 
cohesionless sand type foundation are given in Table 1. At the 
mean position, =x 0 m, the amplitude for cases 7 and 8, 
where the amplitude =P 105 kN, is exactly five times bigger 
than those of cases 2 and 4, respectively. 

 
4. Concluding remarks 

In this paper, several numerical experiments were conducted 
to evaluate the dynamic responses of an infinite Bernoulli-Euler 
beam resting on a viscoelastic foundation loaded by harmonic 
line loads. The applied numerical iterative procedure was 
based on the semi-analytic approach proposed by Jang [24] 
capable of yielding time-dependent displacement and, without 
additional computational effort, the velocity response of the 
beam. The numerical results could be obtained from the inte-
gral equation form of the solution by combining the well-known 
integration methods, e.g., Simpson’s rule and Trapezoidal rule 
with the help of a computer software program, such as 
MATLAB ver. 9.6.0. The main aim of the paper was to assess 
the performance of the iterative solution procedure by compari-
son of its predictions with those of the conventional closed-form 
solution.  

As a specific viscoelastic foundation model, a commonly 
used cohesionless sand type foundation was adopted. The 
viscoelasticity of the foundation was characterized by using a 
conventional empirical model of soil behavior. Using the 
closed-form solution, it was possible to assess the validity of 
the present numerical solution by comparing the respective 
predictions of the displacement profiles. Then, some parame-
ters of the problem were allowed to vary to assess their influ-
ence on the solutions. Variations of the rate of the displace-
ment in the ground decreasing with vertical depth and the unit 
weight of soil of the foundation as well as the amplitude of an 
excitation load were considered.  

In conclusion, based on the original theoretical research pre-
sented in Ref. [24], the present study is its first numerical im-
plementation applied to the investigation of the dynamic re-
sponses of an infinite Bernoulli-Euler beam resting on a viscoe-
lastic foundation under harmonic line loads which were simu-
lated successfully using realistic material, geometric and load-
ing parameters. The obtained responses were compared with 
the closed-form solution. Finally, the good agreement between 

numerical and closed-form solution validated the rationality of 
the iterative procedure.  

The presented work may be extended to further studies in-
volving, e.g., nonlinear Bernoulli-Euler beam, Timoshenko 
beam and non-uniform beam on a general (visco-) elastic 
foundation with shear effect subjected to several cases of ex-
ternal loads, considering variations of physical variables. 
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Nomenclature----------------------------------------------------------------------------------- 

A  : Cross sectional area 
b  : Width of the beam cross-section 
C  : Damping coefficient 
E  : Young’s modulus of beam 

sE  : Young’s modulus of foundation 
g  : Gravity acceleration 

, tG G  : Kernel function 
H  : Half-maximum convention (Heaviside step function) 
h  : Height 
I  : Second moment of area 
K  : Spring coefficient 

pK  : Pseudo-spring coefficient 
P  : Amplitude of the applied external load 

0r  : Half-width of the line load 
,u v  : Iterative (response) solutions 
0x  : Constant 

W  : External load 
, , pα β β  : Parameters 

γ  : Rate of the vertical displacement decreasing with depth 
sγ  : Unit weight of soil 
κ  : Loading frequency 

sν  : Poisson’s ratio of foundation 
ρ  : Density 

 
References 
[1] J. T. Kenney, Steady-state vibrations of beam on elastic foun-

dation for moving load, Journal of Applied Mechanics, 21 
(1954) 359-364. 

[2] P. M. Mathews, Vibrations of a beam on elastic foundation, 
Journal of Applied Mathematics and Mechanics, 35 (1958) 
105-115. 

[3] P. M. Mathews, Vibrations of a beam on elastic foundation II, 
Journal of Applied Mathematics and Mechanics, 39 (1959) 13-19. 

[4] W. Stadler and R. W. Shreeves, The transient and steady-state 

Table 2. Amplitudes of the response profiles of cases 2 and 7, 4 and 8 at
=x 0 m. 

 
Time (s) 0.06 

Cases 2 7 4 8 

Amplitude (×105 m) 6.1757  30.8785 3.4040 17.0201 
Time (s) 0.1 

Cases 2 7 4 8 

Amplitude (×105 m) 1.6468 8.2340 2.8214 14.1072 

 



 Journal of Mechanical Science and Technology 34 (9) 2020  DOI 10.1007/s12206-020-0810-3 
 
 

 
3594 

response of the infinite Bernoulli-Euler beam with damping and 
an elastic foundation, Quarterly Journal of Mechanics and Ap-
plied Mathematics, 23 (1970) 197-208. 

[5] J. P. Sheehan and L. Debnath, On the dynamic response of an 
infinite Bernoulli-Euler beam, Pure and Applied Geophysics, 97 
(1972) 100-110. 

[6] L. Sun, A closed-form solution of a Bernoulli-Euler beam on a 
viscoelastic foundation under harmonic line loads, Journal of 
Sound and Vibration, 242 (2001) 619-627. 

[7] L. Sun, A closed-form solution of beam on viscoelastic sub-
grade subjected to moving loads, Computers and Structures, 
80 (2002) 1-8. 

[8] A. D. Senalp, A. Arikoglu, I. Ozkol and V. Z. Dogan, Dynamic 
response of a finite length Euler-Bernoulli beam on linear and 
nonlinear viscoelastic foundations to a concentrated moving 
force, Journal of Mechanical Science and Technology, 24 
(2010) 1957-1961. 

[9] D. Basu and N. S. V. Kameswara Rao, Analytical solutions for 
Euler-Bernoulli beam on visco-elastic foundation subjected to 
moving load, International Journal for Numerical and Analytical 
Methods in Geomechanics, 37 (2013) 945-960. 

[10]  L. Sun, An explicit representation of steady state response of 
a beam on an elastic foundation to moving harmonic line loads, 
International Journal for Numerical and Analytical Methods in 
Geomechanics, 27 (2003) 69-84. 

[11]  H. Yu and Y. Yuan, Analytical solution for an infinite Euler-
Bernoulli beam on a viscoelastic foundation subjected to arbi-
trary dynamic loads, Journal of Engineering Mechanics, 140 
(2014) 542-551. 

[12]  H. Yu, C. Cai, Y. Yuan and M. Jia, Analytical solutions for 
Euler-Bernoulli beam on Pasternak foundation subjected to ar-
bitrary dynamic loads, International Journal for Numerical and 
Analytical Methods in Geomechanics, 41 (2017) 1125-1137. 

[13]  L. Andersen, S. R. K. Nielsen and P. H. Kirkegaard, Finite 
element modelling of infinite Euler beams on Kelvin founda-
tions exposed to moving loads in convected coordinates, Jour-
nal of Engineering Mechanics, 241 (2001) 587-604. 

[14]  V. H. Nguyen and D. Duhamel, Finite element procedures for 
nonlinear structures in moving coordinates. Part 1: Infinite bar 
under moving axial loads, Computers and Structures, 84 
(2006) 1368-1380. 

[15]  V. H. Nguyen and D. Duhamel, Finite element procedures for 
nonlinear structures in moving coordinates. Part II: Infinite 
beam under moving harmonic loads, Computers and Struc-
tures, 86 (2008) 2056-2063. 

[16]  C. G. Koh, G. H. Chiew and C. C. Lim, A numerical method 
for moving load on continuum, Journal of Sound and Vibration, 
300 (2007) 126-138. 

[17]  J. Lee, Free vibration analysis of circularly curved multi-span 
Timoshenko beams by the pseudospectral method, Journal of 
Mechanical Science and Technology, 21 (2007) 2066-2072. 

[18]  J. Lee, Free vibration analysis of beams with non-ideal 
clamped boundary conditions, Journal of Mechanical Science 
and Technology, 27 (2013) 297-303. 

[19]  J. Lee, Application of Chebyshev-tau method to the free vibra-

tion analysis of stepped beams, International Journal of Me-
chanical Sciences, 101-102 (2015) 411-420. 

[20]  B. Akgöz and Ö. Civalek, Buckling analysis of functionally 
graded microbeams based on the strain gradient theory, Acta 
Mechanica, 224 (2013) 2185-2201. 

[21]  B. Akgöz and Ö. Civalek, A novel microstructure-dependent 
shear deformable beam model, International Journal of Me-
chanical Sciences, 99 (2015) 10-20. 

[22]  H. M. Numanoğlu, B. Akgöz and Ö. Civalek, On dynamic 
analysis of nanorods, International Journal of Engineering Sci-
ence, 130 (2018) 33-50. 

[23]  M. Naghinejad and H. R. Ovesy, Viscoelastic free vibration 
behavior of nano-scaled beams via finite element nonlocal in-
tegral elasticity approach, Journal of Vibration and Control, 25 
(2019) 445-459. 

[24]  T. S. Jang, A new solution procedure for a nonlinear infinite 
beam equation of motion, Communications in Nonlinear Sci-
ence and Numerical Simulation, 39 (2016) 321-331. 

[25]  T. S. Jang, H. S. Baek and J. K. Paik, A new method for the 
non-linear deflection analysis of an infinite beam resting on a 
non-linear elastic foundation, International Journal of Non-
Linear Mechanics, 46 (2011) 339-346. 

[26]  T. S. Jang and H. G. Sung, A new semi-analytical method for 
the non-linear static analysis of an infinite beam on a non-linear 
elastic foundation: A general approach to a variable beam 
cross-section, International Journal of Non-Linear Mechanics, 
47 (2012) 132-139. 

[27]  T. S. Jang, A new semi-analytical approach to large deflec-
tions of Bernoulli-Euler-v. Karman beams on a linear elastic 
foundation: Nonlinear analysis of infinite beams, International 
Journal of Mechanical Sciences, 66 (2013) 22-32. 

[28]  T. S. Jang, A general method for analyzing moderately large 
deflections of a non-uniform beam: An infinite Bernoulli-Euler-
von Kármán beam on a nonlinear elastic foundation, Acta 
Mechanica, 225 (2014) 1967-1984. 

[29]  F. Ahmad, T. S. Jang, J. A. Carrasco, S. U. Rehman, Z. Ali 
and N. Ali, An efficient iterative method for computing deflec-
tions of Bernoulli-Euler-von Karman beams on a nonlinear 
elastic foundation, Applied Mathematics and Computation, 334 
(2018) 269-287. 

[30]  T. S. Jang, A new solution procedure for the nonlinear tele-
graph equation, Communications in Nonlinear Science and 
Numerical Simulation, 29 (2015) 307-326. 

[31]  T. S. Jang, A new dispersion-relation preserving method for 
integrating the classical Boussinesq equation, Communica-
tions in Nonlinear Science and Numerical Simulation, 43 
(2017) 118-138. 

[32]  T. S. Jang, A regular integral equation formalism for solving 
the standard Boussinesq’s equations for variable water depth, 
Journal of Scientific Computing, 75 (2018) 1721-1756. 

[33]  T. S. Jang, A new functional iterative algorithm for the regular-
ized long-wave equation using an integral equation formalism, 
Journal of Scientific Computing, 74 (2018) 1504-1532. 

[34]  T. S. Jang, An improvement of convergence of a dispersion-
relation preserving method for the classical Boussinesq equa-



 Journal of Mechanical Science and Technology 34 (9) 2020  DOI 10.1007/s12206-020-0810-3 
 
 

 
3595 

tion, Communications in Nonlinear Science and Numerical 
Simulation, 56 (2018) 144-160. 

[35]  MATLAB ver. 9.6.0. Release 2019a, The Mathworks Inc., 
Natick, Massachusetts, United States (2019). 

[36]  H. Ding, L. Q. Chen and S. P. Yang, Convergence of Galerkin 
truncation for dynamic response of finite beams on nonlinear 
foundations under a moving load, Journal of Sound and Vibra-
tion, 331 (2012) 2426-2442. 

[37]  V. Z. Vlasov and N. N. Leont’ev, Beams, Plates and Shells on 
Elastic Foundations, Israel Program for Scientific Translations 
Ltd., Jerusalem, Israel (1966). 

[38]  J. Lysmer, Vertical Motion of Rigid Footings, University of 
Michigan Report to WES Contract Report No. 3-115 under 
Contract No. DA-22-079-eng-340 (1965). 

[39]  Y. H. Chen and Y. H. Huang, Dynamic stiffness of infinite 
Timoshenko beam on viscoelastic foundation in moving co-
ordinate, International Journal for Numerical Methods in Engi-
neering, 48 (2000) 1-18. 

[40]  J. E. Bowles, Foundation Analysis and Design, McGraw-Hill 
Book Companies, Inc., Singapore (1997). 

[41]  A. P. S. Selvadurai, Elastic Analysis of Soil-foundation Inter-
action, Elsevier Scientific Publishing Company, Amsterdam, 
The Netherlands (2015). 

[42]  F. E. Richart, J. R. Hall and R. D. Woods, Vibrations of Soils 
and Foundations, Prentice Hall Inc., Englewood Cliffs, USA 
(1970). 

 
 

Stavros Syngellakis is an Adjunct Pro-
fessor at the Wessex Institute of Tech-
nology, Southampton, UK. He received 
his Ph.D. in Civil Engineering from 
Princeton University, USA. For most of 
his academic career, he taught mechan-
ics of solids and structures at the Univer-
sity of Southampton, UK. His research 

interests include wave propagation in solids, structural stability, 
fracture and contact mechanics. 

Jinsoo Park is a post-doctoral re-
searcher under the supervision of Prof. 
T.S. Jang at the Department of Naval 
Architecture and Ocean Engineering, 
Pusan National University in Busan, Re-
public of Korea. He is a member of 
Ocean Engineering Laboratory (Supervi-
sor Prof. TS Jang) and his main fields of 

research are marine hydrodynamics and its numerical simula-
tion. 
 

Dae Seung Cho is a Professor at the 
Department of Naval Architecture and 
Ocean Engineering at Pusan National 
University in Busan, Republic of Korea. 
He received his Ph.D degree from Seoul 
National University. His main fields of 
research are noise, vibration and radar 
cross section analysis and control of 

marine structures. 
 

Taek Soo Jang is a Professor at the 
Department of Naval Architecture and 
Ocean Engineering at Pusan National 
University in Busan, Republic of Korea. 
He received his Ph.D. degree from Seoul 
National University. His main fields of 
research are nonlinear (ocean) system 
identification (inverse problems), tech-

niques to remedy the ill-posedness, developing nonlinear nu-
merical schemes for ODE & PDE and water waves and wave 
mechanics. 

 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


