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Abstract  Compliant actuators are employed in exoskeleton robots instead of stiff actua-
tors for safe human-robot interaction. In parallel with this idea, we previously constructed a 
biomimetic compliant exoskeleton robot (BioComEx). In this study, to provide more stable and 
safe trajectory tracking even under disturbances, magneto-rheological (MR) brakes were added
to all joints of BioComEx as variable damping actuators and a PID+D controller was proposed. 
To evaluate the robot and controller, first, BioComEx was hung on a platform and the controller 
was applied without device user under external forces. This primary test results showed that 
the proposed design and controller can effectively minimize disturbance effects and conse-
quently reduce trajectory tracking oscillations. In the rest of the study, the similar control ex-
periments were repeated with a user who has unilateral lower limb movement disorders. In 
these experiments, the movements of the user's healthy leg were detected by force feedback 
impedance control algorithm and then were used as reference for the impaired leg with walking 
cycle delay in real time. The secondary test results showed that the variable impedance exo-
skeleton robot design with PID+D controller can ensure effective walking assistance for the 
impaired human legs.  

 
1. Introduction   

Exoskeleton robots are used in many applications such as power augmentation, rehabilita-
tion and walking assistant [1-3]. Power augmentation robots allow the transport of heavy loads 
with low muscle strength [4], rehabilitation robots improve musculoskeletal function of para-
lyzed patients [5], and assistive robots provide walking assistance to the elderly or patients [6, 
7]. The various design and control architectures of these robots were summarized in the rele-
vant references [8, 9]. In recent years, the use of compliant actuators instead of stiff actuators 
has greatly increased in the exoskeletons to provide a safe human-robot interaction [10]. The 
compliance in these actuators is usually provided by adding elastic elements such as springs 
[11, 12]. It is seen that these types of actuators are used in the design of RoboKnee [13], IHMC 
[14] and LOPES [15, 16] robots. 

The nervous-musculoskeletal system of human legs constantly changes the stiffness and 
damping of all joints during a gait cycle. Flexible and stable walking can thus be achieved with 
minimum energy consumption. Therefore, variable stiffness actuators have been introduced for 
biped robots by some research groups [17-19]. These actuators are used as motion units in the 
knee and ankle joints of exoskeleton robots such as ALTACRO [20], UVSHA [21], ATLAS [22] 
and XoR [23]. Besides, Enoch et al. [24] designed a bipedal robot called BLUE with variable 
stiffness and damping feature. The authors used directly electric motors for damping in their 
study. However, the direct use of electric motors in human-robot interfaces might injure the 
users if the device was unstable. For safety reasons, the use of electric motors alone should be 
avoided in human-robot interaction.   
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Our previous study [25] constructed a lower limb exoskele-
ton robot named BioComEx. In this design, one variable stiff-
ness actuator (VSA) for the ankle and two series elastic actua-
tors (SEA) for knee and hip joints were developed. The pres-
ence of elastic elements in the joints of robot causes oscilla-
tions especially under disturbance effects, which worsens sys-
tem stability and risks the safety of human-robot interaction. In 
this study, MR brakes [26] were adapted to BioComEx's joints 
to achieve more stable mobility. Hence, an exoskeleton having 
hybrid actuators in all joints has been proposed. In the litera-
ture, there are some motion systems including hybrid actuators 
[27, 28]. However, these hybrid actuator designs have not pre-
viously been tested in lower limb exoskeleton robots. The pri-
mary contribution of this paper is that it is the first study in the 
literature which uses both a compliant actuator and MR brake 
in all joints of a lower limb exoskeleton. Any second order 
nonlinear dynamical systems like exoskeleton joints can be 
stabilized by the PID controller with fixed controller parameters 
so long as the nonlinearity satisfies a Lipschitz condition [29]. 
However, to achieve more stable mobility even under distur-
bance, a PID+D control algorithm integrated with MR brake 
was developed and implemented on BioComEx joints. The 
control structure of PID+D used here is based on the proposed 
control rule in Ref. [30] which was implemented on stiff actua-
tors. There are some studies that employ PI+D control algo-
rithms for hybrid actuators in the Ref. [31]. D controller in this 
technique controls only MR brake. However, the response of 
MR brakes is slower than active motors. The purpose of PID+D 
control algorithm used in this study is to achieve a faster and a 
stable response. That is, one D controller on the MR brake 
improves the stability and the other D controller on the electric 
motor increases the response speed. This is the second con-
tribution of this paper. Besides, a sliding PID+D control method 
was used for the variable stiffness actuator in the ankle joint of 
BioComEx since the variable stiffness actuators require various 
PID parameters for different stiffness values. This is the last 
contribution of the paper. 

To show the performance of hybrid actuators and PID+D 
controller, first, sinusoidal trajectory tracking experiments under 
external disturbances were performed without a user. Then, 
the walking trajectory tracking experiments were conducted 
with a user who had unilateral lower limb movement disorders. 

This paper is organized such that after introducing the design 
of BioComEx and integration of MR brakes into the system, the 
proposed control architecture, experiments, results and discus-
sions are presented. 

 
2. Design of BioComEx and integration of 

MR brakes to robot joints 
Exoskeleton robots should be designed according to the an-

thropomorphic configuration of human body [32, 33]. However, 
since increasing the degree of freedom makes the design very 
complex, a pseudo-anthropomorphic architecture is preferred 
for BioComEx. Therefore, BioComEx was developed consider-
ing the rotation of the lower limb joints only in the sagittal plane. 
Fig. 1 shows the design of BioComEx, which has six degrees 
of freedom (three DOFs per each leg). These degrees of free-
dom show the flexion and extension movements of the ankle, 
knee and hip joints in the sagittal plane. To maximize the safety 
of human-robot interaction and to use the robot in force feed-
back control studies, seven different force sensors which are 
independent from each other were added to each segment of 
the robot. For a compact design, the ankle actuator is embed-
ded in the shank alignment of the exoskeleton robot, while the 
knee and hip actuators are embedded as a whole at the thigh. 

Another consideration that should be taken into account in 
the exoskeleton design is the functionality of the joints. There-
fore, before starting the joint designs, biomechanics studies of 
human joints in the literature were reviewed. Recently, the 
concept of quasi-stiffness has been explored to characterize 
the spring-like behavior of lower limb joints [34-36]. The quasi-
stiffness is defined as the stiffness of a spring that best mimics 
the overall behavior of a joint during a locomotion task. It can 

                  (a)                                      (b)                                  (c)                              (d) 
 
Fig. 1. (a) BioComEx; (b) VSA design for ankle joint; (c) SEA design for knee joint; (d) SEA design for hip joint. 
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be estimated using the slope of the best linear fit on the mo-
ment-angle graph of the joint [34-36]. Based on this idea, 
Shamaei et al. demonstrated stiffness estimations of the lower 
limb joints in the stance phase of the gait [37-39]. They con-
cluded that the stiffness of the ankle needs to be changed dur-
ing a gait cycle in order to obtain a biomimetic movement, and 
a single stiffness value is sufficient for the knee and hip joints. 
According to Shamaei’s suggestion, we decided to design 
variable stiffness actuator for ankle joint and series elastic ac-
tuators for knee and hip joints. Fig. 1 shows the CAD design of 
these actuators. Detailed explanations about BioComEx and its 
joint designs are presented in the relevant studies [40, 41]. 

 
2.1 Integration of MR brakes to BioComEx 

MR brakes are electromagnetic structures that provide con-
trollable damping torque with relatively small volume. In MR 
brakes, when MR fluid is exposed to a magnetic field, its shear 
stress changes and torque increases. According to the litera-
ture, multi-pole MR brake designs are superior designs with 
highest torque/volume ratio. Therefore, Baser et al. developed 
a 225-winding 4-pole MR brake to obtain a compact design 
and optimum torque performance [26]. Fig. 2 shows this 4-pole 
MR brake, its CAD section view, magnetic field strength and 
torque-current graph. As shown in Fig. 2(d), the torque pro-

vided by MR brake versus the applied current has some 
nonlinearity due to the hysteresis behavior of the ferromagnetic 
brake materials during charging and discharging period. Also, 
the brake has 0.3 Nm off-state torque. The time response of 
the bake is 50 ms. Table 1 shows the properties of MR brake. 

Although compliant actuators that drive BioComEx's joints 
provide biomimetic mobility, they are not sufficient for stable 
movement. To ensure a stable movement, 4-pole MR brakes 
were integrated into BioComEx joints via a timing belt drive 
system. Thus, variable impedance (stiffness/damping) hybrid 
actuator was created for all joints. Fig. 3 shows the integration 
of MR brakes into BioComEx joints. Adding braking property to 
the control system would enhance overall performance, since 
the MR brake is a kind of variable damping device that dissi-
pates excess kinetic energy when it is activated. 

 
3. Control algorithm architecture 

Since BioComEx will be used for walking assistance, position 
control is required in all the joints. Fig. 4 shows the block dia-
gram of the proposed control algorithm for the variable imped-
ance actuator in the ankle joint. This control structure consists 
of three parts: Stiffness adjustment mechanism position control, 
VSA joint position control, and MR brake control. To track the 
position reference of the VSA, a PID position controller is used 
in the block diagram. Internal speed controller (Gvel) corre-
sponds to the controller in the motor driver and ensures that 
the motor accurately tracks the speed command generated by 
the PID. However, large-scale oscillations are inevitable in the 
classical PID control of compliant actuators. To minimize these 
oscillations, the MR brake needs to be activated as a damping 
torque source during the operation. For MR brake activation, 
the derivative of the position control error is multiplied by an-
other D parameter. Hence, minimum oscillating position control 
is achieved by a PID+D controller in BioComEx ankle joint. In 
addition, another PID control algorithm in the block diagram is 

Table 1. Specifications of 4-pole MR brake. 
 

Parameter Value 

Outer diameter [mm] 56 

Maximum current value [A] 1 

Torque/volume ratio 6.567 
Maximum torque [Nm] 5 

Weight [kg] 0.97 

Length [mm] 85 
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Fig. 2. (a) 4-pole MR brake; (b) cross-sectioned CAD view; (c) magnetic 
field strength; (d) torque-current graph [26]. 

 

 
(a) (b) 

 
Fig. 3. Integration of MR brakes into the joints of BioComEx: (a) Ankle joint 
(A. Variable stiffness actuator, B. MR brake); (b) the knee and the hip joints 
(A-B. SEAs for the knee and the hip, C. MR brakes). 
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applied for the stiffness adjustment motor. 
The position control architecture of knee and hip joints of Bi-

oComEx is the same as the control architecture of ankle joint 
except for the position control of stiffness adjustment mecha-
nism, which is shown in Fig. 4. The knee and hip joints in Bio-
ComEx are driven by series elastic actuators. Since the series 
elastic actuator is a compliant actuator with a constant spring 
coefficient, the control architecture does not have a stiffness 
adjustment motor. Similar to the control of ankle joint, the 
PID+D controller was employed for knee and hip joints as well: 
PID part of the PID+D control algorithm controls the position of 
series elastic actuator while D controller controls the MR brake 
damping torque. Thus, a more stable mobility is achieved in 
BioComEx knee and hip joints as well.  

 
4. Experiments, results and discussion 

To evaluate the proposed PID+D controller and hybrid actua-
tors, some position control experiments were performed on 
BioComEx. In the experiments, two different implementations 
were conducted. First, position control algorithms were applied 
on each joint of BioComEx without a user and the results were 
presented separately for each joint. These experiments were 
also carried out against externally applied disturbing forces. In 
the secondary experiments, a hemiplegia patient having unilat-
eral lower extremity disorders was considered. Thus, the per-
formance of the variable impedance actuators and proposed 
PID+D control algorithm was examined on a device user. In the 
experiments with a device user, the position trajectories of 
user’s healthy leg joints were captured with force feedback 
impedance control algorithm, and then these trajectories were 
used with a walking time delay as reference signal for the joints 
of the diseased leg. In the following sub-sections the achieved 
test results are presented in detail. 

 
4.1 Position control experiments without user 

In the experiments without a device user, the BioComEx leg 

was hung from the hip to a platform. Fig. 5 shows the test 
setup consisting of a variable impedance (stiffness/damping) 
ankle joint and knee and hip actuators with SEA and MR brake 
combination. This experimental setup can be considered as a 
three-limb pendulum. 

The most important point in this control architecture is the op-
timal adjustment of PID parameters. As is known, the Ziegler-
Nichols method is the most preferred method for determining 
PID parameters in experimental studies. However, in this 
method the step response of the system overshoots and the 
rise time is very low, i.e., the system response is very fast. This 
situation is not suitable for safety in human-robot interaction 
studies. Because the exoskeleton robots are always exposed 
to sudden disturbing effects, fast response may destabilize the 
system under disturbances and put the user's safety at risk. In 
this study, instead of the Ziegler-Nichols method, a different 

 
 
Fig. 4. Position control block diagram for ankle joint of BioComEx (position control block diagram for knee and hip joints are the same with ankle joint except 
for the part of stiffness adjustment mechanism). 

 

 
(a) (b) 

 
Fig. 5. (a) Experimental setup used for the position control experiment of 
BioComEx with MR brakes; (b) schematic view of the load cell connection. 

 



 Journal of Mechanical Science and Technology 34 (6) 2020  DOI 10.1007/s12206-020-0534-4 
 
 

 
2601  

controller design criterion was considered in order to adjust PID 
parameters for human safety. PID parameters in this study 
were experimentally adjusted in such a way that the response 
of the system does not overshoot and rising time (tr) is between 
0.7 s and 0.8 s (0.7 s < tr <0.8 s). Even in this case, when the 
compliant joints are exposed to external disturbing forces, sig-
nificant oscillations are observed. For the elimination of these 
oscillations in the compliant joints, the derivative of the position 
error is multiplied by a parameter D to generate a damping 
torque reference for MR brake; in this way, the oscillation ef-
fects in the compliant actuators are considerably minimized. 

The ankle joint has the property of variable stiffness. This 
changes the damping ratio of the system and distance of sys-
tem poles from the imaginary axis of the complex plane. Ac-
cording to this, a sliding PID control logic was used to relocate 
the poles of the closed loop system relatively far from the 
imaginary axis of the complex plane for varying joint stiffness; 
in this way, the stability was guaranteed. This control embodi-
ment can be described as follows; first, the stiffness values of 
the ankle joint are adjusted to three different values as low, 
medium and hard (200 Nm/rad, 450 Nm/rad and 900 Nm/rad, 

respectively), and these PID parameters are tuned in these 
three different stiffness values. These PID parameters are 
plotted versus ankle stiffness in a graph and line fittings are 
applied on these values. The PID parameters for the different 
stiffness values and the basic fitting lines on these values are 
shown in Fig. 6. Now, when the ankle stiffness is changed, PID 
parameters of the system are also changing along these lines. 

In the step response experiments, steps of 20, 30 and 25 
degrees were selected for the ankle, knee and hip joints, re-
spectively. The joints sweep these angles approximately in 0.7-
0.8 s at medium walking speed. Therefore, the design criterion 
of the rise time between 0.7-0.8 s without overshooting was 
considered in PID tuning of the system. Fig. 7 shows the re-
sults of step response experiments with PID according to 
Ziegler-Nichols method, PID according to the criterion of rise 
time of 0.7-0.8 s without overshooting, and PID+D controller 
with same criteria and MR brake activated. As shown in the 
figure, since there is no external load on the ankle joint, the 
ankle actuator is able to track the reference properly. The main 
effect of MR brake in ankle joint will appear in the experiments 
in which external forces are applied. However, the hip and 
knee joints show significant oscillations without MR brake due 
to thigh and shank weights. With the activation of MR brake, 
PID+D control algorithm makes the step responses of the knee 
and hip joints less oscillating. 

In the rest of this section, position tracking experiments of the 
proposed control algorithm were conducted under external 
forces. I1, I2 and I3 in Fig. 5 are the points of contact between 
the user and the robot. BioComEx was adapted to the user 
through the force sensors at these locations. The interaction 
forces were measured by these force sensors. In these ex-
periments, the sinusoidal reference trajectories were given to 
the joints of BioComEx and random disturbing forces were 
applied during the operations. Fig. 8 shows the results of sinu-

 

 
Fig. 7. (a) Step response results for ankle joint at high stiffness; (b) ankle joint at medium stiffness; (c) ankle joint at low stiffness; (d) knee; (e) hip joints. 

 

 
 
Fig. 6. Sliding P, I and D parameters during variable ankle stiffness. 
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soidal trajectory tracking experiments with external disturbance 
forces. As shown, with PID controller without MR brake, due to 
the applied force, the joints deviate from the reference and a 
large number of oscillations occur until they seat on the refer-
ence again. However, with the PID+D controller combined with 
MR brake, the joints can quickly follow the reference with fewer 
oscillations. The oscillating effect of the disturbance forces on 
the position tracking is dissipated quickly by the damping prop-
erty of MR brake. This clearly demonstrates the effectiveness 
of PID+D control algorithm with MR brake. It is important to 
note that the external forces were applied manually at the 
same level in each experiment.  

 
4.2 Position control experiments with user 

The lower limb exoskeleton robots are used to rehabilitate 
and assist the walking of patients. One of the techniques for 
the rehabilitation and assistance is to guide the walking of the 
impaired leg depending on a predefined gait trajectory. How-
ever, the predefined gait trajectory is not suitable for unilateral 
lower extremity disorders such as hemiplegia, since the prede-
fined walking trajectory of the impaired leg cannot be synchro-

nized continuously with the healthy leg [42]. Therefore, a differ-
ent control strategy for the patients with unilateral lower ex-
tremity disorders is required. In this section, by considering 
hemiplegia patients, the phase delayed walking trajectory of 
the healthy leg was used for the reference of impaired leg. The 
walking guidance experiments were carried out on a user 
whose one leg was considered healthy and the other was im-
paired. In this way, the performance of the variable impedance 
actuators and proposed PID+D control algorithm were exam-
ined on the impaired side. An experimental setup was built for 
these experiments. Fig. 9 shows this experimental platform and 
BioComEx adapted to the user. The platform consists of three 
parts: a user hanging mechanism for anti-gravity, a back and 
side robot support, and a treadmill. 

The experiments were performed by employing the force 
feedback impedance control algorithm on the healthy leg joints 
and the proposed PID+D control algorithm applied on the im-
paired leg joints. During the experiments, the user was asked 
to move his right leg normally and release his left leg according 
to the robot movement and was allowed to get support via his 
arms from the parallel bars on the right and left sides to ensure 
balancing. The healthy side’s movements were detected 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 8. Results of sinusoidal trajectory tracking experiments with external disturbance forces: (a) Ankle; (b) knee; (c) hip joints. 

 



 Journal of Mechanical Science and Technology 34 (6) 2020  DOI 10.1007/s12206-020-0534-4 
 
 

 
2603  

through force sensors placed between BioComEx and the user, 
and the robot followed the motions of the user based on these 
sensor feedbacks in real time. Then, the measured positions of 
the healthy leg joints were used as reference signal for the 
joints of the impaired leg with 2 seconds delay. In the experi-
ments, the treadmill was adjusted to a speed of 1 km/h       
(≈ 0.28 m/s). The delay between the healthy leg and the im-
paired leg was determined in accordance with this treadmill 

speed. 
Fig. 10 shows the force feedback impedance control algo-

rithm applied on the healthy joints. The robot follows the 
healthy leg by means of the force feedback control. In the 
meantime, the joint trajectories of the healthy leg were meas-
ured by encoders located on the robot. The impedance control 
algorithm for all joints is similar; the only difference is that the 
value of the stiffness comes from the stiffness adjustment 
mechanism in the variable stiffness actuator of ankle joint while 
it is constant in series elastic actuator of knee and hip joints. 
However, the stiffness of the variable stiffness actuators was 
set to a constant high value (900 Nm/rad) to simplify the tests. 
As shown in Fig. 10, the force feedback impedance control 
algorithm is multi-layered. The innermost loop is the motor 
velocity control loop and Gvel in this loop is the controller of 
motor driver. The middle loop is the torque feedback control 
loop and Gtorque in this loop is a PID torque controller. P, I and D 
parameters of this controller were tuned by a step input re-
sponse in such a way that 0.1 second rise time, % 10 maxi-
mum overshoot and % 2 steady state error were adjusted. The 
outermost loop is the impedance control loop and Gimpedance in 
this loop is the impedance model that is to be reflected to the 
user. In these experiments, the impedance model (Gimpedance) 
was set to zero so that the robot could follow the user with 
minimum reaction. θref in the block diagram denotes the user’s 
healthy joints movement; it is measured by the encoders at-
tached at link joints. A dashed feedback line was drawn to the 
outer of the control diagram for this purpose. The details of this 
force feedback impedance control algorithm are given in our 
previous study [25]. Since one contribution of the proposed 
study is the PID+D position control algorithm applied on the 
variable impedance exoskeleton joints, we concentrated on the 
position tracking performance of the impaired side. The ex-
periment results of this PID+D position control algorithm ap-
plied on the impaired leg according the reference signal cap-
tured from healthy leg through the closed loop impedance  

 

 
 
Fig. 9. Experimental setup of BioComEx with MR brakes on the user walk-
ing on the treadmill. 

 

 
 
Fig. 10. Closed loop impedance control algorithm block diagram for variable stiffness actuator of ankle joint (top) and series elastic actuator of knee and hip 
joints (bottom). 
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control algorithm are given in Figs. 11-13. Each figure shows 
the interaction torque measured between the robot and healthy 
leg joints, the measured joint positions of the healthy leg, the 
delayed reference signals and the measured position tracking 
of the impaired leg joints. Some trajectory tracking errors like 
small phase shifts and fluctuations are seen in Figs. 11(c), 
12(c) and 13(c) (position tracking RMS errors are given on the 
figures). These errors come from the nonlinearity of the system 
like hysteresis, time response, off-state torque of the MR 
brakes and stretch of timing belt drive system. However, high 
precision trajectory tracking as in the industrial robots is not 
needed in the exoskeletons. On the other hand, with the im-

pedance control algorithm applied on healthy joints, the interac-
tion torque between BioComEx and the user healthy leg 
ranges between ± 5-8 Nm. The experiments conducted in this 
section showed that while the closed loop impedance control 
algorithm helps the exoskeleton to trace the motions of the 
user’s healthy leg joints at the very least resistance, the pro-
posed PID+D control algorithm succeeds in position tracking of 
the impaired leg joints with minimal errors despite disturbances 
like ground reactions and leg weights. 

Lastly, the algorithms in this study are depicted as a continu-
ous-time controller, but these were applied by a digital control-
ler. Homaeinezhad et al. [43] stated that executing a control 

                         (a)                                             (b)                                             (c) 
 
Fig. 11. (a) Interaction torque measured between the robot and healthy hip joint; (b) the measured position of the healthy hip joint; (c) the delayed reference 
position and measured position tracking of the impaired hip joint. 

 
 

                         (a)                                             (b)                                             (c) 
 
Fig. 12. (a) Interaction torque measured between the robot and healthy knee joint; (b) the measured position of the healthy knee joint; (c) the delayed refer-
ence position and measured position tracking of the impaired knee joint. 

 
 

                         (a)                                             (b)                                             (c) 
 
Fig. 13. (a) Interaction torque measured between the robot and healthy ankle joint; (b) the measured position of the healthy ankle joint; (c) the delayed refer-
ence position and measured position tracking of the impaired ankle joint. 
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algorithm constructed in continuous-time basis in a discrete-
time operating system may introduce the possibility of system 
instability, specifically in cases of system discontinuity, but the 
control inputs with sufficiently small sampling time minimize this 
possibility. In digital control design, the sample time should be 
at least a factor of 5-10 times of the system time constant, 
which is the time required for the system to reach 63.2 % of its 
steady-state step response; however, sampling times are often 
chosen to be several hundred times faster than the system 
time constant [44]. Accordingly, the sample time of the control-
lers was selected as 1 ms in this study, which is 250 times 
smaller than the time constant (250 ms) of BioComEx joints. 
Additionally, in order to find tolerable range of time delay where 
the system is stable, simplified transfer functions were esti-
mated with different I/O time delays by using the input and 
output data given in Figs. 11(c)-13(c) via MATLAB System 
Identification Toolbox; then, the step responses of these esti-
mated transfer functions were examined and it was concluded 
that the tolerable range of time delay where stability of system 
might be expected is 0.3 s in maximum. 

 
5. Conclusions 

A lower limb exoskeleton robot with compliant actuators and 
MR brakes in all joints was developed, and a PID+D position 
control algorithm was proposed for a safe human-robot inter-
action and more stable mobility. To examine this developed 
robot and proposed controller, two sets of experiments were 
conducted. The first were the trajectory tracking control ex-
periments under some disturbances without device user. In 
these first experiments, the robot was hung on a platform and 
external disturbing forces were applied during the operation. 
The second was the experiments of walking assistance con-
ducted with a device user who had unilateral lower extremity 
disorders. In these second experiments, the impedance con-
trol algorithm was used to capture the joint positions of the 
user’s healthy leg, then these positions were used as refer-
ence signal for the impaired leg, and the proposed PID+D 
control algorithm was applied to track the position reference 
on the impaired leg. According to the results, it was concluded 
that: (1) The disturbing force effects and oscillations, which 
are the biggest problem of compliant actuators, can be re-
duced by the proposed PID+D controller and integration of 
MR brakes in the joints, (2) the motion of the user’s healthy 
leg can be captured with minimal resistance through the force 
feedback impedance control algorithm and the impaired leg 
side can mimic the healthy leg effectively by means of the 
proposed system. 
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