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Abstract  In the reliability analysis of engineering structures, there are usually implict and  
highly nonlinear performance function problems, which leads to the time-consuming computa-
tions. In this paper, a novel Kriging based reliability analysis method combined with the im-
proved efficient global optimization (IEGO) and a secondary point selection strategy is pro-
posed. Based on the IEGO algorithm, the expected improvement function is redefining, which 
will focus on the points both with large variance and near the limit state surface. Moreover, a 
secondary point selection strategy is raised to find the point with larger expected improvement 
and closed to the limit state surface, which can further improve the efficiency of the active learn-
ing process. Five examples indicates that the raised method has satisfactory global and local 
search capability, and can evaluate the probability of failure efficiently. 

 
1. Introduction   

Through the advancement of structural engineering technology, the structural complexity also 
increases, resulting in highly nonlinear and implicit performance functions of the product. In 
general, some real response values can only be obtained by finite element analysis or test 
which leads to larger computation. Therefore, a variety of analytical techniques have been de-
veloped to evaluate the reliability of complex structures. 

The earliest, a numerical simulation method named Monte Carlo simulation (MCS) was intro-
duced into the reliability analysis that can estimate the failure probability precisely [1]. However, 
the MCS is used on the premise of a large number of calls to the performance function which 
may lead to time-consuming problem. As a result, many other improved sampling methods 
have appeared, e.g. subset simulation (SS) [2, 3], importance sampling (IS) [3, 4] and line 
sampling (LS) [5, 6]. While all these improving methods cannot satisfy the requirements of cal-
culation efficiency in some more complexity reliability problems. Then, some analytic methods 
like the first-order reliability method (FORM) is proposed, which is an approximate solution 
based on the Taylor expansion theory [7], can greatly reduce the calling times of performance 
function. Yet this method may result in low calculation accuracy when dealing with complex 
nonlinear structures, and it can’t be applied to implicit problems. 

For solving the problems of computational cost and implicit performance function, it is more 
and more important to develop the surrogate method, which is to use an artificial approximation 
model to fit and approximate the implicit relationship between input and output of real structure. 
The surrogate model with sufficient simulation accuracy for the real structure can be used to 
replace the performance function of real structure, which not only reduces the real performance 
function callings but also can accurately estimate the failure probability. In recent years, various 
surrogate models have been proposed to replace the real performance function, such as re-
sponse surface method (RSM) [8-10], support vector machine (SVM) [11-13], artificial neural 
network (ANN) [14-16] and Kriging metamodel [4, 17-19]. And the Kriging metamodel is 
adopted in this research. 

Kriging, first proposed by Krige [20], is a spatial interpolation technique, which can give opti-
mal linear unbiased estimates in particular stochastic processes. Furthermore, the Kriging 
model can provide both the predicted response in unknown points and the local variance of the   
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predicted response value. Due to the excellent characteristics, 
the Kriging model has been applied in reliability analysis for a 
long time. To improve the solving performance of the Kriging in 
reliability engineering, multiple methods of constructing the 
Kriging model have been developed, which can be roughly 
separated into 3 categories: 

(1) Optimizing the parameters of correlation function with the 
intelligent optimization algorithm. Liu et al. introduced an artifi-
cial bee colony algorithm to improve the efficiency of parameter 
solving, and effectively ensure the optimal unbiasedness of 
Kriging model prediction results [21]. Wei et al. use the particle 
swarm optimization-simulated annealing (PSOSA) algorithm 
for the optimization of the correlation parameters [22]. And the 
results pointed out that the optimization algorithm can improve 
the calculation efficiency greatly. 

(2) To optimize the parameters of the metamodel itself, a se-
quentially learning mechanism based on the Kriging model was 
developed. Efficient global optimization, construct an expected 
improvement (EI) function for sequential learning, which is 
developed by Jones et al. [23]. However, the EGO is not suit-
able for reliability analysis, due to the sampling area of this 
learning function doesn’t fully meet the requirements of reliabil-
ity analysis. Inspired by the EGO method, Bichon et al. intro-
duced the efficient global reliability analysis (EGRA) into struc-
tural reliability analysis [24], with an efficient expected feasibility 
function (EFF). The EFF searches for points among candidates 
that are with larger variance and near the limit state surface 
(LSS). Another active learning function U [19], raised by 
Echard et al., concentrates on the point with a high probability 
of misclassification on the sign of response value. Lv et al. also 
present a novel active learning method H based on the infor-
mation entropy [25], which can measure the predicted uncer-
tainty among the candidate points and help construct the 
Kriging model precisely near the LSS. 

(3) The last major research area is the sampling method. As 
we know, the sampling method is applied in both the construc-
tion of the candidate point set and the calculation of failure 
probability. In general, the Latin hypercube sampling (LHS) and 
MCS can be applied in developing the initial point set, called 
the initial design point. And, different sampling methods like 
MCS, IS, SS, LS and subset simulation importance sampling 
(SSIS) are combined with the Kriging model respectively to 
calculate the structural reliability index [25-29]. 

In this paper, an improved active learning function EH and a 
secondary point selection strategy are developed to update the 
Kriging metamodel iteratively. Firstly, assuming that the distri-
bution type of the predicted response value remains un-
changed, and the EI function is redefined according to the 
modified predicted response at the sample point. The selection 
area of EH function is mainly placed near the LSS and where 
the variance of the predicted response is large, which can con-
sider both local and global prediction accuracy (Sec. 3.3). Then, 
a secondary point selection strategy is introduced into the ac-
tive learning process to increase the model updating efficiency. 
Based on the initial best point obtained by the improved EGO 

method, the opposite point across the LSS is found. And 
between these two points, the final best point with larger 
expected improvement is selected to update the Kriging 
metamodel (Sec. 3.4). At last, five classical examples show 
that the learning function EH and active learning methods pro-
posed in this paper are effective and practical in structural reli-
ability analysis. 

 
2. Kriging metamodel 

The Kriging metamodel has been widely used in mechanical, 
aerospace and other engineering fields in recent years. Gener-
ally speaking, Kriging metamodel contains two elements: The 
polynomial term and the stochastic term [20, 30]. The stochas-
tic process can be the Gauss process, exponential process et 
al., and the Gauss process is used in this paper. Assume that 
there is an initial data set [ ]1 2, , ..., T

k=x x x x , with xiÎRn(i = 1, 
2, ..., k) the ith point, and G = [G(x1),G(x2),...,G(xk)]T denotes 
the real responses corresponding to x. Then the Kriging 
metamodel is denoted by 

 
ˆ ( ) ( , ) ( ) ( ) ( )= + = +TG F z f zx β x x x β x               (1) 

 
where βT = [β1,β2,...,βp] is a regression coefficient vector. f(x) = 
[f1(x), f2(x), ..., fp(x)]T is a basic polynomial function. The stud-
ies have shown that fitting precision of the Kriging doesn’t de-
pend on the specific form of F(β, x). Therefore, F(β, x) is taken 
as a constant. z(x) is a Gaussian process with zero mean and 
other characteristics as follows  
 

2[ ( ), ( )] ( , , )=i j i jCov z z Rsx x θ x x                     (2) 
 
where 2s  represents the variance of z(x). R(θ, xi , xj) defines 
the special correlation function between xi and xj, with a corre-
lation parameter vector θ. In this research, the Gaussian cor-
relative function is applied, which can be given by 
 

2

1

( , , ) exp[ [ ( ) ]] 0
=

= - - ³å
n

e e
i j e i j e

e

R q qθ x x x x         (3) 

 
where n is the dimension of the point. xi

e and xj
e are eth com-

ponents of xi and xj. θe is eth components of θ, which directly 
affects the prediction results of the metamodel, and it can be 
obtained by MATLAB toolbox DACE. 

Based on k initial experimental sample points set x and cor-
responding real responses G, the regression coefficient β and 

2s  are estimated by 
 

1 1 1ˆ ( )- - -= T TR Rβ F F F G                              (4) 
2 11 ˆ ˆˆ ( ) ( )-= - -T

k
s RG Fβ G Fβ                        (5) 

 
where R represents the correlation matrix with R = [Rij]k´k , Rij = 
R(θ, xi, xj). 

At any other point x, the unbiased predictor response mĜ (x) 
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and the predicted variance σĜ 
2(x) will be denoted by 

 
( ) 1

ˆ
ˆ ˆ ˆ( ) ( ) ( ) ( )-= = + -T T

G
Gm Rx x f x β r x G Fβ          (6) 

2 2 1 1
ˆ

1

ˆ ˆ( ) [1 ( ) ( ) ( )

( ) R ( )]

- -

-

= +

-

T T
G

T

s s Rx u x F F u x

r x r x
                (7) 

 
where u(x) = FTR-1r-f; r(x) = [R(θ, x1, x), R(θ, x2, x),..., R(θ, 
xk, x)]. The predicted variance 2

ˆˆ ( )
G

s x  represents the predic-
tion uncertainty of the metamodel at the sampling point x, 
which is an important basis for the active learning method. 

 
3. Proposed method based on an impro-

ved learning function and a new lear-
ning method 

3.1 The EGO algorithm 

The EGO algorithm is a surrogate model optimization for 
complex problems first proposed by Jones et al. Based on 
Kriging metamodel, the EI learning function is used to measure 
the model fitting of the Kriging at an unknown point. The point 
corresponding to the largest EI function value is picked to up-
date the Kriging metamodel itself, which helps increase the 
precision of the Kriging model sequentially [23]. 

For any point x in space, the predicted response Ĝ(x) follows 
the normal distribution 

 
ˆ ˆ

ˆ ˆ( ) ( ( ), ( ))
G G

G N m s~x x x                              (8) 
 
Then, the MCS was used to select m points and the corre-

sponding predicted responses were obtained as Ĝ1, Ĝ2, ..., Ĝm. 
Based on the minimum value Gmin = min(Ĝ1, Ĝ2, ..., Ĝm) of the 
current surrogate model, the improvement at x is 

 
ˆ( ) max( ( ),0)minI G G= -x x                           (9) 

 
where Ĝ(x) is an uncertain variable, containing the uncertainty 
of the model fitting at point x. Therefore, I(x) is also a random 
variable that the expected improvement (EI) at x is defined as 
 

ˆ

ˆ
ˆ

ˆ( ( )) (max( ( ),0))
ˆ ( )ˆ( ( )) ( )

ˆ ( )
ˆ ( )ˆ ( ) ( )

ˆ ( )

min

min
min

G

min
G

G

E I E G G

G GG G

G G

s

s f
s

= -

-
= - F

-
+

x x

xx
x

xx
x

                (10) 

 
The point xbest corresponding to the maximum expected im-

provement value is recognized as the best point under the 
current Kriging model. It is expressed as 

 
arg(max( ( ( ))))best E I=

x
x x                           (11) 

 
The real response G(xbest) at point xbest is calculated and 

added to the initial data set to update the Kriging metamodel. 
Then, larger point set are sampled again under the updated 
model and carry out a new round of point selection until the 
iteration stopping condition (max(E(I(x))) < 0.001) is satisfied. 

 
3.2 The inapplicability of EGO algorithm in 

structural reliability analysis 

Sec. 3.1 shows that the selection strategy of the EGO algo-
rithm is based on the EI function which represents the ex-
pected improvement of the metamodel. As shown in Fig. 1, it is 
a two-dimensional function example, where the response Ĝ(xe) 
at the point xe(xe1 = 0.5, xe1 = -0.5) is a Normal random vari-
able (Ĝ(xe) ~ N[mĜ (xe), 2

ˆˆ ( )eG
s x ]). The red horizontal plane is 

the one where the lowest predicted value Gmin of the Kriging 
model lies. The black vertical line in the figure represents the 
probability density distribution function of the response Ĝ(xe), 
and the red horizontal line is the intersection of the lowest hori-
zontal plane and the gray vertical plane. Therefore, the prob-
ability of Ĝ(xe) < Gmin is 

 

ˆ

ˆ ( )( ( ) ) ( )
ˆ ( )

min e
e min

eG

G GP G G f
s
-

< =
xx

x
                  (12) 

 
The length of the segment under the plane G(xe) = Gmin is 

what we called improvement at point xe. What’s more, different 
improvement corresponds to different probability density func-
tion values. In order to measure the expectation of the im-
provement, the expected improvement (EI) is calculated ac-
cording to the normal distributed variable Ĝ(xe), which can be 
defined as 

 

( )( )
ˆ

ˆ
ˆ

ˆ ( )ˆ( ( )) ( )
ˆ ( )

ˆ ( )ˆ+ ( ) ( )
ˆ ( )

min e
e min e

G

min e
eG

eG

G GE I G G
x

G G

s

s f
s

-
= - F

-

xx x

xx
x

            (13) 

 
As shown in Eq. (13) and Fig. 1 that two main factors are af-

 
 
Fig. 1. Graphical analysis of expected improvement in the EGO algorithm. 
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fecting the expected improvement E(I(xe)): 1) The predicted 
response value Ĝ(xe), i.e. the mean of the normal distribution. 
Assuming that the variance 2

ˆˆ ( )eG
s x  remains unchanged, and 

the smaller the Ĝ(xe) is, the closer the distance between the 
plane G(x) = Gmin and mean Ĝ(xe). According to the character-
istics of the normal function, the expected improvement value 
also increases. 2) The standard deviation 2

ˆˆ ( )eG
s x , which indi-

cates the uncertainty of predicted response value. Assuming 
that the mean Ĝ(xe) remains unchanged, the larger the 

ˆˆ ( )eG
s x  is, the more dispersed the normal distribution function 
is, which results in the increases of both the probability density 
function value at the plane G(x) = Gmin and expected im-
provement. 

In summary, the point selection strategy of the classical EGO 
algorithm is to select points with small response value and 
larger standard deviation as the best next updating of Kriging 
metamodel. However, it is not in line with the concept of struc-
tural reliability analysis. In the process of reliability index 
evaluation, we are mainly concerned with the fitting accuracy of 
the region near the LSS, not the minimum of the response 
surface. Hence, directly using the EI function as the active 
learning in reliability analysis will result in an insufficient selec-
tion of points and a larger error in reliability analysis. 

 
3.3 The improved EGO algorithm (IEGO) 

In this paper, an improved EGO (IEGO) algorithm is pro-
posed. By changing the definition of the expected improvement 
E(I(x)), the point selection strategy can focus on not only the 
points nearby the LSS, but also the points with large variance. 
As shown in Fig. 2, the two-dimensional function in Sec. 2.1 is 
still provided for describing. Based on the predicted value of 
surrogate metamodel, the part of Ĝ(x) < 0 will be flipped ac-
cording to the plane Ĝ(x) = 0. In other words, the new distribu-
tion mean Ŷ(x) of the random variable Ĝ(x) is 

 

( )
ˆ ˆ( ) ( ) 0

ˆ ˆ( ) ( ) 0

G G
Y

G G

ì ³ï= í
- <ïî

) x x
x

x x
                         (14) 

Then, it is assumed that the variance of the predicted re-
sponse at point xe remains unchanged. Therefore, it can be 
considered that the modified predicted value Ĝ(xe) at point xe 
follows the normal distribution N[Ŷ(xe), 2

ˆˆ ( )eG
s x ]. And, the 

minimum of the predicted response value is redefined as 
 

( )1 2
ˆ ˆ ˆmin | |,| |, |. . . ,|=min mY G G G                       (15) 

 
Since the candidate points generally exist in both safety and 

failure domains, the minimum value can be further defined as 
 

0=minY                                              (16) 
 
And, the new improvement function is denoted as 
 

min( ) max( ( ),0)e eH Y Y= -
)

x x                         (17) 
 
Therefore, the improved expected improvement EH can be 

derived as 
 

2

20
ˆˆ

( )

[max( ( ),0)]

1 ( ( ) ( ))( ){ *exp[ ]} ( )
ˆ2 ( )ˆ2 ( )

e

e

min e

min

GG

EH

E Y Y

Y H YH dH
sps

+¥

=

= -

- - -
= ò

)

)

x x

x

x

x xx x
xx

 

ˆ
ˆ ˆ

( ) ( )ˆ( ( )) ( ) ( ) ( )
ˆ ˆ( ) ( )

e e
e eG

e eG G

Y YY s f
s s
- -

= - F +
) )) x xx x

x x
  (18) 

 
In Eq. (18), the first item of the equation on the right side is 

the improvement at point xe multiplied by the normal cumulative 
distribution function at Ymin. Therefore, the search focus is 
placed near the LSS, which greatly strengthens the local 
search capability. And the second item of the equation on the 
right side is the prediction uncertainty (σĜ(xe)) multiplied by the 
normal probability density function at Ymin. In other words, the 
region with low prediction accuracy will become a key search 
area, which strengthens the global search ability of IEGO algo-
rithm.  

 
3.4 Secondary point selection strategy based 

on IEGO algorithm 

A simple active learning strategy only seeks the point with 
the optimal assessment index (like the expected improvement) 
as the optimal point among the candidate data set, which may 
lead to inaccurate and inefficiency selection. And, if there is 
one point with two properties: Close to the optimal point (ob-
tained by active learning strategy) and has a larger expected 
improvement value, which may better update the Kriging model. 
According to this idea, a secondary point selection strategy 
based on the IEGO algorithm is raised in this paper. 

The optimal point obtained from the IEGO algorithm is de-
fined as the initial best point xib. And, it is obvious that there are 

 
 
Fig. 2. Graphical analysis of expected improvement in the IEGO algorithm. 
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two cases of xib(as shown in Fig. 3):  
(1) the point xib is in the safer domain. Taking the initial best 

point as the starting point, iterating along the negative gradient 
direction (i.e. the blue direction indictor in Fig. 3) with the unit 
step length. Therefore, the iterative direction and step length of 
the kth iteration are 

 

( )

( )
( )

( )

( )
1,2,3,...|| ( ) ||

1

k
k

k

k

g
kg

l

ì Ñ
= -ï =Ñí

ï =î

ud
u                (19) 

 
where u(k) represents the origin of the kth iteration. 

(2) the point xib is in the failure domain. In this case, xib is still 
used as the starting point, while the gradient direction (i.e. the 
red direction indictor in Fig. 3) and unit step length are adopted 
for iteration. Therefore, the iterative direction and step length at 
the kth iteration are 

 

( )

( )
( )

( )

( )
1,2,3,...|| ( ) ||

1

k
k

k

k

g
kg

l

ì Ñ
=ï =Ñí

ï =î

ud
u                (20) 

 
And, the iteration continues until the point xopp opposite to the 

sign of the predicted value of point xib is obtained for the first 
time. After that, searching for the final best point xfb becomes 
an optimization problem, which can be expressed as 

 

( )

max( ( )) 1,2, , 1

. . 1 , 0 1
i

i

i ib opp

EH i p

s t m m m

= × × × +

= × + × - £ £
x

x

x x x
            (21) 

 
where xi is one point uniformly distributed on the line between 
point xib and point opp p，x  represents the size of the points set. 
Obviously, the smaller value of p will lead to a more insufficient 
sample size of a uniformly distributed point set. But with a lar-
ger value of p, it will greatly increase the amount of calculation 
in the process of searching for the final best point. Thus, 1000 
is applied to p. 

 
3.5 Main computational steps  

Combined with the Kriging and the model updating method 
raised in Secs. 3.3 and 3.4, the major steps of the proposed 
method are described as follows: 

(1) Through MCS simulation, NMC random samples SMC = [x1, 
x2, ..., xNMC]T are generated according to the joint distribution of the 
basic variables. And the SMC will be used as the candidate sam-
ples in the active learning process, called candidate data set. 

(2) LHS method is adopted to generate initial point set Sinitial 
= [x1, x2, ..., xN]T for the preliminary fitting of Kriging metamodel 
in the basic random variables space (mi - 3σi, mi + 3σi), i = 1, 
2, ..., n. The size N of the point set Sinitial should be selected 
appropriately, and the Sinitial will be updated continuously in the 
process of the subsequent learning process. 

(3) Calling the performance function to evaluate the real re-
sponse set Ginitial corresponding to the Sinitial, and the Kriging 
metamodel is established. Through the surrogate model, the 
predicted values Ĝ(xi), xiÎSMC and standard deviation σĜ (xi), 
xiÎSMC are estimated.  

(4) According to Eqs. (14) and (16), the modified predicted 
value Ŷ(xi), xiÎSMC and the current minimum values Ymin are 
calculated, which is used to estimate the improved expected 
improvement EH(xi), xiÎSMC. And, get the initial best point xib 
corresponding to the max(EH(xi)), xiÎSMC. 

(5) Starting from the point xib, search for the opposite point 
corresponding to xib by the method mentioned in Sec. 3.4. And 
carry out the secondary point selection between these two 
points to get the final best point xfb. 

(6) If max(EH(xi)) < 0.001, ,i MCÎx S  the active learning 
process ends and the failure probability is estimated in step 7). 
Otherwise, evaluate the real response G(xfb) of the final best 
point xfb, which will be added into the Sinitial and Ginitial, and 
back to step 3). 

(7) Based on the MCS method, the final Kriging metamodel 
is adopted to evaluate the probability of failure Pf and variation 
coefficient dPf  

 
1

( 1)
d

-
=

-f

f
P

MC f

P
N P

                                (22) 

                                                                           
and the iteration converges when dPf < 0.03 is satisfied. 

Table 1. Evaluation results of the example 1. 
 

Algorithm Ncall Pf (10-3) e (%) 

MCS 107 3.4453 - 
Proposed method 39 3.5230 2.26 

IEGO 39 3.5573 3.25 
U 57 3.4700 0.72 

EFF 29 3.2177 6.61 

 
 

 
 
Fig. 3. Diagram of the secondary point selection strategy. 
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4. Validation examples 
For purpose of verifying the precision and validity of the pro-

posed method, five practical examples are presented, including 
two mathematical examples and three engineering examples. 
These four reliability analysis methods all evaluate the failure 
probability by the MCS method with 1´107 sample points. In 
each example, the results of MCS method Pf

MC is regarded as 
the standard solution, and the proposed method is compared 
with IEGO, EFF and U algorithm from the following two as-
pects: 1) With the same size of initial design point set, the 
amount Ncall of calling the performance function is taken to 

measure the calculation efficiency of each method. 2) The 
relative error between the failure probability Pf acquired by 
each method and Pf

MC are used to represent the calculation 
accuracy, which is calculated as 

 
| |

e
-

=
MC

f f
MC
f

P P
P

                                      (23) 

 
4.1 Example 1 

Here is a nonlinear system with two performance function [31, 
32], it is defined as 

 
 
Fig. 4. The flow diagram of the proposed method. 
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2
51 1

2

1 2 2

1 2

3 1 exp( ) ( )
10 5( , ) min

3
2

ì
- - + - +ïï= í

ï -ïî

x xx
g x x

x x
         (24) 

 
where x1 and x2 are both subject to N(0,1) and independent of 
each other. The analysis results are summarized in Table 1 
and the learning process of different active learning method are 
shown in Fig. 5. 

As shown in Table 1, the EFF algorithm calls the minimum 
number of performance functions but with the maximum rela-
tive error. The computational effort of the U algorithm is a little 
larger, result in low calculation efficiency. The calling number of 
the proposed method and IEGO are the same since it is a rela-
tively simple mathematical example, but the proposed method 
has a higher calculation accuracy than IEGO algorithm. 

For purpose of demonstrating the fitting accuracy more intui-
tively, the learning process of these four methods are com-
pared in Fig. 5. The initial design points (green dots), the final 
best points (blue circle) and the LSS of both real performance 
function (black solid line) and Kriging model (red solid line) are 
all plotted in Fig. 5. From Figs. 5(a)-(d), it can be seen that the 

fitting of the EFF algorithm near the LSS is unsatisfactory due 
to the immature convergence. The U algorithms has a high 
fitting accuracy, but with the point accumulation near the LSS. 
The proposed method is relatively reasonable in selecting 
points near the LSS and with a similar fitting accuracy. 

 
4.2 Example 2 

This example considers a series system with four perform-
ance function [12, 19, 33, 34], which can be given as 

 
2

1 2 1 2

2
1 2 1 2

1 2

1 2

2 1

( ) )3
10 2

( ) ( )3
10 2( , )= min

7( )
2
7( )
2

x x x x

x x x x

g x x
x x

x x

ì ü- +
+ -ï ï

ï ï
ï ï- +
ï ï+ +
ï ï
í ý
ï ï- +ï ï
ï ï
ï ï- +ï ïî þ

（

            (25) 

 
where x1 and x2 are both subject to N(0,1) and independent of 

      
                            (a) Proposed method                                                        (b) IEGO  

 

     
                                    (c) U                                                            (d) EFF 

 
Fig. 5. Comparison among the proposed method, IEGO, U and EFF algorithm corresponds to (a)-(d) for example 1. 
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each other. The analysis results are summarized in Table 2 
and the learning process of different active learning algorithm 
are shown in Fig. 6. 

As shown in Table 2, the raised method can obtain a highest 
accuracy results with a lower number of performance function 
calls among these four algorithms. The relative error of the EFF 
algorithm is more than 10 % which is unacceptable in practical 
engineering no matter how efficient the algorithm is. 

Like example1, the active learning process of different meth-
ods is also plotted in Fig. 6. Both Figs. 6(a) and (b) validate the 
effectiveness of IEGO algorithm in reliability analysis, and the 

comparison of these two also shows that the secondary point 
selection strategy can futher improve the computational effi-
ciency. Besides, the point selection of U algorithm is too dense 
near the LSS, which will result in a large calculation consump-
tion in practical engineering applications. As demonstrated in 
the Fig. 6(d), the EFF algorithm has relatively poor-fitting be-
cause of too few points selection. 

 
4.3 Example 3 

The ten-bar truss structure is applied in this example seen in 
Fig. 7 [35]. There are three kinds of the bars: horizontal, diago-
nal and vertical bar, which has different cross-sectional areas 
among each other. Hence, the design variables S1, S2 and S3 
corresponding to the cross-sectional of horizontal, diagonal 
and vertical ones are regarded as normally distributed random 
variables. And, S1~N(13,1.3) in2, S2~N(2,0.2) in2, S3~N(9,0.9) 
in2. The other deterministic parameters are shown in Table 3.  

With the finite element analysis technology, the analytical 
expression for the displacement at node (2) is derived as fol-
lows: 

 
 

      
                           (a) Proposed method                                                       (b) IEGO 

 

      
                                      (c) U                                                               (d) EFF 
 
Fig. 6. Comparison among the proposed method, IEGO, U, and EFF algorithm corresponds to (a)-(d) for example 2. 

 

 
Table 2. Evaluation results of the example 2. 
 

Algorithm Ncall Pf (10-3) e (%) 

MCS 107 2.2091 - 

Proposed method 59 2.2167 0.34 

IEGO 69 2.2081 0.45 

U 77 2.2392 1.36 

EFF 38 2.4361 10.28 
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where dallow = 4 in, and the DT is expressed by 
 

2 2 2
2 1 3 1 2 3 1 2

2
1 3 1 2

4 (8 ) 4 2 (3 4 )
( 6 )

= + + +

+ +
TD S S S S S S S S

S S S S
          (27) 

 
All the reliability analysis results are summarized in Table 4.  
Obviously, the proposed method based on the IEGO algo-

rithm makes the least calls to the performance function and 
has an acceptable calculation error. Compared with the U algo-
rithm, the IEGO algorithm calls the performance function more 
than ten times less and gets a result with the same precision. 
And as in the previous example, the relative error of the EFF 
algorithm is largest among all these four algorithms. 

 
4.4 Example 4 

The front axle beam is a front support bracket of the auto-

mobile (shown in Fig. 8) [36, 37]. And, the I-beam structure of 
front axle is the most popular design because of its lightweight 
and high bend strength. In general, a fracture section may 
occur in the middle part of the I-beam which is seen in Fig. 8. 

The section factor Ws and Wp polar section factor of the I-
beam structure are defined as 

 
3

3 31 3 2
3

( 2 ) [ ( 2 ) ]
6 6
-

= + - -s

b l b bW l l b
l l

                  (28) 

2 3 3
2 3 1

3

( 2 )0.8 0.4 -
= +p

l bW b b b
b

                       (29) 

 
According to the stress, the maximum normal stress and 

shear stress can be expressed by 
 

=s I
I

s

M
W

                                            (30) 

t = I
I

p

T
W

                                             (31) 

 
where MI and TI represent the bending moment and torque, 
respectively.  

And the performance function is derived as follows to assess 
the static strength of the front axle. 

 
2 23s s t= - +s I Ig                                  (32) 

Table 3. The deterministic parameters of the ten-bar truss. 
 

Parameters  Value 
Force P(lb) 100000 
Length L(in) 360 

Young’s modulus E(psi) 107 
Material density r(lb/in3) 0.1 

 
Table 4. Evaluation analysis results of the example 3. 
 

Algorithm Ncall Pf e (%) 

MCS 107 0.1729 - 
Proposed method 18 0.1739 0.57 

IEGO 21 0.1730 0.05 
U 33 0.1730 0.05 

EFF 22 0.1704 1.44 

 

 
 
Fig. 7. Ten-bar truss structure. 

 

 
 

 
 
Fig. 8. The automobile front axle. 
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where σs represents the limiting yield stress and takes 
460 MPa under comprehensive consideration. The corre-
sponding distribution information of the independent normal 
variables (unit: mm) b1, b2, b3, l and the loads variables (unit: 
N×mm) MI and TI are listed in Table 5. 

Apply these four methods to the front axle beam example, 
and the analysis results is summarized in Table 6. It can be 
observed that the calculation efficiency of the proposed method 
is better than IEGO and U algorithm. And, the calculation error 
of the proposed method is nearly half as small as the EFF al-
gorithm, in the case that the performance function is called only 
6 times more than the EFF algorithm. 

 
4.5 Example 5 

In this case, a non-linear oscillator is applied for analysis as 
shown in Fig. 9 [25, 38]. And, the performance function is de-
noted by 

 
2

1 1
1 2 1 1 2

2( , , , , , ) 3 | sin( ) |
2

w
w

= -
F Tg M K K R T F R

M
         (33) 

 
where 
 

( )1 2w = +K K M                                  (34) 
 
The corresponding distribution information of the six inde-

pendent normal variables K1, K2, M, R, T1, F1 are listed in Ta-
ble 7 and the analysis results are summarized in Table 8. 

From the results in Table 8, the Ncall of the IEGO algorithm is 
87 times which is 8 times less than the U algorithm. Further, 
the proposed method only calls the performance function 66 
times, about 30 % less than the U algorithm. What’s more, in 

terms of the calculation accuracy, the proposed method is 
minimum among all these four algorithms. It is fully explained 
that the proposed method based on the IEGO algorithm can 
well balance the calculation efficiency and accuracy in the 
practical reliability engineering. 

 
5. Conclusions 

In this paper, an improved efficient global optimization 
(IEGO) and a new secondary point selection strategy are pro-
posed for Kriging metamodel. The IEGO algorithm can give 
priority to local selection in important regions to ensure the 
fitting accuracy of Kriging metamodel near the LSS. At the 
same time, the points with larger predicted variance can also 
be taken into account to avoid the overfitting of the surrogate 
model. Then, the secondary point selection strategy is raised to 
further select the optimal points locally between the initial best 
point obtained from the IEGO algorithm and the LSS, in which 
the point closer to the LSS and with greater prediction variance 
is obtained.  

Finally, the feasibility of the raised method is verified by two 
mathematical examples and three classical engineering prob-
lems. And, the final results show that under the same frame-
work of structural reliability analysis: 1) The raised EH function 

Table 5. Distributions of random variables. 
 

Random variables Mean Coefficient of  
variation 

b1  12 0.005 
b2  65 0.005 
b3 14 0.005 
l  85 0.005 

MI  3.5´106 0.05 
TI  3.1´106 0.05 

 
Table 6. Evaluation analysis results of the example 4. 
 

Algorithm Ncall Pf (10-2) e (%) 

MCS 107 1.9434 - 
Proposed method 31 1.9511 0.40 

IEGO 38 1.9487 0.27 
U 37 1.9522 0.45 

EFF 25 1.9591 0.81 

 
 

Table 7. Distributions of random variables. 
 

Random variables Mean Coefficient of  
variation 

M 1 0.05 
K1 1 0.1 
K2 0.1 0.1 
R 0.5 0.1 
T1 1 0.2 
F1 1 0.2 

 
Table 8. Evaluation analysis results of the example 5. 
 

Algorithm Ncall Pf (10-2) e (%) 

MCS 107 3.8692 - 
Proposed method 66 3.8787 0.25 

IEGO 87 3.8953 0.67 
U 95 3.8360 0.86 

EFF 32 3.9215 1.35 

 

 
 
Fig. 9. Non-linear oscillator. 
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can meet the requirements of active learning in reliability 
analysis. And compared with the U algorithm and EFF algo-
rithm, the EH active learning function can better balance the 
calculation efficiency and accuracy, which is more applicable 
for practical reliability engineering. 2) The secondary point se-
lection strategy based on the IEGO algorithm mentioned in this 
paper can further reduce the computational cost without ex-
cessively losing calculation accuracy. 
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