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Abstract  A numerical model was developed to investigate the flutter instability of trun-
cated conical shells subjected to supersonic flows. The exact solution of Sanders’ best first-
order approximation was used to develop the finite elements model of the shell. Nonlinear 
kinematics of Donnell’s, Sanders’ and Nemeth’s theories, in conjunction with the generalized 
coordinates method, were used to formulate the nonlinear strain energy of the shell. A pressure 
field was formulated using the piston theory with the correction term for the curvature. Lagran-
gian equations of motion based on Hamilton’s principle were obtained. A variation of the har-
monic balance method was used for developing the amplitude equations of the shell, and a 
numerical method was used for solving these equations. Results of linear and nonlinear flutter 
of truncated conical shells were validated against the existing data in the literature. It was ob-
served that geometrical nonlinearities have a softening effect on the stability of the shell in su-
personic flows.  

 
1. Introduction   

The aeroelastic stability of shells and plates interacting with supersonic flow has been the 
subject of several studies in past decades. While several studies can be found in the literature 
on the flutter characteristics of cylindrical shells, the number of articles on the supersonic flutter 
of conical shells is limited. Moreover, even in the existing studies on the flutter of cylindrical 
shells, very few have employed geometrically nonlinear theories in their analyses. Employing 
nonlinear shell theories is important since experimental studies have shown that the oscillation 
amplitude of flutter has the same order of magnitude as the shell thickness [1]. 

Dixon and Hudson [2-4] studied the flutter, vibration and buckling of truncated orthotropic thin 
conical shells with generalized elastic edge restraints. They employed the Donnell type of 
nonlinear kinematics in conjunction with the modified first-order piston theory to model the 
structure behavior. They argued that for shells subjected to static external pressure loads, di-
vergence governed design conditions for small values of semi-cone angle, flutter for moderate 
semi-cone angle values and buckling is the dominant phenomena in large semi-cone angles. 
Miserentino and Dixon [5] expanded those works by performing experimental studies on the 
vibration and flutter of thin-walled truncated orthotropic conical shells. The experimental results 
provided the variations of resonant frequency with internal pressure and circumferential wave 
number at constant Mach number. The results verified the theoretical works of Dixon and Hud-
son [2] for thin shells with good accuracy. The work of Ueda et al. [6] explored the theoretical 
and experimental aspects of supersonic flutter in conical shells. In their experiments, they used 
a truncated cone with semi vertex angle of 14º to obtain flutter and buckling boundaries of the 
shell within supersonic flow at Mach number equal to two. They employed the finite elements 
method for the theoretical analysis and demonstrated good agreement between experimental 
and theoretical results. They also concluded that FEM is a powerful tool for predicting panel 
flutter behavior. Bismarck-Nasr et al. [7] developed a finite element method for supersonic flut-
ter of truncated conical shells using Novozhilov’s shell theory. 

In their work on the shell model, the in-plane inertia was preserved within kinetic energy   
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formulations while the rotary inertia was neglected. The aero-
dynamic loads were modeled using the first-order high Mach 
number piston theory. Based on their results, it was concluded 
that the curvature effect in modeling the aerodynamic loads 
has little effect on the stability conditions. 

Pidaparti [8] employed a quadrilateral thin shell finite element 
for analyzing the supersonic flutter of doubly curved composite 
shells using linear Love-Kirchhoff thin shell theory. Based on 
the obtained results, it was stated that the fiber angle and 
orthotropy impose significant effects on flutter boundaries for 
cylindrical and conical shells and flat plates. Sabri and Lakis [9] 
studied the flutter behavior of partially filled truncated conical 
shells in supersonic flows using a hybrid finite element method, 
Sanders’ linear thin shell theory and first-order piston theory 
with correction for the effect of curvature. Initial stiffening due to 
pressurization was also considered in this study. Among the 
conclusions, it was stated that conical shells are susceptible to 
coupled mode flutter. Mahmoudkhani et al. [10] studied the 
aero-thermoelastic stability of FGM truncated conical shells in 
supersonic flows using Donnell’s theory and the linear piston 
theory. They employed the eigenvalue analysis to obtain the 
critical parameters. They showed that larger semi-cone angles 
reduce the shell stability. Davar and Shokrollahi [11] provided 
an analysis on the supersonic flutter of FGM conical shells with 
clamped and simply supported boundary conditions using first-
order shear deformation and linear shell theory. Their results 
showed that changing the boundary condition from simply sup-
ported to clamped increases all the frequencies but there is no 
general trend in the critical aerodynamic pressure. Vasilev [12] 
presented a new formulation for flutter analysis of isotropic 
truncated conical shells exposed to supersonic flows using 
linear shell theory. The author concluded that the linear piston 
theory significantly overestimates the critical dynamic pressure 
at low Mach numbers. Yang et al. [13] investigated the super-
sonic flutter in FGM truncated conical shells employing first-
order shear deformation and linear shell theory. It was shown 
that it is possible to control the periodic and chaotic instabilities 
by varying the material’s compositional profile. 

As can be seen, in the earlier works other than the study of 
Bismarck-Nasr and Costa Savio [7], the few studies limited 
their kinematic models to Donnell’s-type nonlinearities. More-
over, employing Galerkin approach placed additional restraints 
on the type of boundary conditions that can be used. The focus 
of the current study is to formulate a hybrid finite element 
model that can represent the nonlinear behavior of truncated 
conical shells subjected to supersonic flows using the three 
different shell theories of Donnell, Sanders and Nemeth. This is 
performed in the following steps: 
·The finite element displacement functions are derived 

from the exact solution to Sanders’ best first-order ap-
proximation. 
·Using that shape function as the bases of the generalized 

coordinate method, the nonlinear internal strain and ki-
netic energies are formulated in terms of nodal degrees of 
freedom. 

·In addition, the effects of initial stiffening due to pressuri-
zation and axial loads are also expressed in terms of 
nodal displacements. Then, the Lagrangian equations of 
motion of the shell are developed based on the Hamilton 
principle. 
·The equations of motion are converted to an amplitude 

equation by employing a variation of the harmonic bal-
ance method.  

 
2. Nonlinear kinematics  

Nemeth [14] formulated a shell theory that can provide 
Donnell’s and Sanders’ shell theories as parametric subsets 
[14, 15]. Fig. 1(a) shows the coordinate system and geometri-
cal parameters of the truncated cone element of this study. The 
longitudinal and radial principal-curvature coordinates are de-

 
(a) 

 

 
(b) 

 
Fig. 1. Conventions: (a) Geometry and coordinate system; (b) nodal de-
grees of freedom. 
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noted by x and θ. The cone half-angle is denoted by ca  and 
the slant length of the cone can be obtained from 2 1= -L x x . 
The reference surface is assumed at the middle of the shell 
thickness and neglecting transverse shear deformation, there 
are three fundamental unknowns in this formulation: Two mid-
dle-surface tangential displacements ( )1 ,=U u x q  and 

( )2 ,=V u x q  and the normal displacement ( )3 ,=W u x q . The 
displacements of material point of the shell ( )3, ,p x q x  in the 
orthogonal principal-curvature coordinate systems are ex-
pressed as [16]: 

 
( ) ( )1 3 1 3 1 2, , ,= + -é ùë ûU x u xq x q x j jj  

( ) ( )2 3 2 3 2 1, , ,= + -é ùë ûU x u xq x q x j jj  (1) 

( ) ( ) 2 2
3 3 3 3 1 2

1, , ,
2

é ù= - +ë ûU x u xq x q x j j  

 
where 3x  is the normal distance from the middle surface. The 
linear rotation parameters 1j , 2j  and j  are defined as 
follows: 
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The in-plane linear deformation parameters are given as: 
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Finally, the relationships of the strain (ε) and the linear rota-

tion parameters ( c ) with the displacements on the middle 
surface are expressed as follows:  
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  (4a) 
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In the above formulation:  
·Specifying 0=NLc  and 3 1=c  simplifies the kinematics 

to the improved first-approximation linear shell theory of 
Sanders [17].  
·Specifying 1=NLc  and 1 2 3 1= = =c c c  defines 

Nemeth’s nonlinear theory [14].  
·Specifying 1=NLc , 1 0=c  and 2 3 1= =c c  retrieves 

Sanders’ kinematics [18, 19].  
·Specifying 1=NLc , 1 2 0= =c c  and 3 1=c  retrieves 

Sanders’ kinematics with the nonlinear rotations about the 
normal to reference-surface are neglected [18, 19].  
·Specifying 1=NLc  and 1 2 3 0= = =c c c  defines 

Donnell’s strain-displacement relationship [20]. 
 

3. Constitutive equations  
Using the principle of virtual work, the equilibrium equations 

of the shell as a function of work-conjugate stress resultants 
are derived based on Sanders’ improved first-order linear the-
ory [17] and given in Appendix A. Work-conjugate stress resul-
tants of Eq. (A.2) are approximated symmetric stress-resultants 
and can be expressed in terms of fundamental unknowns 
(u1,u2,u3). Hence, the two dimensional constitutive equations of 
the shell can be expressed as: 
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1 1
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 (5) 

 
where é ùë ûQ  is the conventional plane-stress compliance ten-
sor of the shell’s material. 
 

{ } { } { }{ } =o o o
TT T

cT ò  (6) 

 
Details of stress resultants of Eq. (5) and the associated 

constitutive matrix can be found in Appendix B of Ref. [16]. It 
should be noted that to produce homogeneous equilibrium 
equations for conical shells, the shell is approximated with a 
linearly variable thickness equivalent truncated cone. For such 
a case é ùë û

oCC  shows dependency to x and the material and 
geometrical parameters of the shell. The constitutive matrix 
with substituted conical principle and geodesic radii of curva-
ture for linearly variable thickness truncated cones is called 
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é ù
ê úë û

o
CC  and are given in Appendix H of Ref. [16]. 

 
4. Linear solution and finite element for-

mulation  
To employ the separation of variables, homogeneous equa-

tions are required and therefore it was assumed that the thick-
ness of the shell varies linearly along the x coordinates in a 
way that the actual constant thickness of the shell occurs in the 
middle of the element at ( )1 20.5mx x x= + . The displacements 
on the middle surface are chosen to take the following form: 

 
( ) ( )( )1 1, cos= x cu u x n q  

( ) ( )( )2 2, sin θ= x cu u x n  

( ) ( )( )3 3, cos= x cu u x n q  (7) 
 

cn  denotes the circumferential mode number and 
/= mx x x  is the non-dimensional longitudinal coordinates. 

The longitudinal part of the solution is: 
 

( )
( )1

2
,

-

=d x du C x
l

 (8) 
 
And dC (d = 1, 2, 3) is the arbitrary magnitude of the dis-

placement. Substituting Eq. (5) into Eq. (A.2) of Appendix A 
yields a system of linear differential equations that, by some 
lengthy mathematical manipulations, produces three equations 
in the following form: 

 
( ) ( ) ( ),1 ,2sin cos 0 1,2,3i c i cn n iq q+ = =L L  (9) 

 
,1iL  and ,2iL  operators are solely dependent on displace-

ments and their derivatives along x direction on the middle 
surface, circumferential mode number and shell parameters 
such as elasticity and geometry. Therefore, the only variable 
that shows up in ,1iL  is l . Hence, the equilibrium Eq. (8) can 
be rewritten in the following matrix form: 

 

{ }
1,1 1,2 1,3 1

2,1 2,2 2,3 2

3,1 3,2 3,3 3

0
é ù ì ü
ê ú ï ï= =é ù í ýë û ê ú

ï ïê ú î þë û

C
A C

C

AQ AQ AQ
AQ AQ AQ AQ

AQ AQ AQ
 (10) 

 
Elements of é ùë ûAQ  are polynomials in terms of l  and de-

tails of them are given in Ref. [16]. The equilibrium equations 
should be able to handle any arbitrary magnitude of displace-
ment, therefore the determinant of  é ùë ûAQ  should be equal to 
zero. This produces a characteristic polynomial that can be 
solved to obtain values of l . Solving the characteristic poly-
nomial yields K  distinct roots and the final solution of the 
system is obtained by summation of all these solutions: 
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2
,

1

, (sin( ) )(cos( ) )
k

d d

K
se ce

d d k c c
k

u x C x n n
-

=

æ öæ ö
ç ÷= ç ÷ç ÷ç ÷è øè ø
å

l

q q q  (11) 

where , 0,1d dse ce =  for 1,3d =  and , 1,0d dse ce =  for   2=d . 
The finite element of the current study has two nodal lines and 
the degrees of freedom of those nodes id  and jd  are shown 
in Fig. 1(a). For the case of isotropic materials, four degrees of 
freedom at each node are chosen and are shown for id  node 
in Fig. 1(b). The mathematical expression of these degrees of 
freedom for id  node is:  
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Employing Eq. (10) and recalling the linear dependency (de-

terminant of matrix assumed to be zero) and lengthy mathe-
matical manipulations, three unknown amplitudes of vibration 
( 1C , 2C , and 3C ) in the displacements of Eq. (8) can be de-
fined in terms of each element’s degrees of freedom:  
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where é ùë ûA  is a constant matrix. Hence: 
 

{ } { }1  -
= é ùë û

eC A δ  (14) 
 
Substituting matrix form of Eq. (14) in Eq. (7) results the finite 

element displacement matrix: 
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where the elements of é ùë ûR  follow this equation: 
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æ ö
= ç ÷ç ÷
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More details on the development of this FEM solution can be 

found in Ref. [21]. 

  
5. Equations of motion  
5.1 Overview 

So far, the spatial component of the shell’s motion is defined 
by Eq. (15). Defining { }d = ( ){ }td  as the temporal (time-
dependent) component of shell’s motion, the equations of mo-
tion of the shell, can be obtained by the generalized coordi-
nates method. Assuming the system consists of N finite ele-
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ments, each with K degrees of freedom, the Lagrangian equa-
tion of motion based on Hamilton’s principle can be expressed 
as follows: 

 

( )2, ,, 1,I
i

i i ii

d T T V V q i D
dt d d dd

é ù¶ ¶ ¶ ¶
- + + = =ê ú
¶ ¶ ¶¶ê úë û

K&  (17) 

 
where  
·D is the total degrees of freedom of the system after assem-

bling mass and stiffness matrices of elements and applying 
the constraints. 
·T  denotes the total kinetic energy of the system. 
·V  and IV  accordingly are the internal elastic strain energy 

and the initial stiffening strain energy due to external axial 
load and hydrostatic pressure of the system. 
· iq  is the nodal external force.  

 
Eq. (17) can be rewritten in matrix form as follows: 
 

{ } { } { } { } { }
é ù¶ ¶ ¶ ¶ê ú - + + =
ê ú ¶ ¶ ¶¶ë û
&

id T T V V q
dt d d dd

 (18) 

 
5.2 Kinetic energy 

Neglecting rotational and cross translational-rotational com-
ponents of the kinetic energy due to absence of shear defor-
mation in the theory of the current study and keeping the pure 
translational ( TT ) part of the kinetic energy, the structural mass 
matrix for a single element can be defined as follows: 

 

( )0
1 2Ω

e T

T T TK K
M S S A A dxd

´
=é ù é ù é ùë û ë û ë ûòò r q  (19) 

 
Details of variables of Eq. (19) can be found in Ref. [16]. The 

structural mass matrices of all elements can be assembled to 
obtain the whole system mass matrix using standard finite 
element assembly procedures. The corresponding assembled 
matrix is named é ùë ûTM . Finally, by performing some mathe-
matical operations, the kinetic energy component of the equa-
tions of motion can be obtained from the following equation: 

 

{ } { } ( ){ }2S T

d T M M
dt

d d
d

é ù¶ê ú = é ù é ùë û ë ûê ú¶ë û
&

&& &&@  (20) 

 
é ùë ûSM  denotes the assembled structural mass matrix of the 

whole system. 

 
5.3 Internal strain energy 

The internal strain energy over the shell element surface 
area (Ω) is defined as: 

{ } { }3 3
/2

3 3
3Ω /2

1 2

1 1 1 Ω
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h T

e h
V d d

R R
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æ öæ öæ ö
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The through-the-thickness integral of Eq. (21) can be ob-

tained as follows: 
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The strain vector { }°T  has two linear and nonlinear com-

ponents: 
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where { }pd Ä  is the Kronecker product power  p of vector 

{ }d (e.g. { } { } { }2d d dÄ = Ä ). The rows of  °
é ù
ë ûL
S
T

 and °
é ù
ë ûNL
S
T

 

are provided in Appendix I of Ref. [16]. Using Eqs. (23) and 
(24) the following stiffness matrices for each element can be 
defined: 
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Hence, the strain energy of the element can be written in the 

following form: 
 

{ }( ) { } { }( ) { }

{ }( ) { } { }( ) { }

2
11 12

2 2 2
21 22

1
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T T ee ee e e
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T Te e ee ee

V K K

K K

d d d d

d d d d

Ä

Ä Ä Ä

æ= +é ù é ùç ë û ë ûè
ö
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 (25) 

 
The total strain energy is equal to the sum of the strain ener-

gies of all elements. Therefore, using standard finite element 
assembly procedures, the structural stiffness matrices of all 
elements can be assembled into the whole system stiffness 
matrices. The corresponding assembled stiffness matrices are 
named 11é ùë ûK , 12é ùë ûK , 21é ùë ûK  and 22é ùë ûK . But substituting Eq. 
(25) into Eq. (18) requires proper mathematical formulation for 
the derivative of Kronecker powers of vectors using matrix 
calculus. The necessary mathematical formulations have been 
developed by the authors and can be found in Ref. [22] and 
Appendix J of Ref. [16]. Subsequently, the derivative of the 
strain energy with respect to the degrees of freedom can be 
expressed as: 

 

{ } { } { } { }2 3
11 12 22

1
2

V K K Kd d d
d

Ä Ä¶ é ù é ù= + +é ùë û ë û ë û¶
% %  (26) 
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where 12Ké ù
ë û
%  and 22Ké ù

ë û
% are formulated based on 12Ké ùë û , 

21Ké ùë û  and 22Ké ùë û  using matrix calculus operations with details 

that are provided in Ref. [22]. 
 

5.4 Aerodynamic pressure field 

The improved linear piston theory that takes into account the 
effect of curvature, suggests the following relationship for the 
aerodynamic pressure field over the shell [23, 24]: 

 

( )
3 3

, ,1 ,2 3 ,3  tan

é ù¶
= - + -ê ú

¶ê úë û
&Aero L A A A

c

u uP C C u C
x x a
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where 
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2 1
A

l

C
M

=
-

 (28) 

 
And ag , P , M , and a  accordingly denote the adiabatic 

index, static pressure, Mach number and speed of sound. The 
subscript l  denotes the local stream condition after the coni-
cal shock at the tip of the cone that can be obtained from the 
free stream condition (denoted by ¥  symbol) using Taylor-
Maccoll analysis or pre-calculated look-up tables. To express 
the aerodynamics pressure field in terms of nodal displace-
ments, first recalling Eq. (15), the displacement along the third 
curvilinear coordinates is: 

 
{ } { }3 0 0 1W e eu N Nd d= =é ù é ù é ùë û ë û ë û  (29) 

 
Substituting Eq. (29) in Eq. (27) yields: 
 
{ } { }

( ) { }

,1 ,2

,1 ,3
,1 tan

AERO A A W e

A A
A W W e

c

p C C N

C C
C N N

x x

d

d
a

= - é ùë û

æ ö¶
- -ç ÷é ù é ùë û ë ûç ÷¶è ø

&

 (30) 

 
The general nodal force vector as a result of this pressure 

field is defined as: 
 
{ } { } 1 2Ω

Te

AERO AEROq N p A A dxd= é ùë ûòò q  (31) 

 
Hence substituting Eq. (29) into Eq. (31) yields aerodynam-

ics stiffness and damping matrices as follows: 
 

( )

,1 ,2 1 2Ω

,1 ,3 1 2Ω

1
tan

e T

AERO A A W

T

A A W
c

K C C N N A A dxd

C C N N A A dxd
x

= -é ù é ù é ùë û ë û ë û

+ é ù é ùë û ë û

òò

òò

q

q
a  

,1 1 2

e T

AERO A WC C N N A A dxd
xW

¶
= -é ù é ù é ùë û ë û ë û¶òò q  (32) 

 
The whole structure aerodynamics and stiffness matrices 

é ùë ûAEROK  and é ùë ûAEROC  can be constructed using classic finite 
element assembly procedures. 

 
5.5 Initial stiffening due to axial load and hy-

drostatic pressure 

The stress resultants due to the combination of the axial load 
AF  and hydrostatic pressure mp  can be formulated as fol-

lows [25]: 
 

( )tanA c mx pq a= -n  

( )
( )

tan
2 sin 2

c A
xA m

c

x Fp
a

p a
= - -n  (33) 

 
An element’s strain potential energy as a result of these 

stress resultants is equal to [9]: 
 

( )2 2 2
1 2 1 1 2

e
i A xA A xAV A A dxd

W
é ù= + +ë ûòò q qj j j qn n n n  (34) 

 
Defining 1 0 0UN N=é ù é ù é ùë û ë û ë û  and 0 1 0VN N=é ù é ù é ùë û ë û ë û  and 

taking the same approach as Eqs. (29) and (30), the linear 
rotation parameters of Eq. (2) can be expressed in terms of 
nodal displacements: 

 

1

¶é ù = - é ùë ûë û ¶ WN N
xj

 

( ) ( )2

1 1
tan sin

¶é ù = -é ù é ùë û ë ûë û ¶V W
c c

N N N
x xj a a q  

( )
1 1 1
2 sin

æ ö¶ ¶é ù = - +ç ÷é ù é ù é ùë û ë û ë ûë û ç ÷¶ ¶è ø
V U V

c

N N N N
x x xj a q

 (35)
 

 
Therefore, the initial stiffness matrices due to hydrostatic 

pressure and axial load are obtained as follows: 
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 (36) 

 
Using general finite elements assembly procedures, the 

whole structure initial stiffening matrices ,é ùë ûi pmK  and ,é ùë ûi FAK  

can be constructed. Therefore, employing the same approach 
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described for the internal strain energy, the initial stiffness 
component of the equations of motions is: 

 

{ } { } { }, ,

¶ é ù é ù= + ë ûë û¶
i

i pm i FA

V K Kd d
d

 (37) 

 
5.6 Equations of motion in terms of nodal dis-

placements 

Substituting Eqs. (20), (26), (33) and (37) in Eq. (18) results 
in the following equation of motion: 

 

{ } { } { } { } { } { }2 3
12 22

1
2S AERO totM C K K K qd d d d dÄ Äé ù é ù+ + + + =é ù é ù é ùë û ë û ë û ë û ë û

& % %&&  

 (38) 

 
where 

 

11, 11 , ,é ùé ù é ù= + + +é ù é ùë û ë ûë û ë ûë ûtot AERO i pm i FAK K K K K  (39) 

 
6. Dynamic stability in supersonic flow  
6.1 Harmonic motion 

In case of free motion when there is no excitation force, the 
left hand side of Eq. (38) should be equal to zero or a negligible 
residual such as R(t): 

 

( ) { } { } { } { } { }2 3
11, 12 22

1
2S AERO totR t M C K K Kd d d d dÄ Äé ù é ùé ù= + + + +é ù é ùë û ë û ë û ë û ë û

& % %&&  

 (40) 
 
A variation of the harmonic balance method proposed by 

Lewandowski [26] is used to obtain the nonlinear response of 
the system. The temporal component of the response is as-
sumed to have the following periodical structure: 

 
{ } { } ( ) { } ( )cos sin= +c st td d w d w  (41) 

 
In order to obtain the amplitude equation, the in-time 

Galerkin method is applied to the residual [27]: 
 

( ) ( )
/4

0
2 / cos 0

T
T R t t dtw =ò  

( ) ( )
/4

0
2 / sin 0

T
T R t t dtw =ò  (42) 

 

Defining { } { } { }{ }  =
T

cs c sδ δ δ , substituting Eq. (41) into Eq. 

(40), rearranging in the matrix form and some lengthy mathe-
matical operations yield the following amplitude equation: 
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 (43) 
 

where T is the period of the response. 
 

6.2 Linear solution 

Eq. (43) can be rewritten in the following compressed form 
where the short names for the matrices have been substituted 
for their expanded form: 

 
{ } { } { }

² { } { }

2

2 3
12 22 0

S cs AERO cs tot cs

cs cs

MM CC KK

KK KK

w d w d d

d dÄ Ä

- + +é ù é ù é ùë û ë û ë û
é ù é ù+ + =ë ûë û

%  (44) 

 
In case of linear dynamic response, all the nonlinear terms 

that include Kronecker product are assumed to be zero. By 
factorizing { }csd  and dropping the trivial solution of { } 0=csd , 
Eq. (44) takes the following form: 

 
2 0- + + =é ù é ù é ùë û ë û ë ûS AERO totMM CC KKw w  (45) 

 
This is a classic generalized eigenvalue problem whose ex-

act solution can be obtained using generalized Schur decom-
position. In the current study, LAPACK numerical library [28] is 
used to solve the linear generalized eigenvalue problem and to 
obtain the frequencies. Linear flutter in conical and cylindrical 
shells is a Hopf bifurcation and occurs as a result of merging 
two adjacent modes; see Refs. [9, 29]. The flutter onset can be 
detected by appearance of negative imaginary parts in the 
frequencies that are obtained from the solution of the general-
ized eigenvalue problem. While the real parts denote the fre-
quency, the imaginary part represents damping. Hence, a 
negative damping leads to instability. In the current study, an 
algorithm using secant method is developed to accurately iden-
tify the linear critical pressure where the flutter onset occurs. In 
short, using two initial guesses for dynamic pressure where 
one resides in the stable region and the other is placed in the 
unstable region, a new pressure in between is iteratively calcu-
lated using secant root-finding algorithm that yields a frequency 
with a very small negative imaginary part. This is a good re-
placement for the common trial and error that was employed in 
some of the earlier studies (Sabri et al. [30]; Kerboua and Lakis 
[31]). 

 
6.3 Nonlinear solution 

For solving the nonlinear amplitude equation a variation of 
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the algorithm described by Lewandowski [26] is employed. The 
algorithm contains two major steps. The first step utilizes trust 
region optimization [32] to obtain solution of generalized coor-
dinates vector ({ }csd ) for a given constant harmonic frequency 
(w ). The next step utilizes the calculated vector to calculate 
the nonlinear components and then correct the harmonic fre-
quency by treating it as a linear problem. The results of the 
linear solution or the previous amplitude step are used as the 
initial guess. 

Let us define the following cost function: 
 

{ }( ) { } { }
{ } ² { } { }

2

2 3
12 22

, cs S cs AERO cs

tot cs cs cs

F MM CC

KK KK KK

w d w d w d

d d dÄ Ä

= - +é ù é ùë û ë û

é ù é ù+ + +é ùë û ë ûë û
%

 

 (46) 
 
Obviously, the solution for a desired amplitude such as A  

should yield { }( ), 0=csF w d . But the solution also should be 

constrained in a way that the maximum value of the elements 
within { }csd  that are associated with displacement in normal 
to surface directions (W ) be equal to A . Let us call such 
vector { }cs A

d . 
The outline of the algorithm can be described as follows: 
1. In the first step of the algorithm, using a guess for w  

such *w  (the initial guess can be obtained from the linear 
frequencies) and keeping that constant, Eq. (46) is solved 
to obtain a { }*

csd  vector that minimizes { }( ), csF w d . 

2. { }*

csd  vector is rescaled to { }*  cs A
d so it satisfies the am-

plitude constraint. 
3. This scaled vector is substituted as a constant vector 

within the rearranged version of Eq. (44) that has the fol-
lowing form: 

 

 
(

² { }( ) { }( ) { }

2

** 2
12 22 0

S AERO

tot cs cs csA A

MM CC

KK KK vecI KK vecI

w w

d d dÄ

- +é ù é ùë û ë û

öæ öé ù é ù+ + + =é ùç ÷÷ë û ë ûë ûè øø
%

 

 (47) 
 

Mathematical definition of operator ( )vecI a  is given in 
[22] but in short this operator converts the Kronecker 
product of two vectors into a matrix multiplication. It 
should be noted that since { }*

cs A
d  is assumed constant, 

Eq. (47) now has the same structure as the linear general-
ized eigenvalue problem of Eq. (45). Solving that linear 
problem provides an update for *w . 

4. The convergence is checked by calculating 

{ }( )**, cs A
F w d  vector to see if the average of its absolute 

is below a small threshold. Otherwise, the new *w  in ad-
dition to { }*

cs A
d  are fed back as the initial guesses into 

the first step and the iteration continues until the conver-
gence is achieved. 

It should be noted that to ensure and improve the conver-
gence, the implementation of the algorithm employs additional 
features such as concepts similar to under relaxation factor, the 
gradual incrementing of the amplitude and reusing the solution 
of the previous amplitude as the initial guess for the next larger 
amplitude step. The high level flowchart of the algorithm is 
shown in Fig. 2. 

 
6.4 Convention of boundary conditions 

Tong’s [33] convention is used to identify the boundary con-
ditions for a truncated cone that has four degrees of freedom at 
each end: 

 
·F: All degrees of freedom are free (U, V, W, ¶ W/ ¶ x)].  
·CC4: All degrees of freedom are clamped (U = V = W = 

¶ W/ ¶ x = 0)  
·SS0: Simply supported where U = 0 and the rest are free  
·SS4: Simply supported where U = V = W = 0 and ¶ W/ ¶ x 

is free  
·SS5: Where V = 0 and the rest are free  

For example, F-SS0 indicates free boundary condition at the 
small end and simply supported according to what is described 
above at the larger end. 

 
7. Results and discussion 
7.1 Small amplitude vibration and flutter  

It is important to validate the linear dynamic behavior of the 
shell to ensure the correctness of the model and also to pro-
vide a baseline for nonlinear analysis. Hence, for the first case 
of the current study’s calculations, the small amplitude flutter of 
thin conical shells for the linearized version of Eq. (39) (all the 
nonlinear terms are dropped) was investigated by different 

 
 
Fig. 2. Overview of the nonlinear harmonic frequency solver algorithm. 
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authors [2, 7, 9, 10, 30, 31] on a truncated conical shell with the 
following properties: 

( )1.295 mm 0.051 int = , ( )1 191.72 mm 7.548 inR = ,  

( )1558.7 mm 61.365 inL = , 5ca = ° ,  
6 244.82 GPa(6.5 10 lbinE -= ´ , 0.29n = ,  

3 4 2 48902 kgm (8.33 10 lbf s inr - - -= ´ , M¥ = 3,  

( )1213 m / s 8400 insa -
¥ = , 1.4g = , / 1.03lP P¥ =  and 

2.89=lM . lM  and lP  denote the local Mach number and 
pressure after the conical shock on the free stream conditions 
have been calculated using Ref. [35]. The boundary condition 
for this case is simply supported SS4. The flutter critical pa-
rameter is defined as follows:  

 
( )
( )( )

2 3
1

1/23 2

12 1
Λ

1

¥-
=

-
cr

v P R

Et M

g
 (48) 

 
The results including the critical circumferential mode num-

ber ( crn ) are shown in Table 1 and show good agreement with 
existing studies reported in literature. Based on the provided 
numbers, it seems that a few of earlier works (e.g. Refs. [9, 
31]) overlooked the important effect of the formation of conical 
shock at the tip of the cone and subsequently the reduced local 
Mach number and increased local static pressure. This led to 
the slight differences between those values and what is re-
ported here that practically employed the same FEM method. It 
seems that Schulman [34] used an insufficient number of terms 
in employing the Galerkin implementation. Moreover, the cur-
rent study employed the correction terms for considering the 
effect of curvature in its linear piston theory while Dixon and 
Hudson [2] and Bismarck-Nasr and CostaSavio [7] ignored that 
effect.  

The validity of real and imaginary components of the fre-
quency of the current study were compared favorably with the 
work of Kerboua and Lakis [31]. The dimensions and physical 
properties of the shell are the same as the case presented for 
Table 1,   3=lM  and SS4-SS4 were chosen as the local Mach 
number and the boundary conditions, respectively. The results 

are shown in Fig. 3 and demonstrate good accordance. The 
small differences can be attributed to the Newton-Raphson 
iterative method that was employed for calculating the flutter 
onset in that study, while in the current study, the exact solution 
using generalized Schur decomposition is employed. In the 
third case, for the breathing vibration of conical shells, experi-
mental results provided by Miserentino and Dixon [5] were 
selected for validation. The truncated conical shell has the 
following properties 0.47 mm,t =  1 30.5 mm,R =  2R =  
381 cm, 15 ,ca = ° 200 GPa ,E = 0.28,n = r =  37640 kgm-  
and the boundary conditions are reported to be SS5-SS5. The 
shell was pressurized with air. Results for four different internal 
pressures are shown in Fig. 4 and demonstrate good agree-
ment.  

It should be noted that due to the configuration of the in-
stalled shell in this experiment, the internal pressure produced 
an axial load that was taken into account by multiplying the 
pressure on the sum of the shell’s area at both ends. The slight 
difference could be attributed to the shell boundary conditions 
in the experiments that as described by Miserentino and Dixon 
[5], had some deviations from the assumed free degrees of 
freedom.   

The flutter critical pressures and first mode frequencies at dif-
ferent values of internal pressure for the shell described in the 
second case are shown in Fig. 5. As can be seen, the flutter 
critical pressure increases with the internal pressure due to its  

Table 1. Validation: Small amplitude flutter critical parameter. 
 

Reference Method crL   crn  
Shulman [34] Galerkin, 4 terms 669 6 

Galerkin, 4 terms 492 5 
Galerkin, 8 terms 588 5 Dixon and Hudson [2] 

Galerkin, 12 terms 590 5 
Bismarck-Nasr and Costa Savio [7] FEM 702 6 

Sabri and Lakis [9] Hybrid FEM 598 6 
Pidaparti and Yang [36]  576 5 

Mahmoudkhani et al. [10]  570 5 
554 5 

Present (linear)  
420 6 

 

 
(a) 

 

 
(b) 

 
Fig. 3. Comparison of (a) the real; (b) the imaginary parts of the first and 
second mode of vibration with those reported by Kerboua and Lakis [31]. 
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Fig. 4. Comparison of vibration frequencies of simply supported truncated conical shell at different internal pressures against those presented by Miserentino 
and Dixon [5]. 

 
 

      
                                       (a)                                                               (b) 
 
Fig. 5. Pressurized shell flutter onset: (a) Critical static pressure; (b) first mode frequency for different circumferential mode numbers. 
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stiffening effect and this is supported by what was reported by 
Sabri and Lakis [9] and Kerboua and Lakis [31]. 

 
7.2 Large amplitude flutter  

Due to lack of enough data to reproduce the few cases of 
nonlinear flutter of conical shells, one case of cylindrical shell 
that was studied by Ref. [37] is simulated with a truncated cone 
with very small semi-cone angle ( 0.01= °ca ) employed for 
validation of large amplitude flutter. The properties are: t =  

( )1.016 mm 0.004 in , ( )1 203.2 mm 8.00 in ,R = 391.16 mmL =  

( )15.4 in , 0.01 ,ca = ° ( )6 2110.3 GPa 16 10 lbf in ,E -= ´   0.35,n =  

( )3 4 2 48902 kgm 8.33 10 lbf in ,sr - - -= ´   3,M¥ =  213 m / sa¥ =  

( )18400 ins ,-  1.4,g =    23=cn  and ( )3447 Pa 0.5 psimp = . 

The results of large amplitude flutter static pressure to the lin-
ear flutter for different nondimensional amplitudes of vibrations 
are shown in Fig. 6 and demonstrate good accordance. 
Nonlinear flutter of a pressurized truncated cone with physical 
boundary conditions and geometrical properties similar to the 
second case was studied using Sanders’ nonlinear thin shell 
theory for modeling the kinematics of the shell. The internal  
pressure was set to 9.0 kPamp =  and the associated axial 
load was also considered for calculations. This is the case of a 
pressurized truncated conical shell that was described in the 
second case and was the subject of experimental study by 
Miserentino and Dixon [5]. The flutter critical pressure in that 
experiment was reported to be crP = 332.2 kPa at cn = 9. In 
the current study, the linear critical pressure was calculated as 
Pcr = 389.305 kPa. 

Investigating the first ten modes of nonlinear response that 
are not presented here revealed that nonlinear flutter onset and 
instability within the amplitude range of the current study 
(1.2~1.5 times of the shell thickness) occurs in the first four 
modes of oscillation. Hence, the presented results here are 
focused on those four modes. The convention in literature is to 
provide the stability curves in terms of static pressure. On the 

other hand, the common practice in the few existing experi-
ments was to keep the static pressure constant and induce the 
flutter by reducing the internal pressure mostly because the 
gradual change in the static pressure of the supersonic wind 
tunnel is not practical. Hence, we focused the results around 
the flutter onset for varying amplitudes of vibration. 

Fig. 7 shows the variation of dimensionless flutter frequency 
versus the amplitude of flutter vibration for all three different 
theories for the first and the second longitudinal modes of this 
case. As can be seen, all theories predicted a softening behav-
ior for the effect of geometrical nonlinearities. Moreover, in both 
modes, Donnell's theory predicted a stronger softening effect 
but the prediction of Sanders’ and Nemeth’s theories at lower 
amplitudes are relatively close. Since the contribution of addi-
tional terms in Nemeth’s theory compared to Sanders’ is more 
effective in thicker shells and in the presence of shear deforma-

 
 
Fig. 6. Comparison of the large amplitude dimensionless flutter frequency 
of a cylindrical shell with Ref. [37]. 

 
 

 
(a) 

 

 
(b) 

 
Fig. 7. Non-dimensional flutter amplitude versus non-dimensional flutter 
frequency; , 1,/m NL Lw w ; (__) stable branches, (--) unstable branches; for 
the first and second longitudinal modes, comparison of Donnell, Sanders 
and Nemeth theories ( cn = 9, 1,Lw = 1811 Hz, crP = 389:305 kPa). 
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tion, producing close results for this particular thin shell is ex-
pected. Notably, all three theories predicted unstable branches 
of vibration for both modes that are different from toggling be-
tween stability and instability for the linear solution. This is a 
result of Neimark-Sacker bifurcations of the periodic orbit. 

Fig. 8 shows the variation of non-dimensional flutter ampli-
tude versus non-dimensional flutter frequency for the third and 
the fourth longitudinal modes of Sanders' theory. This has been 
calculated at a very small post-flutter critical pressure 

390.0 kPacrP =  to achieve numerical convergence. 
The alternating stable-unstable behavior between modes 

that results in a shift in the stability to the higher modes is con-
sistent with the general behavior described for the nonlinear 
flutter in cylindrical shells [29]. The next Neimark-Sacker bifur-
cation results in establishing the stability in lower modes while 

destabilizes the higher modes. Moreover, as can be seen in all 
of the results, the deviations from the linear frequency are not 
significant and that is in line with what is reported in the ex-
perimental work of Miserentino and Dixon [5]. It should be 
noted due to the presence of ( )sin tw  in Eq. (41), one addi-
tional mode emerges between each two linear modes. In other 
words, in terms of frequency, the first two modes on nonlinear 
vibration have close values to the first linear mode and similarly, 
the third and fourth nonlinear frequencies have values that 
emerged from the second linear mode of vibration. 

 
8. Conclusion 

A nonlinear hybrid finite element model was developed for 
truncated conical shells, based on the exact solution of 
Sander’s linear shell theory. Using the generalized coordinate 
method and the displacement function of the FEM model, the 
internal strain energy of the shell for three different types of 
geometrical nonlinearities (Donnell, Sanders, Nemeth) was 
defined in terms of nodal displacement. The linear piston the-
ory with correction term for the effect of curvature employed for 
modeling the pressure field and transformed in terms of nodal 
displacements. The effect of initial stiffening due to internal 
pressure and axial loads was also formulated in terms of nodal 
displacements. Equations of motion of the shell were devel-
oped using Lagrangian approach. Then, employing a variation 
of harmonic balance method, the amplitude equations of the 
shell were obtained. The linear flutter problem was solved us-
ing the exact solution of generalized Schur decomposition of 
the system and an iterative method was developed for the 
nonlinear solution. Results of vibration of pressurized truncated 
conical shells were compared with those existing in the litera-
ture, and these showed good agreement. 

Linear and large amplitude flutter characteristics were also 
compared with the existing experimental data for conical and 
cylindrical shells accordingly, and these demonstrated good 
accordance.  

The large amplitude flutter responses of truncated conical 
shells were obtained and these showed softening behavior. In 
addition, it was observed that, as the amplitude of the vibration 
increased, the instability shifted to higher modes due to Nei-
mark-Sacker bifurcation.  

 
Nomenclature----------------------------------------------------------------------------------- 

[ ]AQ       : Characteristic polynomial matrix    

1 2 3, , ,NLc c c c  : Flag parameters to define different shell theories 

é ù
ê úë û

o
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Fig. 8. Non-dimensional flutter amplitude versus non-dimensional flutter 
frequency; , 1,/m NL Lw w ; (__) stable branches, (--) unstable branches; for 
the third and fourth longitudinal modes predicted by Sanders’ nonlinear 
theory ( cn = 9, 1,Lw = 1811 Hz, crP = 389:305 kPa). 
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Appendix  
A. Conical shell linear equilibrium equa-

tions in terms of stress resultants  
The principle parameters of conical shells can be obtained 

from the following equations: 
 

( ) ( ) ( ) ( ) ( )

( )

1 2
1 2

11 22

1 1, 1, , sin , 0,
, ,

1 1 1 1, 0,
tan

c

c

A x A x x
R x R x

x x

q q a
q q

a r r

= = =

= = =
 (A.1) 

 
By introducing the geometrical parameters of conical shells 

into the general equilibrium equations of Sanders’ improved 
linear theory [17], one obtains the equilibrium equations of a 
conical shell as follows:  
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