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Abstract  In this work, a novel machine tool thermal error modeling method based on 
dynamic temperature gradient is proposed, and a thermal error compensation method based 
on unfalsified control is developed. The dynamic temperature gradient is used to optimize the 
locations of temperature measuring points on the machine tool. Real-time compensation for the 
thermal error can be achieved using the developed compensation method by establishing the 
correlations between dynamic temperature gradient and thermal error in the machine tool. Dif-
ferent from traditional model-based methods, the developed compensation approach does not 
rely on an accurate model of the thermal error but instead uses online input/output data to 
adaptively select the best controller at any moment, thereby improving thermal error prediction 
accuracy and robustness. The effectiveness of the developed thermal error compensation 
method is demonstrated on a turning center, where the spindle thermal error is compensated 
during the manufacturing of 120 inner bore parts and 120 shaft parts. After compensation using 
the proposed approach, thermal errors are reduced from 27 µm to 9 µm for the inner bore parts 
and from 31 µm to 11 µm for the shaft parts, respectively.  

 
1. Introduction   

With increasing demands for high machining accuracy in precision and ultra-precision manu-
facturing, improving the thermal stability of CNC machine tools and reducing thermally induced 
errors have become the focus of research efforts [1]. Thermally induced errors are known to be 
the largest source of machining error in precision and ultra-precision manufacturing [2, 3]. 
Thermal errors can be reduced by means of the structural improvement of the machine tool 
through improved design, adopting machine components with high accuracy, and precise as-
sembly of the machine. However, these approaches suffer limitations, such as high cost and 
difficulties in adapting to the various thermal conditions that occur with modern multipurpose 
CNC machine tools [3]. By contrast, thermal error compensation is not only cost-effective in 
reducing thermal errors but also adaptive to different thermal conditions associated with various 
machining tasks [1, 4]. 

Traditional thermal error compensation methods generally involve three steps, namely, 
measuring the temperature and thermal errors of the machine tool in typical operation condi-
tions, establishing mathematical models correlating temperature in the machine tool with ther-
mal errors, and compensating the thermal errors based on the established models [1]. In the 
last few years, researchers have proposed various methods to model and predict thermal er-
rors of machining tools, which can be classified into three categories, namely, finite element 
method (FEM), mechanism analysis, and mathematical fitting methods.  

Commercial software platforms are widely used for FEM. Huang [5] established an inverse 
method by a combination of CGM and ANSYS software to estimate the time-varying heat 
sources. Ma [6] considered thermal contact resistance and bearing stiffness and proposed a 
systematic modeling method of spindle thermal characteristics based on morphological charac-
terization and mechanical properties. Brouwer [7] coupled FEM and discrete-element method 

© The Korean Society of Mechanical 
Engineers and Springer-Verlag GmbH 
Germany, part of Springer Nature 2020 



 Journal of Mechanical Science and Technology 34 (1) 2020   DOI 10.1007/s12206-019-1232-y 
 
 

 
320 

to establish a combined method for rotor bearings. The com-
ponents of machine tool are simplified to build mathematical 
models for mechanism analysis method. Liu [8] proposed a 
power matching method considering the relationship between 
thermal errors and power inequality of spindle heat generation-
dissipation. Zhang [9] considered the time-varying temperature 
of the environment and established the thermal error transfer 
function of the workpiece and the machine tools. Liu [10] estab-
lished the radial thermal drift error model of different thermal 
postures for a machining tool and calculated the geometric 
parameters on the prediction results. The aforementioned 
types of modeling strategies can be classified as model-based 
prediction, which rely on an accurate model of the thermal error. 
However, the practical thermal error is dynamic and difficult to 
present in a mathematical model. Thus, data-driven prediction 
methods, such as backpropagation network [11], support vec-
tor machine [12], and fuzzy logistic [13], have been increasingly 
emphasized. A hybrid model [14, 15] that combines two or 
more different approaches has been proposed by some re-
searchers. 

Although thermal error compensation has obtained consid-
erable development thus far, few compensation techniques 
can be effectively implemented in practical machining proc-
esses due to three major obstacles as follows. First, the num-
bers of temperature sensors and the optimal sensor locations 
are difficult to determine [16]. Optimal locations where local 
temperature is in approximately linear relationship with the 
thermal errors must be identified. The smallest number of tem-
perature sensors necessary to capture the temperature field in 
the machine tool also needs to be identified to ensure fast 
compensation. Second, the detection and identification of the 
thermal characteristics of the machine tool can be time-
consuming [1]. During the actual machining process, thermal 
errors are influenced by many factors, such as processing 
technologies, cutting parameters, cooling fluids, and ambient 
environment, resulting in nonlinear, quasi-static and pseudo-
hysteric behaviors of thermal error. Hence, traditional thermal 
error modeling methods require simulation of the entire ma-
chining process under various conditions to detect and identify 
the machine tool thermal characteristics. On the basis of the 
statistical analysis of thermal error and temperature data, vari-
ous modeling algorithms have been used to establish mathe-
matical models to correlate machine tool temperature with 
thermal errors. The detection and identification process can be 
time-consuming and results in high cost in terms of production 
throughput. Third, the robustness of thermal error models is 
often poor [11]. The established mathematical model needs to 
accurately estimate the machine tool thermal errors under vari-
ous complicated machining and environmental conditions. 
Therefore, the mathematical model should be able to adapt to 
the changes in the environment temperature and the variations 
of the thermal characteristics of the machine tool, which is diffi-
cult to achieve using traditional static or quasi-static mathe-
matical models. 

This study proposes a novel method for machine tool ther-

mal error compensation based on unfalsified control (UC) the-
ory applied to the spindle of a CNC turning center. Sec. 2 pre-
sents the theoretical and experimental analysis of spindle 
thermal deformation. Sec. 3 proposes an optimization strategy 
for the arrangement of the temperature measuring points. Sec. 
4 presents the proposed thermal error compensation method, 
which can improve the robustness of thermal error compensa-
tion. Finally, Sec. 5 presents the experimental results. 

 
2. Analysis of spindle thermal deformation  
2.1 Theoretical analysis 

Heat conduction in the spindle can be described by a one-
dimensional simplified model, as shown in Fig. 1. Heat flux 
input Q comes from the fixed end at the left-hand side of the 
spindle and departs from the free end at the right-hand side. At 
the same time, heat exchange occurs between the spindle and 
the ambient environment through convection and radiation. 

Temperature response dynamics to the heat flux input is de-
pendent on the location of the temperature measuring point 
due to thermoelasticity [17]. As shown in Fig. 2(a), the meas-
ured temperature at T1 responds faster than the thermal de-
formation LD  due to the location being closer to the heat 
source, whereas the measured temperature at T2 responds 
slower than the thermal deformation LD  for being further 
away from the heat source flux input, as shown in Fig. 2(b). 
The further away the temperature measuring point from the 
heat source is, the longer the time delay present in the tem-
perature response to the heat flux input will be. The pseudo-
hysteric characteristic is illustrated in Fig. 2. 

The thermal elongation of the spindle due to heat conduction 
can be expressed as follows:  

 

( ) 00

L
L T x T dxa é ùD = -ë ûò ,                     (1) 

 
where a  is the thermal expansion coefficient and can be con-

Q
cQ

X dXQ +

X dX
L LD

XQ
1T 2T

 
 
Fig. 1. One-dimensional simplified model of the spindle. 

 

 
                  (a)                               (b) 
 
Fig. 2. Temperature-deformation relationship during warm-up (dashed line) 
and cool-down (solid line) stages. 
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sidered a constant, L  is the length of the spindle, ( )T x  is 
the temperature at position x, and 0T  is the initial temperature 
of the spindle in thermal equilibrium. Applying the mean value 
theorem of integrals to Eq. (1) yields 

 

( ) ( )0 00

1 L
T T T x T dx

L
x é ù- = -ë ûò ,                (2) 

 
where ( )T x  is the mean value. LD  can be described as 
follows:  

 
( ) 0L L T Ta xé ùD = -ë û ,                          (3) 

 
where x  is a certain position within the range of 0 Lé ùë û，  on 
the spindle, as shown in Fig. 3. Eq. (3) indicates that at least 
one point’s temperature on the spindle can describe the ther-
mal elongation LD  of the spindle by itself, and the tempera-
ture ( )T x  has a linear relationship with LD .  

 
2.2 Experimental analysis 

To detect the temperature field of the spindle, related ex-
periments were conducted on an SMTCL ETC3650 NC center, 
which has a maximum rotational speed of 8000 rpm, a maxi-
mum machining diameter of 360 mm, and a FANUC 0i TD NC 
system. A total of four temperature sensors were attached on 
the machine tool, as shown in Fig. 4. The locations of the sen-
sors are described as follows: 

a) T1 was for measuring the temperature of the rear bearing;  
b) T2 was for measuring the temperature of the front bearing; 
c) T3 was for measuring the temperature of the front-end 

section; and 
d) T4 was for measuring the environmental temperature. 
A master ball was installed on the tool holder of the spindle, 

and a spindle rotational error tester was used to measure the 
spindle thermal error in the X-, Y-, and Z-directions. 

The spindle was run at three sets of rotational speeds (i.e., 
500, 1000, and 1500 rpm). Each experiment started from the 
condition of thermal equilibrium. The warm-up time was 120 
min, and the sampling period was 10 s. During the entire pro-
cedure, temperature was measured at the selected sensor 
locations. The recorded readings are shown in Fig. 5. The 
thermal errors in the spindle in the X-, Y-, and Z-directions 
were measured simultaneously, as shown in Fig. 6. 

Intrinsic connections between measured temperatures and 
thermal error could be observed. The correlation between 

measured temperatures at various sensor locations and ther-
mal errors must be established at each rotational speed, which 
will be discussed in detail in the following subsections. 

T

( )T x

0 x L x  
 
Fig. 3. Thermal deformation mode of spindle. 

 

 
 
Fig. 4. Temperature sensor locations on the turning center. 

 

 
(a) 500 rpm 

 

 
(b) 1000 rpm 

 

 
(c) 1500 rpm 

 
Fig. 5. Temperature measured by three sensors at different rotational 
speeds. 
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2.2.1 Correlation between temperature and thermal 
error at 500 rpm rotational speed 

The correlation between the thermal errors in the X-, Y-, and 
Z-directions and the measured temperatures are shown in Fig. 
7. The temperature measured at T2 had an approximately 
linear relationship with the thermal error in the X-direction, 
whereas the temperatures measured at T1 and T3 lag the 
thermal error (Fig. 7(a)). The temperatures measured at T1 
and T3 were in approximately linear relationship with the ther-
mal error in the Y-direction, whereas the temperature meas-
ured at T2 was in advance of the thermal error (Fig. 7(b)). The 
temperature measured at all three locations at the behind part 
were in advance of the thermal error in the Z-direction, 
whereas the temperatures measured at T1 and T3 at the fore 
part lagged behind the thermal error, and the temperature 
measured at T1 at the fore part was in approximately linear 

relationship with the thermal error (Fig. 7(c)). 
 

2.2.2 Correlation between temperature and thermal 
error at 1000 rpm rotational speed 

Similarly, the correlations between measured temperatures 
and thermal errors at the rotational speed of 1000 rpm are 
summarized as follows. 

Fig. 8(a) 
a) T1: Lagged behind  
b) T2 and T3: Approximately linear relationship 
Fig. 8(b) 
a) T1: Approximately linear relationship 
b) T2 and T3: In advance 
Fig. 8(c) 

 
(a) 500 rpm 

 

 
(b) 1000 rpm 

 

 
(c) 1500 rpm 

 
Fig. 6. Thermal error recorded in the X-, Y-, and Z-directions at different 
rotational speeds. 

 
 

 
(a) Correlation curve between temperature values and thermal error  

in the X-direction 
 

 
(b) Correlation curve between temperature values and thermal error  

in the Y-direction 
 

 
(c) Correlation curve between temperature values and thermal error  

in the Z-direction 
 
Fig. 7. Correlation between temperature values and thermal error in three 
directions at rotational speed of 500 rpm. 
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a) T1, T2, and T3 at the behind part: In advance 
b) T1 and T3 at the fore part: Lagged behind 
c) T2 at the fore part: Approximately linear relationship. 
 

2.2.3 Correlation between temperature and thermal 
error at 1500 rpm rotational speed 

Similarly, the correlations between measured temperatures 
and thermal errors at the rotational speed of 1500 rpm are 
summarized as follows. 

Fig. 9(a) 
a) T1: In advance  
b) T2 and T3: Approximately linear relationship 
Fig. 9(b) 
a) T1: Lagged behind 

b) T2: In advance 
c) T3: Approximately linear relationship 
Fig. 9(c) 
a) T1 at the behind part: Lagged behind 
b) T2 and T3 at the behind part: In advance 
c) T1 and T3 at the fore part: Lagged behind 
d) T2 at the fore part: Approximately linear relationship. 

 
3. Optimization strategies for the arrange-

ment of temperature measuring points 
Due to thermal drift, radial and axial deviations are present in 

the spindle during the machining process. For turning centers, 
the radial deviation in the spindle has significant influence on 

 
(a) Correlation between temperature values and thermal error  

in the X-direction 
 

 
(b) Correlation between temperature values and thermal error  

in the Y-direction 
 

 
(c) Correlation between temperature values and thermal error  

in the Z-direction 
 
Fig. 8. Correlation between temperature values and thermal error in three 
directions at rotational speed of 1000 rpm. 

 

 
(a) Correlation between temperature values and thermal error  

in the X-direction 
 

 
(b) Correlation between temperature values and thermal error  

in the Y-direction 
 

 
(c) Correlation between temperature values and thermal error  

in the Z-direction 
 
Fig. 9. Correlation curve between temperature values and thermal error in 
three directions at rotational speed of 1500 rpm. 
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the machining precision. Hence, the thermal error in the X-
direction can be regarded as the primary source of machining 
errors. The correlations between the measured temperatures 
at the measuring points and the thermal errors in the X-
direction are shown in Table 1. This experimental result indi-
cates that the optimal location for placing the measuring point 
is near the front bearing of spindle, whereas the temperature 
measured at T2 remains in approximately linear relationship 
with the spindle thermal error in the X-direction at all three 
spindle rotational speeds. 

In practice, the tightness of assembly in the spindle affects 
the heat transfer rate of the bearings. Hence, even for the 
same type of spindles, the optimal location of the measuring 
point will vary as a result of the assembly process. Conse-
quently, identification of the optimal locations of temperature 
measuring points based solely on the correlation between 
thermal error and measured temperature can be difficult and 
time-consuming under various operating conditions. To ad-
dress these issues, an optimization strategy for temperature 
measuring points based on dynamic temperature gradient is 
proposed in this section. Correlation between the thermal error 
in the spindle and the temperature gradient under different 
heating conditions are analyzed. 

 
3.1 Dynamic gradient of temperature sampling 

data 

As previously mentioned, the temperature at T2 is in ap-
proximately linear relationship with the spindle thermal error at 
all three rotational speeds because the fore bearing is the main 
heat source in the spindle structure. In other words, the tem-
perature at T2 responds to the thermal drift most quickly during 
the same sampling period. Here, the dynamic temperature 
gradient is used to establish a correlation with the spindle 
thermal error. The temperature measured at T2 at the rota-
tional speed of 500 rpm is shown in Fig. 10, where ( )tx  is set 
as the temperature sampling sequence and calculated in de-
rivative by means of fourth-order central derivative method. iY  
is the sequence of the results after discrete differential calcula-
tion, as shown in Eq. (4). 

The rotational speed is calculated as follows: 
 

( )2 1 1 2

1
8 8

12 i i i iiY dt
x x x x+ + - -= - + - + ,       (4) 

where 0,1,2, , 1ni -= L , and n  is the sampling size. 2x-  and 
1x-  are the first and second elements are the first element of 

the initial conditions, respectively. nx  and 1nx +  are the first 
and second elements of the final conditions, respectively. 

Fig. 11 shows the iY  values at each sampling moment, and 
the solid line is the linear fitting result for the iY  sequence, as 
shown as follows: 

 
500 5.7189 25.3362Y x= - + .                    (5) 

 
The elements in the iY  sequence are actually the values of 

temperature gradient in a unit sampling period. Thus, iY  can 
be referred to as the dynamic gradient sequence of the tem-
perature measuring point. 

 
3.2 Correlation between dynamic temperature 

gradient and spindle thermal error 

The measured thermal errors in the X-direction at the rota-
tional speed of 500 rpm are shown in Fig. 12. The sequence of 
thermal errors has been resampled to filter the noise effect in 
the initial stage caused by instrument adjustment, and the se-
quence of thermal errors is calculated by polynomial fitting 
method. The fitting result is shown in Fig. 13. 

As shown in Fig. 13, the distribution points are the thermal 
errors in the X-direction, and the solid line is the second-order 
polynomial fitting result, which can be described as follows: 

Table 1. Correlations between temperature at each measuring point and 
the spindle thermal error in the X-direction. 
 

Correlation T1 T2 T3 

500 rpm Lag Approximate  
linearity Lag 

1000 rpm Lag Approximate 
linearity 

Approximate  
linearity 

1500 rpm Advance Approximate 
linearity 

Approximate  
linearity 

 
 

 
 
Fig. 10. Temperature statistical data of T2 at 500 rpm rotational speed. 

 
 

 
 
Fig. 11. Dynamic temperature gradient iY  at measuring point T2. 
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3 358.7962 10 44.6941 10 xd - -´ ´= +  
 6 28.6111 101 x-´- .                     (6) 

 
The correlation between the dynamic temperature gradient 

at T2 and the thermal error is shown in Fig. 14. The dynamic 
temperature gradient is in approximately linear relationship with 
the thermal error, which indicates that the variation in the dy-
namic temperature gradient is synchronous with that in the 
spindle thermal error. Therefore, the thermal error can be esti-
mated by monitoring the variations in the dynamic temperature 
gradient in real time. 

3.3 Dynamic temperature gradient near the 
location of measuring point T2 

Another two temperature sensors, namely, T5 and T6, are 
attached on the spindle near T2, as shown in Fig. 4. The spin-
dle is run at the same three rotational speeds (i.e., 500, 1000, 
and 1500 rpm), and the temperature at T5 and T6, as well as 
the thermal errors, are measured. The correlations between 
dynamic temperature gradient and spindle thermal error are 
shown in Figs. 15-20 and compared in Table 2. 

As shown in Table 2, the dynamic temperature gradients at 
T5 and T6 measuring points remain in approximately linear 
relationship with thermal error sequences at all three spindle 
rotational speeds. 

 
3.4 Optimization strategies based on dynamic 

temperature gradient 

The experimental results show that although the temperature 
at each measuring point has a nonlinear relationship with the 
spindle thermal error due to the different layout locations for 

 
 
Fig. 12. Spindle thermal error in the X-direction at the rotational speed of 
500 rpm. 

 
 

 
 
Fig. 13. Fitted curve of spindle thermal error in the X-direction. 

 
 

 
 
Fig. 14. Correlation between dynamic temperature gradient and thermal 
error in the X-direction. 

 
 

 
 
Fig. 15. Correlation between the temperatures at T5 and T6 and the ther-
mal error at 500 rpm rotational speed. 

 

 
 
Fig. 16. Correlation between the dynamic temperature gradients at T5 and 
T6 and the thermal error at 500 rpm rotational speed. 
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measuring points and rotational speeds, the approximate rela-
tionship between the variation of the temperature field and the 
change in the spindle thermal error can still be found by calcu-
lating the dynamic temperature gradient values. On the basis 

of the analysis of experimental results, the optimization strate-
gies for the arrangement of the temperature measuring points 
can be summarized as follows. 

(1) Multiple temperature sensors are placed near the fore 
and rear bearings, and the sensor location with the largest 
temperature variation during the test experiment is determined.  

(2) The correlation between the spindle thermal error and the 
dynamic temperature gradient at the measuring points is con-
structed on the basis of the dynamic gradient of the tempera-
ture sampling sequence. If the correlation is approximately 
linear, then the measuring point can be considered as the op-
timal location to place the temperature sensor. 

(3) If a linear correlation cannot be established, then the lo-
cation of the measuring point can be slightly adjusted, and 
Steps 2 and 3 are repeated. This step is repeated until the 
correlation becomes approximately linear, and the measuring 
point can then be considered as the optimal location. 

The optimization strategies can solve well the uncertainty 
problems demonstrated in the previous experimental analysis 

 
 
Fig. 17. Correlation between the temperatures at T5 and T6 and thermal 
error at 1000 rpm rotational speed. 

 

 
 
Fig. 18. Correlation between the dynamic temperature gradients at T5 and 
T6 and thermal error at 1000 rpm rotational speed. 

 

 
 
Fig. 19. Correlation between temperatures at T5 and T6 and thermal error 
at 1500 rotational speed. 

 

Table 2. Correlations between thermal error and temperature and between 
thermal error and dynamic temperature gradient. 
 
Speed (rpm) Correlation T5 T6 

Between thermal error 
and temperature Nonlinearity Nonlinearity 

500 Between thermal error 
and dynamic tempera-

ture gradient 

Approximate 
linearity 

Approximate 
linearity 

Between thermal error 
and temperature Nonlinearity Nonlinearity 

1000 Between thermal error 
and dynamic tempera-

ture gradient 

Approximate 
linearity 

Approximate 
linearity 

Between thermal error 
and temperature Nonlinearity Nonlinearity 

1500 Between thermal error 
and dynamic tempera-

ture gradient 

Approximate 
linearity 

Approximate 
linearity 

 

 
 
Fig. 20. Correlation between dynamic temperature gradients at T5 and T6 
and thermal error at 1500 rpm rotational speed. 
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and have good robustness. 
 

4. Thermal error modeling based on UC 
theory 

On the basis of dynamic temperature gradient, UC theory is 
introduced into the online identification of the thermal charac-
teristics of the spindle. Accordingly, a new modeling method for 
thermal error is proposed. 

 
4.1 UC theory 

The traditional control theory is a model building theory 
based on the hypothesis, which indicates that building the 
mathematical models for the controlled object must be based 
on some assumed conditions. However, these assumed condi-
tions are often set based on the offline analysis of a set of pre-
vious sampling data from the controlled object. Hence, when 
the actual working conditions of the controlled object are differ-
ent from these assumed conditions, the stability and robust-
ness of the control model will often become poor. To solve this 
problem, UC theory [18-22] is presented in this study. 

UC theory is a control method based on the online data 
driven control. UC method does not require building the tradi-
tional mathematical models. However, it can select the current 
controller from the candidate controller set, and the selected 
controller should be satisfied with the specific performance 
requirements. Hence, UC is essentially a switching control 
method. UC method works before the closed-loop feedback 
system and can effectively eliminate the pseudo controller. 

As shown in Fig. 21, P  is an unknown controlled object. 
The reversible and time-invariant controllers 1 2 NC C CL, , ,  be-
long to the given candidate controller set C , and the controller, 
which is used in the closed-loop feedback system, is a certain 
element in set C  at any moment. At the current moment k , 
the previous input and output data ( ) ( )( ) [ ]{ }, | 0, 1u y kt t t Î -  
of the controlled object, which are collected within the time 
interval 0, 1 ,k -é ùë û  are used to evaluate the controller 

, 1,2, ,jC j N= L . The controller with the optimal performance 
is selected as the controller at moment k . Notably, the per-
formance of jC  must be evaluated before it is introduced into 

the closed-loop control system. The measurement data ( )u t  
and ( )y t  are utilized to calculate the virtual reference signal 
( )jr t  of controller ,jC  as shown in Eq. (7). 
 
( ) ( )( ) ( )1

j jr C u yt t t-= +                  (7) 
 
The control performance indicators ( ), , jJ u y r  and 
( ) ( ) ( )( ), , ju y rt t t , [ ]0, 1kt Î -  are used to evaluate controller 
jC  as shown in Eq. (8). 
 

( ) ( )( ), , ,j jJ k J u y r kt=  

            
( ) ( ) ( )

( )

22

20,
max j

k
j

u r y

rt

t t t

t aÎé ùë û

+ -
=

+
           (8) 

 
In Eq. (8), 0a > , and each ( )jJ k , 1,2, ,j N= L  is calcu-

lated. If ( ) ( )*
1,2,arg min jj Nj k J k== L , the controller acting on the 

closed-loop control system is considered to be 
( )* kj

C  at each 
moment k . In other words, for UC method, the other 1N -  
numbers of pseudo controllers are eliminated, except for 

( )* kj
C  

at each moment k . The non-pseudo controller 
( )* kj

C  is used 
to act on the closed-loop control system. 

During the process of UC, a switching mechanism is neces-
sary for selecting an appropriate controller to replace the con-
troller that cannot meet the performance indicators. Hence, all 
the controllers in the set should be examined, and only the 
controller that meets the performance indicators can be intro-
duced into the closed-loop control system. 

 
4.2 Application of UC in thermal error com-

pensation 

UC consists of two elements as follows:  
a) A candidate controller set composed of reversible control-

lers, and 
b) a performance indicator for evaluating the controllers. 
The spindle thermal errors have strong nonlinear characteris-

tics, such as being quasi-static and pseudo-hysteric. Hence, 
ensuring the accuracy and robustness of the controller can be 
difficult for the traditional mathematical model. However, on the 
basis of UC theory, the performance of the controllers can be 
evaluated online according to the real-time operating condi-
tions, and the optimal controller will be self-adaptively switched 
and introduced into the control loop. Consequently, the UC 
method has a strong applicability to solve nonlinear problems, 
such as spindle thermal errors. 

 
4.2.1 Candidate controller set for spindle thermal 

error compensation 
For thermal error compensation, the candidate controller set 

should be initially established. Here, T5 is selected as the tem-
perature measuring point. On the basis of the correlation be-
tween dynamic temperature gradients and thermal errors 
shown in Figs. 16, 18 and 20, the mathematical expressions of 

1C

2C

NC

L Lr e Pu

1
1C
-

1
2C
-

1
NC
-

L

y

y

y

1r

2r

Nr

 
 
Fig. 21. Framework of UC method. 
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the thermal error compensation controllers at different rota-
tional speeds are described in Eqs. (9)-(11), respectively. 

 
3

500 1.032 10 19.8648Gd = - ´ D + ,            (9) 
3

1000 5.9044 10 46.4441Gd = - ´ D + ,          (10) 
3

1500 7.0257 10 340.4407Gd = - ´ D + ,         (11) 
 

where 500d , 1000d , and 1500d  are the thermal errors at different 
speeds, and GD  is the corresponding dynamic gradients of 
T5. The scope of the candidate controller set can be further 
extended using additional temperature and thermal error data. 
The candidate controller set involved here is a group of linear 
functions that describe the correlation between thermal error 
and dynamic temperature gradient, which can be expressed as 
follows: 

 
v G bkd = D + ,                            (12) 

 
where vd  is the thermal errors at speed v, k is the correlation 
between dynamic temperature gradients and thermal errors, 
ΔG is the corresponding dynamic gradients, and b is the inter-
cept. 

 
4.2.2 Performance indicator for controller evalua-

tion 
The performance indicator for evaluating the controllers is 

confirmed according to the measured input/output (I/O) data of 
the controlled object. The output data of the controller for the 
spindle thermal error compensation are the sampled tempera-
ture at the measuring point, and the input data are actually only 
the sampling time series. Thus, the performance indicator for 
evaluating the controllers can be set based on the dynamic 
temperature gradient values. As shown in Fig. 11, iY  is the 
dynamic gradient sequence at the rotational speed of 500 rpm. 
The residual error sequence after linear fitting is shown in Fig. 
22, and the mean square error of the fitting function is equal to 
0.0000267. Similarly, the fitting functions of iY  at 1000 rpm 
and 1500 rpm are described in Eqs. (13) and (14). 

 
2 5

1000 5.1216 10 9.0414 10Y x- -´ - ´=           (13) 
2 5

1500 4.8081 10 1.7799 10Y x- -´ - ´=            (14) 
 
In both cases, the mean square errors of fitting functions are 

0.0000922 and 0.0000838. 
The performance indicator can be acquired as follows. The 

sampling period is set to t , and { }1 2, , nT T T T= L  is the tem-
perature sampling sequence at the sampling moment n . 
From the third sampling moment, T  is determined using 
fourth-order central derivative (see Eq. (8)), and the discrete 
dynamic temperature gradient sequences dT  are fitted syn-
chronously, as shown as follows 

 
n n ndT K t B= + ,                          (15) 

where nK  is the slope of the fitting function at the sampling 
moment n ; nB  is the intercept of the fitting function; nt  is 
the sampling time sequence; and ny  is used as the mean 
square error of the fitting function.  

The switching mechanism of the performance indicator for 
evaluating the controllers can be described by the flow diagram 
in Fig. 23. 
l  is set as the slope determination factor, and h  is the in-

tercept determination factor. e  is the mean square error de-
termination factor. Thus, for the finite candidate controller set of 
the thermal error compensation, all the determination factors 
should be examined during the process of eliminating the 
pseudo controllers and selecting the applicable controller. Fi-
nally, the optimal controller is identified and applied to the cur-
rent thermal error compensation. 

 
 
Fig. 22. Residual error sequence of dynamic gradient linear fitting.  

 

nK iY

500nK K l- £ 1000nK K l- £ 1500nK K l- £

500nB B h- £ 1000nB B h- £ 1500nB B h- £

nB iY

500 1000 1500min , ,n n ne y y y y y yé ù= - - -ë û

eny
iY

 
 
Fig. 23. Flow diagram of the criterion of performance indicator for UC. 
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Furthermore, the candidate controller set above is only 
based on three sets of rotational speeds. For the practical ap-
plication, the number of the thermal error compensation con-
trollers and the performance indicators of dynamic temperature 
gradient at different rotational speeds can be extended, which 
makes the UC method for the thermal error compensation 
accurate and robust. 

 
4.2.3 Verification of prediction accuracy for thermal 

error based on UC method 
An experiment was conducted on the same turning center to 

verify the prediction accuracy of the UC method. Temperature 
sensor T6 was considered as the measuring point, and the 
spindle is run at the rotational speed of 1500 rpm. 

The measured thermal errors are shown by the red points in 
Fig. 24, whereas the predicted errors are shown in solid line. 
The dotted line shows the residual errors in the prediction. The 
variation range of measured values is [0 μm, 39.6 μm], and the 
range of residual error is [−1.2 μm, 1.2 μm]. In this experiment, 
96.97 % of the maximum error range of the thermal deforma-
tion can be predicted. Online prediction for the spindle thermal 
error based on UC is achieved, and the prediction accuracy is 
excellent. 

 
5. Experimental results 

Another experiment was performed to compensate the ther-
mal error in the X-direction during the machining process of 
parts, as shown in Fig. 25. The spindle was run at six sets of 
rotational speeds for 120 min. Temperature at T6 was meas-
ured, as shown in Fig. 26.  

The performance indicators were calculated based on the 
dynamic temperature gradients, and the controller based on 
the UC method was applied to the machining process to com-
pensate the thermal error in real time. The calculated results 
about the slope and intercept determination factors of the fitting 
functions are shown in Table 3. 

Two groups of 60 inner bore parts each were machined with 
and without compensation of the spindle thermal error, starting 
from the initial thermal equilibrium status. The inner diameter of 
the inner bore part is the most representative and requires the 

highest tolerances; thus, it is measured to test the compensa-
tion result. The inner bore part has a nominal diameter of 
32.815 mm, and the upper and lower tolerance limits are 
32.825 mm and 32.800 mm, respectively. The inner diameters 
of the 120 machined parts are shown in Fig. 27. Without ther-
mal error compensation, the inner diameter ranged between 
32.788 mm and 32.814 mm, and the maximum error was 
27 µm. Less than 1/3 of the parts were machined within the 
tolerance limits. When thermal error compensation was applied, 
the inner diameter of the machined parts ranged between 
32.807 mm and 32.815 mm. The maximum error was 9 µm, 
and 100 % of the parts were within tolerance limits, indicating 
that the inner diameter errors were effectively controlled. 

Similarly, the external diameter of the shaft part requires the 
highest tolerance; thus, it is measured to test the compensation 
results. The external diameter of 120 shaft parts machined with 

 
 
Fig. 24. Comparison of measured system output and the predicted output 
for spindle thermal error based on UC.  

 

Table 3. Determination factors of fitting functions of the dynamic gradient. 
 
Rotational speed (rpm) Slope Intercept 

500 −3.1346E-5 0.02063 
1000 −5.1043E-5 0.00327 
1500 −7.5064E-5 0.03765 
2000 −9.0936E-5 0.04503 
2500 −2.9916E-4 0.04705 
3000 −5.5646E-4 0.05437 

 

 
Fig. 25. Thermal error compensation for practical machining. 

 

 
 
Fig. 26. Temperature at T6 at six sets of rotational speeds. 
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and without thermal error compensation are shown in Fig. 27. 
The shaft part has a nominal external diameter of 30.550 mm, 
and an upper and lower tolerance limit of 30.565 mm and 
30.535 mm. Without spindle thermal error compensation, the 
external diameter of the 60 machined parts ranged between 
30.526 mm and 30.557 mm, and the maximum error was 31 
µm. Less than 1/3 of the parts were machined within the toler-
ance limits. When thermal error compensation was applied, the 
external diameter of the machined parts ranged between 
30.547 mm and 30.557 mm. The maximum error was 11 µm, 
and all machined parts were well within tolerance limits.  

Both experiments demonstrated the effectiveness of the pre-
diction and compensation of the thermal error in the spindle 
based on UC theory. 

 
6. Conclusions 

Thermal error has always been a key issue in the precision 
enhancement of machine tools for tool builders and users. In 
this study, a systemic solution for thermal error compensation 
was proposed, and careful research work was performed. First, 
a novel dynamic temperature gradient method was proposed 
to optimize the locations of temperature measuring points on 
the machine tool. The temperature fields were detected 
through the correlation between temperatures at three measur-
ing points and thermal error rotational speeds of 500, 1000, 
and 1500 rpm, as shown in Figs. 7-9, respectively. Then, the 
dynamic temperature gradient values of two measuring points 
were calculated, as shown in Figs. 15-20, to ensure the linear 
relationship between the variation of the temperature field and 
the change in the spindle thermal error. Furthermore, a spindle 

thermal error compensation method was developed based on 
UC theory using the dynamic temperature gradient at the opti-
mal sensor location. The effectiveness of this compensation 
method was demonstrated using two practical part manufactur-
ing experiments. The experimental results indicated that the 
thermal errors were reduced from 27 µm to 9 µm for the inner 
bore parts and from 31 µm to 11 µm for the shaft parts. 

The advantages of the proposed compensation method are 
as follows. (1) Strong robustness. The developed approach 
does not rely on an accurate model of the thermal error, but 
instead uses online I/O data to adaptively select the best con-
troller at any moment, thereby improving thermal error predic-
tion accuracy and robustness. (2) High efficiency. The dynamic 
temperature gradient is proposed to identify the relationship 
between temperature and thermal errors, which greatly short-
ened the identification time for the optimal location of measur-
ing points. (3) After the identification of the measuring point, 
only few temperature sensors are required. Therefore, this 
compensation method shows great engineering capacity to 
reduce thermal error and the potential for further application to 
various types of machine tool. 
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