
 
 

 
Journal of Mechanical Science and Technology 33 (12) (2019) 5963~5977 

www.springerlink.com/content/1738-494x(Print)/1976-3824(Online) 
DOI 10.1007/s12206-019-1141-0 

 

 

 

  
Reliability-based design optimization of time-dependent systems with  

stochastic degradation† 
Gordon J. Savage1 and Young Kap Son2,*  

1Department of Systems Design Engineering, University of Waterloo, Waterloo, ON, Canada 
2Department of Mechanical & Automotive Engineering, Andong National University, Andong, Korea    

 
(Manuscript Received May 27, 2019; Revised October 3, 2019; Accepted October 16, 2019)   

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 
A major hurdle in the application of reliability-based design optimization (RBDO) to time-dependent systems is the continual interplay 

between calculating time-variant reliability (to ensure reliability policies are met) and moving the design point to optimize some objective 
function, such as cost, weight, size and so forth. In most cases the reliability can be obtained readily using so-called fast integration 
methods. However, this option is not available when certain stochastic processes are invoked to model gradual damage or deterioration. 
In this case, sampling methods must be used. This paper provides a novel way to obviate this inefficiency. First, a meta-model is built to 
relate time-variant system reliability to the entire design space (and noise space if required). A design of experiments paradigm and 
Monte Carlo simulation using the mechanistic model determines the corresponding system reliability accurately. A moving least-squares 
meta-model relates the data. Then, the optimization process to find the best design point, accesses the meta-model to quickly evaluate 
objectives and reliability constraints. Case-studies include a parallel Daniel’s system and a series servo control system. The meta-model 
approach is simple, accurate and very fast, suggesting an attractive means for RBDO of time-dependent systems.  
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1. Introduction 

In many engineering situations, degradation and stochastic 
loads lead to system deterioration, and this in turn presents a 
serious problem for the designer. Indeed, in mechanical and 
structural systems, wear is one of the most critical sources of 
failure since it effects the life span of bearings, hinges and 
coupling mechanisms. Examples include vehicle clutches, 
multi-bar linkages and servo systems that lose their ability to 
perform to specifications. In electrical systems, the parameters 
drift from their initial values over time through usage and 
environmental conditions. For example, in filters, the band 
frequencies become altered and the attenuation effectiveness 
degrades. 

The analysis of degradation started with Meeker and 
Escobar [1] over two decades ago when they introduced a 
convenient statistical framework that in turn spawned various 
physics-based models. And now, the degradation models [2-4] 
include a) random variable models, b) marginal distribution 
models and c) cumulative damage models. The random vari-
able (RV) models (also called degradation path models)  

randomize the parameters associated with some empirical 
deterioration law to reflect the sampling variability observed 
in a sample of the degradation data. The simplest form of a 
degradation path model of, for example, resistance R is R = R0 
± Ct where t is time, R0 is the initial resistance and C is the 
random degradation rate. Often a deterministic rate (e.g. c) is 
used in place of the random rate. 

The marginal distribution (MD) models (also referred to as 
degradation distribution models) provide a new distribution 
at any time t; however, there are no correlations between 
different time distributions. A simple MD model has the 
form R = R0 ± C(p(t)) where p are distribution parameters 
and C(p(t)) represents a particular distribution at time t. In 
both RV and MD models, the degradation functions depend 
on random variables combined with deterministic functions 
of time leading to non-ergodic processes. The cumulative 
damage (CD) models (also called shock models) assume that 
the degradation is caused by shocks or jumps and that dam-
age accumulates additively [4]. These models are used when 
the temporal uncertainty associated with the deterioration 
cannot be ignored. In this model R = R0 ± C(t) where C(t) is 
a stochastic process. Examples of CD models include the 
Weiner process, Gamma processes and inverse Gaussian 
process. When deterioration is uncertain and non-decreasing,  
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the Gamma process is a suitable model [5]. It is apparent then, 
that system deterioration leads to time-dependent reliability 
issues, that may be mitigated by reliability-based design 
optimization (RBDO).  

The RBDO problem has a number of related issues. The 
first deals with how reliability is to be calculated over time; 
the second deals with the two sources of uncertainty and these 
include parametric uncertainty in components and excitation 
uncertainty in loads. Finally, the third issue is the dynamical 
nature of the system; that is, are the performance measures 
steady-state, with algebraic equations, or transient, with dif-
ferential equations. These areas are bridged by considering 
time-variant parametric uncertainties and stochastic processes. 

In time-variant reliability, the uncertainties in the responses 
or performance measures change over time: examples occur in 
degradation, or if the excitations are stochastic in nature. 
Therein the reliability requirements are treated as constraints 
in the optimization algorithm, hence the optimal solution must 
ensure that the reliability specifications are met over the com-
plete life-time.  

Stochastic loads have been the main source of time-variant 
reliability issues in RBDO. Kuschel and Rackwitz [6] em-
ployed the outcrossing rate to find time-variant reliability and 
solved the optimization problem under two particular loads. 
These included differentiable processes and rectangular wave 
renewal processes. Wang and Wang [7] provided a nested 
extreme-response method to transform the time-variant 
RBDO problem into time-invariant RBDO problem. Hu and 
Du [8] devised the equivalent most-likely failure point 
(MLFP) and extended sequential reliability assessment algo-
rithm (SORA) to solve time-variant RBDO problems that 
contained stochastic process loads. Therein first-order reli-
ability method (FORM) was invoked and design parameters 
comprised either deterministic variables or means of distribu-
tions. Jiang et al. [9] produced the time-invariant equivalent 
method (TIEM) to reduce the number of cdf (cumulative 
distribution function) calculations. FORM was used and de-
sign parameters were deterministic variables and means of 
distributions. The approach assumed that the reliability in-
dexes (over time) were invariant to the design point and 
hence the curves could be adjusted to meet the life-time reli-
ability constraint. In effect the optimization had to be per-
formed only at initial time. The method seemed to work well 
for parameter design. 

A few papers address RBDO and degradation. Savage and 
Son [10] applied the set-theory method to find efficiently the 
cdf for multiple response systems and applied it to optimize 
system costs with respect to deterministic component degra-
dation. Rathod et al. [11] treated probabilistic damage accu-
mulation as a measure of degradation in material fatigue and 
modelled it as a stationary process that in turn became a 
constraint in the optimized solution. Singh et al. [12] intro-
duced the composite limit-state to convert a time-variant 
RBDO problem into a time-invariant problem and then in-
voked a genetic algorithm to search for the MLFP. The 

case-study included deterministic degradation and used their 
composite limit-state to find effectively probabilities.  

To make the design process more efficient, meta-models 
(often called surrogate models) have been introduced. They 
have had a significant impact in the design of engineering 
systems in the past two decades. They are computationally 
efficient substitutes for the mechanistic model and overall they 
are both accurate and very fast. These two features allow for a 
variety of timely quality and reliability calculations as well as 
efficiencies in optimization routines. The success of the meta-
model depends on several decisions and these include the 
following: (a) The proper selection of the input variables (i.e. 
excitations and component parameters), (b) their ranges (e.g. 
design space), (c) the choice of the underpinnings of the meta-
model, (d) the number of samples and the sampling philoso-
phy used to collect data, and finally, (e) the form of the ap-
proximating function. In summary, the primary task is to 
choose the most accurate and fastest meta-model with the least 
number of training samples. Overviews of various meta-
models are contained in Refs. [13, 14]. The popular Kriging 
methods are detailed in Refs. [15-17], the moving least 
squares (sometimes called lazy learning) meta-models are 
described in Refs. [18, 19]. The Bayesian meta-models are 
illustrated in Ref. [20]. 

There is some work in using meta-models to provide effi-
ciencies in time-invariant reliability analysis. The most com-
mon approach is to replace the failure surface with a meta-
model [21, 22]. Further, there is some work using meta-
models in RBDO with time-invariant reliability and these 
include [23-26]. 

Finally, for time-variant reliability analysis, the use of meta-
models has been included in Savage et al. [27] who predicted 
the reliability of degrading dynamic systems using various 
meta-models to link the time-squared-error performance index 
to the design parameters. Singh et al. [12] used a meta-model 
as a surrogate for the composite limit-state surface and then 
used it to determine time-invariant failure. However, the com-
posite limit-state requires multiple MLFPs which first must be 
identified, and then used to provide an approximate probability. 
Dregnei et al. [28] developed a random process meta-model 
that linked the left singular vectors of the responses of a system 
to the left singular vectors of an uncertain excitation matrix and 
augmented this with uncertain component dimensions. The 
meta-model was then used to help determine the life-time reli-
ability. Zhang et al. [29] established a meta-model based on 
response surface for time-variant limit-state function to esti-
mate time-dependent reliability for nondeterministic structures 
under stochastic loads. Stochastic loads were discretized as 
static random variables in the model, and FORM was applied 
to estimate reliability.  

This paper proposes a new method for RBDO of time-
variant systems containing stochastic degradation. In past 
cases the reliability could be obtained readily using so-called 
fast integration methods. However, this option is not available  
when the Gamma process is invoked to model degradation, 
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and thus sampling methods must be used. A meta-model re-
stores efficiency. The novel approach herein provides two 
stages: 

Stage one: A meta-model is built that explicitly relates 
time-variant reliability to the design space (and noise space). 
Stage two: The optimization process invokes the typical 
nested approach, but now the time-variant reliability meta-
model is used to quickly evaluate objective functions and 
constraints. 
The impact of the methodology is the greatly reduced de-

sign time needed to conduct RBDO for time-variant systems. 
The rest of the paper proceeds as follows. Sec. 2 outlines the 

time-variant reliability problem and ways to find the cdf for 
multi-response systems. Sec. 3 reviews Gaussian stochastic 
processes and introduces the Gamma process for degradation 
modelling. Sec. 4 develops the meta-model for time-variant 
reliability using a moving least-squares foundation. Sec. 5 
presents two case-studies to compare speed and accuracy and 
Sec. 6 sums up the paper and provides the impact of the work 
herein. 

 
2. Time-variant reliability 

For time-variant reliability, we denote the vector V as the 
randomness in the problem comprising the random variables 
Vj, j = 1, … n. In general, V is partitioned into a) initial ran-
domness of, for example, material properties and dimensions, 
and b) random degradation rates. The probability density 
functions of V are assumed to exist and provide distribution 
parameters p. A conversion to standard normal (i.e. U-space) 
is usually possible through an iso-probabilistic transforma-
tion [30], denoted as V(p, U). The transformation is not nec-
essary, but it allows one to see the limit-state surfaces mov-
ing in u-space with respect to time and allows the use of 
approximating methods such as FORM. Lastly, we let W(t) 
be a vector of stochastic processes for time t. These may 
include excitations and loads typically modelled by Gaussian 
processes as well as cumulative damage degradation mod-
elled by the Gamma process. Other stochastic processes, not 
invoked herein, may include Poisson and Weiner. Overall, 
these random effects over time come from dynamically 
changing environmental conditions and the temporal uncer-
tainties of changes in material properties and structural di-
mensions. 

Let us start with general statements of time-variant reliabil-
ity in terms of the related cdf. At the component level, let the 
limit-state function for the ith component be gi(V, W(t), t) 
where a positive value indicates success and a negative value 
indicates failure. Then, within the life-time span [0, tL], we 
write the failure event  

 
{ }(0, )  ( , ( ),  ) 0,  for [0,  ]i L i LE t g t t t t= £ $ Î V W   (1) 

 
and the true cdf for the ith component is 

( )( ) (0, ) .i
L i LF t P E t=   (2) 

 
For systems with multiple components, and the need to deter-
mine system failure, we require, for series systems, unions of 
events (i.e. (0, )i

i

E tU ) and for parallel systems, intersections 

of events (i.e. (0, )i
i

E tI ). 

The evaluation of Eq. (2) is generally intractable; however, 
discrete time is of help. Consider the planned time tL with 
equally spaced time points obtained from a small, fixed, time 
step Δt (the length to be determined later). For a time index l = 
0, 1,¼ L, where L is the number of time steps to the planned 
time, then the time at the lth step is tl = l´Δt. We write a set that 
represents the instantaneous failure region of the ith limit-state 
function at any selected point-in-time tl with reference to nota-
tion in Eq. (1), as 

 
( ){ }, , ( ), 0 .l i i l lE g t t= £V W   (3) 

 
Note, we must find the stochastic processes W(t) at discrete 
times tl. For the Gaussian processes, the expansion optimal 
linear estimation (EOLE) model is typically invoked. The 
Gamma process can be evaluated using the discrete time step 
and samples from a Gamma distribution. 

Now, an approximation to the true cdf in Eq. (2), can be 
written as 

 

,
0

ˆ ( ) ( ) .
L

i i
L L l i

l

F t F t P E
=

æ ö
» = ç ÷

è ø
U   (4) 

 
Of interest is the so-called instantaneous probability of failure 
at a fixed time, say t = tl. It may be written as 

 
( ),( ) .i

I l l iF t P E=   (5) 
 

However, the event implied in Eq. (5) is independent of previ-
ous like events. In general, this probability evaluation is not 
the same as Eqs. (2) and (4) since it does not take into account 
the time-history of the system, in particular the possible fail-
ures that may occur before tl. In the special case when the 
limit-state function is monotonically decreasing, the instanta-
neous probability is, in this case, equal to the cumulative 
probability.  

Now, let us consider multiple failure modes and extend the 
single event El,j over multiple limit-state functions (and the 
time skeleton containing tl). We start with subsystems com-
prising first parallel connected “components” and then series 
connected “components”.  

Parallel connections: The subsystem instantaneous failure 
region at time tl for the jth subsystem comprising Nj compo-
nents (connected in parallel) is defined to be the set  

 

, ,
1

.
jN

l j l i
i

L E
=

=I   (6) 
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Series connections: The subsystem instantaneous failure re-
gion at time tl for the jth subsystem comprising Sj components 
(connected in series) is defined to be the set  

 

, ,
1

.
jS

l j l i
i

M E
=

=U   (7) 

 
Let us now to form systems by connecting the subsystems in 
the following ways: (Other system configurations are possible. 
See Ref. [39].)  

a) Connect parallel subsystems in series and  
b) Connect series subsystems in parallel.  
First, for n parallel-subsystems connected in series, the sys-

tem instantaneous failure region at time tl is defined to be the 
set 

 
,1 ,2 , ,1

.
n

l l l l n l jj
L L L L

=
= =E U ULU U   (8) 

 
Next, for s series-subsystems connected in parallel, the system 
instantaneous failure region at time tl is defined to be the set 

 
,1 ,2 , ,1

.
s

l l l l s l jj
M M M M

=
= =E LI I I I   (9) 

 
Finally, the system cumulative failure set Al is defined as the 
set that represents the accumulation of all system instantane-
ous failure regions for all discrete times up to tl. This set ex-
tends Eqs. (8) and (9) and is written as  

 
0 1 0

.
l

l l qq
A

=
= =E E E EU ULU U   (10) 

 
The system cumulative safe set is denoted as lA  and is simply 

 
0 1 0

.
l

l l qq
A

=
= =E E E EI ILI I   (11) 

 
Let us define the emergence of the incremental failure re-

gion from the system cumulative safe region, from time tl 
during time interval Δt, as 1l l lA A+=B I .  

But ( )0q q l = ÆE E E EI ILI LI , hence we have more 
simply 

 

1 .l l lA+=B E I   (12) 

 
It follows that we may write the complete failure history in 
terms of the incremental failure regions as 

 

( ) ( ) ( )1 0 1 0 2 1 0 1 l l lA A+ += Ç Ç È ÇE E E E E E EU U ULU  

  0 0 1   .l= E B B BU U ULU   (13) 

It can be shown that all events in Eq. (13) are mutually exclu-
sive. We write the cdf as 

 
0 0 1( ) ( ) ( ) ( ) ( ) .L l LF t P P P P -= + + + + +E B B BL L   (14) 

 
The expression for Bl in Eq. (12) requires the time history of 
the system responses and thus it is logistically difficult to de-
termine P(Bl). In Monte-Carlo simulation (MCS), a sample 
from the distributions of the design variables is chosen and 
then the sign of El is determined for time index l = 0, 1,¼ L, 
stopping and recording the time of first failure [31]: all future 
times are recorded as fail as well. For all MCS samples, a 
histogram that represents the terms in Eq. (14) is built, and 
then the cdf is found as the summation of all of the terms up to 
the time of interest. The reliability at time tL is simply R(tL) = 1 
– F(tL).   

 
3. Stochastic processes 

The simplest way to incorporate stochastic processes in the 
reliability calculations is to employ discretized time. The ap-
proaches to modelling both excitations and degradation (used 
herein) are outlined next. 

  
3.1 Excitations Y(t) 

An excitation (i.e. a source or load), denoted as Y(t), is 
typically modelled by a nonstationary Gaussian stochastic 
process. There are many proposed modelling methods in-
cluding Karhunen-Loeve [32], polynomial chaos expansion 
[33], proper orthogonal decomposition [34] and EOLE [35]. 
The EOLE model is easy to write in matrix form (thus sim-
plifying computer programming) and hence is employed in 
this paper.  

For the Gaussian process, with the discretization of time as 
above, let the mean function be mY(ti), the standard deviation 
function sY(ti) and the autocorrelation function rY(ti, tj). Then 
using Appendix, the Gaussian process takes the compact ma-
trix form  

 
( ) ( ) [ ( )] ( )T

YY t t tm= + Σ ΦΛ U%   (15) 
 

where ( )ΦΛ% is a matrix of constants, ( )tΣ  is a time-related 
vector (containing standard deviation and correlation parame-
ters) and U is vector of standard normal variables [U1, U2, 
…Us]T. For a simpler notation, let the distribution parameters 
in Eq. (15) be written as ( ) [ ( ), ( )]Tt t tm=q Σ  then more infor-
matively 

 
( )( ) ( ), .Y t Y t= q U   (16) 

 
For several stochastic processes, the distribution parameters 
form a longer vector qY(t) and the normal variable vectors 
stack up to become UY so now the vector of stochastic proc-
esses is succinctly 
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( )( ) ( ),    t t= Y YY Y q U   (17) 
 

3.2 Component degradation with the gamma process C(t)  

The Gamma process is suitable for modelling gradual dam-
age or deterioration when it is monotonically accumulating 
over time: examples include wear, fatigue, corrosion, crack 
growth, erosion, consumption, creep, etc. [5]. The Gamma 
process is a continuous-time process with stationary, inde-
pendent, non-negative Gamma increments, obtained from the 
Gamma distribution. Let G(a, b) denote the distribution and 
let its density function be 

 
1 /1( )

( )
f ea g b

ag g
b a

- -=
G

  (18) 

 
where G(a) is the so-called gamma function and α and β are 
the shape and scale parameters respectively.  

Let the Gamma process be denoted as C(t|m, s2) with mean 
μ and variance s2. Then, for any time increment Δt = tL/L > 0 
the increments are [36] 

 
( ) ( ) ( )2 2| , | , ~ , .C t t C t G tm s m s a b+ D - D   (19) 

 
We note that the distribution of the increments depends on the 
length of Δt but not on the time t. 

Let us find now suitable distribution parameters for the 
Gamma distribution in Eq. (18). If the mean value of the proc-
ess is linear, then we may write mean and variance of the 
process as 

 

2 2

[ ( )] ( ) ,     
[ ( )] ( ) .

L L

L L

E C t t t
Var C t t t

m a b

s a b

= = =

= = =
  (20) 

 
We have the new parameters for the desired Gamma distribu-
tion (in terms of mean, standard deviation and coefficient of 
variation denoted as CV) as 

 
2

2 2

1 1
( )L Lt t CV

ma
s

= =   (21) 

 
and 

 
2

2 ( ) .CVsb m
m

= =   (22) 

 
Let the parameters be written compactly as [ , , ]Ttm s= Dr , 
then equation Eq. (19) provides the series of random variables 

 
2 2

0 2
1

1( , ) ( ) ,
l

l
i L

C t C t G t
t
m s
s m=

æ ö
= + Dç ÷

è ø
år  l = 1, 2, ...L  (23) 

 
where C(t0) = 0. For several Gamma processes we have the 

new vector of parameters rc that defines the set of Gamma 
processes ( , )ltCC r . 

It is a simple manner to generate the Gamma process over 
discrete time. For the kth manifestation of a Gamma process, 
say ( ) ( )kC t  with incremental samples ( )k

ig  chosen according 
to the Gamma distribution in Eq. (23), we have the process 
values 

 
( )

0

( ) ( ) ( )
1 0 1

( ) ( ) ( )
2 1 2

( ) ( ) ( )
1

( ) ( ) ( )
1

( ) 0
( ) ( )
( ) ( )

( ) ( )            1, 2 ... N

( ) ( ) .

k

k k k

k k k

k k k
l l l

k k k
L L L

c t
c t c t
c t c t

c t c t k

c t c t

g

g

g

g

+

-

=

= +

= +

= + =

= +

M

M

  (24) 

 
Hence, for simulation purposes, we generate N Gamma proc-
ess paths to provide N jump values at each discrete 
time 0 1 2 1, , , , Lt t t t -L . For several Gamma processes, the terms in 
Eq. (24) become vectors.  

 
3.3 Reliability-based design optimization 

For the random variables V and their conversion to U-space 
using the design parameters p, for the Gaussian processes 
modelled through EOLE, and the Gamma processes with no 
convenient conversion to U-space, the limit-state functions for 
the ith component, under stochastic processes, using discrete 
time events, has a form taken from Eq. (3) as 

 
( ), ( ,  ), ( ( ), ), ( , ), 0l i i l l lE g t t t= £V Y Y CV p U Y q U C r   (25) 

 
and the cdf follows Sec. 2.  

A typical optimization problem is expressed in terms of an 
objective function, reliability constraints at various times and 
the design space for the design parameters. For example, we 
write 

 

( )

( )

0 0 0

Minimize  ( )
subject to

, ( ), ,  
  

, ( ), ,  L L L

L U

O

R t t R

R t t R

³

³

£ £

Y C

Y C

p

p q r

p q r
p p p

M
  (26) 

 
where O(p) is the objective function, and R0, RL etc. are reli-
ability constraints.   

 
4. Meta-model development 

The traditional RBDO approach uses a nested, or double 
loop, method that moves the design point via the outer loop or 
optimization process and then finds in the inner loop the reli- 
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ability for the present design point. These loops iterate until 
convergence. The meta–model approach, presented next, pro-
vides a “two-stage” approach where first the reliability is 
found in terms of the design space and then the optimum solu-
tion is found by moving the design point. For the meta-model, 
let us look at the moving least squares formulation and let 
both means and tolerances form the design parameter vector.  

 
4.1 Design parameters and training data 

A judicious selection of the design variables and their oper-
ating ranges is important to keep the meta-model manageable 
but effective. There are three steps that help.  

Step 1. An importance analysis that compares changes in the 
responses (or performance measures) to material properties 
and dimensions using sensitivity information can trim the 
number of design variables to a manageable few.  

Step 2. To find reasonable nominal values of the design 
variables, a so-called parameter design is invoked to maximize 
the reliability at time zero (i.e. R(t = 0)). More specifically, 
tolerances are fixed at their average values, and the means of 
the design variables are adjusted accordingly.  

Step 3. A sense of the magnitude of the variations about 
nominal values can be determined from sensitivity or worst-
case information using R(t = 0).  

The final set of design parameters p used to form the meta-
model are, for example, means and tolerances written as 

 

1 2 1 2[ ] [        ]T T T
m ntol tol tolm m m= =p μ tol L L   (27) 

 
with the design space set out as mi Î [lsli, usli] for i = 1, 2,...m 
and toli Î [LSLi, USLi] for i = 1, 2,...n . (One could augment, or 
replace p, with noise parameters q and r.) Then, for the jth 
sample of the parameters (i.e. pj) the corresponding input data 
vector, based on a selected polynomial fit, becomes  

 
1

( ) 1 ( )T T T
j j j q

f
´

é ù= ë ûd p p p   (28) 

 
where we have allowed for higher-order terms. The vector 
length q depends on the order of the polynomial and the sizes 
of m and n. Let us treat the input data vectors as training data 
(each stored in the data matrix) and use them in turn to gener-
ate the training reliability curves (to be stored in the output 
matrix). We take our lead from design of experiments (DOE) 
and Latin Hypercube sampling in particular, and simply select 
δ samples. The resulting input training matrix becomes 

 

1

2

( )

( )
.

( )

T

T

T

qd d´

é ùé ùë ûê ú
ê úé ùë û= ê ú
ê ú
ê ú
é ùê úë ûë û

d p

d pD

d p

M
  (29) 

To generate the output matrix, we invoke the mechanistic 
model along with the random and stochastic information to 
generate the reliability curves denoted as ( , )jR t p . Then for 
discrete time, denoted as 1 2[ , , , ]Lt t t=t K , we store the discrete 
values in a corresponding vector Rj. For all δ experiments, the 
output matrix has the structure 

 

1

2

[ ( )]
[ ( )]

.

[ ( )]

T

T

T
Ld d´

é ù
ê ú
ê ú= ê ú
ê ú
ê úë û

R p
R p

R

R p
M

  (30) 

 
4.2 A moving least-squares meta-model 

The ubiquitous Kriging meta-model can be found in a vari-
ety of places [13-17]; however, the moving least squares 
meta-model [18, 19] is less well known and is thus outlined 
next. The idea is to relate the two matrices  and D R . Con-
sider the arbitrary input set of parameters p% , then a weight 
matrix ( )W p% is required that effectively selects the so-called 
nearby data sets in  and D R . One format of the matrix is sim-
ply [18, 19, 22].  

 

1 2( )  ( )
( )

 ( )

w w
diag

w d d d́

é ù- -
ê ú=
ê ú-ë û

p p p p
W p

p p

% %
%

%K
        (31) 

 
wherein each term has the regularized formulation 
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%   (32) 

 
Note herein max min 2ˆ ( )i i

i

r p p= -å  and 510-X = . 

A new input matrix ( )W p D%  is formed and related to the 
new output matrix ( )W p R% . For a least-squares solution, the 
normal equations [37] become 

 
( ) ( ) ( )T T=D W p DΘ p D W p R% % %   (33) 

 
where 

 

1 2

( ) ( ) ( )
( ) ( ) ( ) .

T

diag w w w d d d´

=

= - - -é ùë û

W p W p W p
p p p p p p

% % %
% % %K

  (34) 
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A solution to Eq. (33) produces the matrix  
 

1 2( ) ( ) ( ) ( ) .L q L´
= é ùë ûΘ p θ p θ p θ p% % % %L   (35) 

 
Other approaches, including orthogonal methods [38] may be 
used to solve the least-squares problem. Finally, an approxi-
mation of the reliability curve (i.e. vector) for Tp% is  

 
( ) ( ) .T T=R d p Θ p% % %   (36) 

 
Note that the kth element of the reliability vector requires only 
the kth column of the weight matrix, hence 

 
( ) ( ) .T

k kR = d p θ p% % %   (37) 

 
4.3 Error analysis 

Errors in the meta-models arise from the following sources: 
The first source is the number of time instances; that is, the 
size of ∆t used in capturing the time histories of the output 
function. This number can be increased until improvements 
cease. The second source is the number of training excitation 
functions (i.e. δ) chosen. There are several ways to determine 
this number: the simplest is to use the rule-of-thumb that says 
multiply the number of parameters (or inputs) by a convenient 
factor (e.g. ten or twenty) and then add a small contingency 
factor. Also, the leave-one–out method is popular [25].  

 
5. Case studies 

The meta-model approach is applied to two systems. In the 
first system, a parallel Daniels structural system is studied to 
determine the applicability of the meta-model for modelling 
the reliability with the stochastic noise. In the second case 
study, a servo system with series failures is designed using a 
meta-model of the reliability: optimum means and tolerances 
with respect to the design space are determined. 

 
5.1 Parallel system 

A simple Daniels system with a stochastic load P(t) applied 
to a beam supported by two rods (i.e. components) is shown in 
Fig. 1. The support rods are denoted as rod 1 and rod 2, each 
with widths a1 and a2 respectively and depths b1 and b2 respec-
tively. The dimensions and material properties are comparable 
with those from Ref. [39].  

The random variables and processes are given in Table 1. 
Note the yield strengths of the two rods, denoted as σ1 and σ2, 
are fixed random variables. The stochastic load P(t) is Gaus-
sian with the autocorrelation r(t1, t2) = exp[-(t2 - t1)2/l2] and 
the corrosion of the rods, denoted as C1(t) and C2(t), follow 
Gamma processes. The rod yield strengths are of the larger-is-
best type and thus the limit-state functions become  

( )( )
( )( )

1 1 1 3 1 5 1

2 2 2 4 2 6 1

( , ( ), ) 2 ( ) 2 ( )  - ( ) / 2

( , ( ), ) 2 ( ) 2 ( ) ( ) / 2 .

g t t V C t V C t V Y t

g t t V C t V C t V Y t

= - -

= - - -

V W

V W
 (38) 

 
The life-time for the study is 10 years and the time increments 
are Δt = 0.1 year. 

Study P-A: We let the Gaussian process that models the 
load have values E[Y1(t)] = 85 kpsi, s[Y1(t)] = 8 kpsi and λ = 
0.5. The Gaussian process is converted to the EOLE model 
requiring 33 eigenvalues. A few profiles of sample loads are 
given in Fig. 2. For the Gamma stochastic degradation proc-
esses, the parameters for the Gamma processes are chosen to 
match-up the initial time and life-time values of a basic linear 
model. Herein, we let the mean and coefficient of variation of 
C1(t) at 10 years be 5x10-3 in. and 0.57735, respectively, and 
the mean and coefficient of variation of C2(t) at 10 years be 
3x10-3 in. and 0.57735, respectively. The Gamma distribution 
parameters are obtained from Eqs. (21) and (22) and provide 
degradation as shown in Fig. 3.  

Let the deign parameters comprise the means of the widths 
and depths of the two rods so 1 2 1 2[ , , , ]T

a a b bm m m m=p . The 
design space comprises their lower and upper values as given 
in Table 2. In order to develop the most efficient reliability 
meta-model we need to determine the minimum number of 
training sets for the four design parameters and the maximum 
time interval over life-time. As a rule of thumb we chose 20 
times the number of design parameters (i.e. 80 here) and keep 
the time intervals of 0.1 years. The training reliability curves 
from MCS that correspond to the design space are shown in 
Fig. 4. 

Table 1. Parameters and distributions for the Daniels system. 
 

Variable Distribution Mean Variability 

 a1 - V1  Normal μa1 in. 1as  

a2 - V2 Normal μa2 in. 2as  

b1 - V3  Normal μb1 in. 1bs  

b2 - V4   Normal μb2 in. 1bs  

σ1 - V5 Normal 36 kpsi ss1 = 0.36 kpsi 

σ2 – V6 Normal 36 kpsi ss2 = 0.36 kpsi 

P(t) -Y1(t) Gaussian E[Y1(t)] s[Y1(t)] 

C1(t) Gamma E[C1(t)] CV1 

C2(t) Gamma E[C1(t)] CV2 

 
 

)(tP  
 
Fig. 1. Daniels system with applied load and two support rods under 
corrosion. 
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Two different meta-models are built for comparison pur-
poses: these include a quadratic moving least-squares (qMLS) 
model and a Kriging model. For the least-squares approach, 
the appropriate form of each input vector ( )T

ld p is used to 
provide the data for the input matrix D. Further, the influence 
radius in Eq. (32) is 0.5004. Hereinafter, for a Kriging model a 
linear global function (linear regression model) has been used 
and along with off-the-shelf software [17]. The accuracies of 
the two meta-models are checked using the arbitrary set of 
input parameters po = [1.365, 1.235, 1.14, 1.14]. The system 
reliability results are compared in Fig. 5. A time-variant reli-
ability index, b(t) = F-1(R(t)) where R(t) is reliability and F-1( ) 
is a standard normal inverse cumulative distribution function 
is used to analyze the accuracy of the meta-model for reliabil-
ity [40]. The percentage errors of the two meta-model ap-
proaches based on time-variant reliability indices are shown in 
Fig. 6. Fig. 6 shows mean, minimum, and maximum percent-
age errors over time for 20 test points which are randomly 
sampled sets of parameters from design spaces. Both mean 
and maximum percentage errors for qMLS meta-model are 

smaller than ones for Kriging meta-model. And the average 
percentage errors for the qMLS and Kriging meta-models are 
2.25 % are 4.68 %, respectively. However, the times to evalu-
ate reliability (over the life-time) are quite different: the qMLS 
meta-model takes 0.02388 s, the Kriging model takes 9.727 s 
while the time using Monte Carlo simulation method with N = 
100000 is 189.23 sec. Finally, it is noted that Kriging tends to 
exhibit a more “noisy” reliability profile over the life-time 
(versus qMLS) and hence this may affect any derivative cal-
culations of the reliability.  

Study P-B: In this study, we fix the dimensions and yield 
strengths of the rods and provide a noise space through 
some variability of the stochastic process parameters. The 
means and standard deviations of the rod dimensions are 
given in Table 3. The noise parameters are taken from both 
the Gaussian and Gamma processes and more specifically 

1 1 1 2[ ] [ [ ( ), [ ( ), [ ( ), [ ( )]T T E Y t Y t E C t E C ts=q r . The so-called noise  

Table 2. Upper and lower specification limits (design space) for meta-
model construction.  
 

µ [in.] 
Design parameters 

lsl usl 

ma1 1.17 1.43 

ma2 1.17 1.43 

mb1 1.08 1.32 

mb2 1.08 1.32 

 

 
 
Fig. 2. Ten sampled stochastic load profiles of Y1(t). 
 

 
 
Fig. 3. Ten sampled degradation profiles of C1(t).  
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Fig. 4. Reliability (i.e. output) training data (80 samples).  

 

 
 
Fig. 5. Comparison of reliability for meta-models. 

 

 
 
Fig. 6. Comparison of percentage error for 20 test points (study P-A).  
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space is given by the variability of these parameters and the 
four ranges are shown in Table 4. For the four noise parame-
ters we again assemble 80 training sets and use time intervals 
of 0.1 years. The training reliability curves from MCS are 
shown in Fig. 7. 

The accuracy of our two new meta-models are checked us-
ing an arbitrary set of noise parameters, where in particular, 
[E[Y1(t)], s[Y1(t)], E[C1(t = 10)], E[C2(t = 10)]] = [89250, 
8400, 0.0053, 0.0032]. The system reliability results are com-
pared in Fig. 8 and errors are given in Fig. 9. Fig. 9 shows 
mean, minimum, and maximum percentage errors over time 
for 20 test points. Again, the accuracy of the qMLS and 
Kriging meta-models are comparable: the average percentage 
errors are 4.06 % for qMLS, and 6.55 % for Kriging. And 
both mean and maximum percentage errors for qMLS meta-
model are smaller than ones for Kriging meta-model. How-
ever, as in study P-A, the qMLS meta-model evaluates the 
life-time reliability 400 times faster than Kriging and about 
8000 times faster than the MCS procedure. Again, we see the 
more noisy reliability profile from Kriging. 

5.2 A series system: Servo actuator 

The servo system of interest is shown in Fig. 10 and both 
the component models and interconnection model can be 
found in more detail in Savage and Carr [41]. The motor and 
tacho-generator pair are shown as M7,9 and G8,10, respectfully. 
Herein the motor and the tacho-generator are identical devices, 
just interconnected differently to provide the required func-
tions. Other subsystems include the difference amplifier, com-
prising the three resistances R2, R3 and R4 and an operational 
amplifier (denoted as O5,6) which has an open-loop gain A. 
The gear train denoted as G12,13 has gear ratio r = r12/r13. The 
source and load subsystems are modelled respectfully as fol-
lows: A voltage supply v1 acts as the power source and an 
applied torque τ15 models the load arising from some con-
nected subsystem at the output shaft (Note: The rotational 
spring constants K11 and K14 are not factors in the steady-state 
performance of the servo-system and their models are not  

Table 3. Parameters and distributions of the rods for the Daniels system.  
 

Variable Distribution Mean St. Dev. 

 a1 - V1  Normal 1.3 in. 0.01 

a2 - V2 Normal 1.3 in. 0.05 

b1 - V3  Normal 1.2 in. 0.01 

b2 - V4   Normal 1.2 in. 0.05 

σ1 - V5 Normal 36 kpsi 0.36 

σ2 - V6 Normal 36 kpsi 0.36 

 
 

Table 4. Upper and lower limits for meta-model construction. 
 

Parameters for stochastic processes lsl usl 
E[Y1(t)]  76500 93500 

s[Y1(t)] 7200 8800 

E[C1(t = 10)]   0.0045 0.0055 

E[C2(t = 10)] 0.0027 0.0033 

 
 

 
 
Fig. 7. Reliability (i.e. output) training data (80 samples). 

 

 
 
Fig. 8. Comparison of reliability for meta-models.  

 

 
 
Fig. 9. Comparison of percentage error for 20 test points (study P-B). 

 

 
 
Fig. 10. Electro-mechanical servo system.  

 



5972 G. J. Savage and Y. K. Son / Journal of Mechanical Science and Technology 33 (12) (2019) 5963~5977 
 

 

needed herein). 
The three performance measures of interest are: 
1. The time constant tc: This term is related directly to the 

time for the shaft speed, measured at point S with respect 
to a stationary reference frame, to reach steady-state an-
gular velocity,  

2. The steady-state shaft speed ωSS, and 
3. The initial, or starting torque τo supplied to the load at 

shaft S.  
The mechanistic models for the three performance measures, 

in terms of the electro-mechanical parameters with the op-amp 
gain A two-orders of magnitude larger than the resistances, are 
respectively 

 
4

2
4 3

4 ( )
(2 )

m
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m

R R R Jt
R R Rk

+
=

+ +
m   (39) 
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m m m
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w t
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+ +
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3

1 15   (40) 

3

2
o

m

R v
rR R
kt = 1   (41) 

 
where for the motor and generator, κ denotes the torque con-
stant, J is the rotational inertia and Rm is the winding resis-
tance. (The rotational friction and winding inductance are 
considered to be negligible.) 

The design specifications (i.e. performance metrics) for 
the three performance measures are given in Table 5. Based 
on Table 5, the four limit-state functions using the three per-
formance measures and four limit specifications are sym-
bolically 

 
1 1

2 2

3 2

4 3

0.045
589

551
0.22

g z
g z
g z
g z

= -
= -
= -

= -

  (42) 

 
System uncertainties:  

In order to assign, but limit, the randomness in the model we 
reason as follows. The supply voltage (i.e. v1 in the schematic) 
is obtained from a known power supply but may be uncertain 
owing to manufacturing abilities or the controller requirement. 
The load torque, (i.e. τ15 in the schematic), is known but again 
may be uncertain owing to the particular end-use. Thus, v1 is 
modelled as a random variable with the parameters given in 
Table 6 and the load torque is modelled as a Gaussian stochas-
tic process using the parameters given in Table 6. The conver-

sion to EOLE requires 12 singular values and provides time-
values similar to those in Fig. 2. 

To assign variability to any of the eight electrical and me-
chanical parameters, a sensitivity analysis has been applied 
with respect to the three performance measures. The results 
tell us that the most important parameter is the torque con-
stant κ followed by the motor resistance Rm and the gear 
ratio r. The remaining four variables are well down the im-
portance order and thus are fixed at nominal, deterministic, 
values. More specifically, the rotor inertia J (of both the 
motor and tacho-generator) is set to 1/1000000 kg-m2. For 
the difference amplifier, the three resistors R2, R3 and R4 are 
set at 10k Ω, 40k Ω and 10k Ω respectively and the op-amp 
gain A is set to 5x106. 

 
Nominal values for κ, Rm and r: 

The three initial nominal values for κ, Rm and r are obtained 
by minimizing a single, deterministic, system loss function. 
Target values for the three performance measures and a way 
to normalize their different units are required. The target for 
the shaft speed is the natural target value of 570 rad/sec. For 
the time constant response and the torque response, which 
have no target value, arbitrary targets are set at values that are 
10 % in the favourable direction from the respective limit 
specification. Each term is normalized using the target-to-limit 
distance. Then we minimize 

 
2 2 2( 0.04) ( 570) ( 0.24)( , , )

0.005 19 0.02
c SS o

m

tL R r w tk - - -æ ö æ ö æ ö= + +ç ÷ ç ÷ ç ÷
è ø è ø è ø

  (43) 
 

where the performance measures, in terms of the design vari-
ables, come from Eqs. (39)-(41). We get the initial values as 
[κ, Rm, r] = [7.38/1000 N-m/A, 2.9 Ω, 0.455 m/m]. 

 
Component degradation modelling: 

Many DC (direct current) motors use permanent magnets to 
provide the requisite magnetic flux. This type of motor has  

Table 6. Specifications for the system variables and stochastic proc-
esses. 
 

Variable/process Distribution Mean CV 

V1 (κ) Normal m1 s1/m1 

V2 (Rm ) Normal 2.9 0.0067 

V3 (T) Uniform 335.5 K [298, 373] K 

V4 (RH) Uniform 60 % [30, 90] % 

V5 (v1) Normal 12 Volt 0.0033 

V6 (r) Deterministic η - 

C1(t) for κ(t) Gamma 0.01 (t = 10) 0.3 

C2(t) for T(t) Gamma 1.75´10-5 (t = 10) 0.3 

C3(t) for RH(t) Gamma 2.25´10-6 (t = 10) 0.3 

Y(t) (τ15) Gaussian 0.01 0.2 

 
 

Table 5. Responses, performance metrics and specifications.  
 

Response Metric Specifications 

Z1 (tc) Smaller-is-best USL1 = 0.045 sec 

Z2 (ωSS) Target-is-best LSL2 = 551, T = 570 rad/sec, USL2 = 589

Z3 (τo) Larger-is-best LSL3 = 0.22 N-m 
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good operational characteristics and low cost; however, per-
manent magnets have a tendency to lose some of their mag-
netic strength due to both over-use and operating conditions. 
This reduction in magnetic field strength causes a correspond-
ing reduction in torque output since the so-called torque con-
stant degrades. For the degrading torque constant, the degrada-
tion is often written in the random path form, specifically 

0( ) (1 )  t d tk k= - ´ where 0k is the initial torque-constant 
value and d is a known degradation rate. For this study we let 
the degradation be modelled by a stochastic process. Thus, we 
have  

 
1 1 1( ) (1 ( ))  X t V C t= -   (44) 

 
where 1( )X t is the torque constant at time t, V1 is the uncer-
tainty at initial time and 1( )C t is a Gamma process that models 
the temporal degradation. Herein, we set C1(t = 0) = 0, and 
choose both E[C(t = tL)] and Var[C(t = tL)] (hence CV[C(t = 
tL)]) , then use Eqs. (21) and (22) to evaluate the Gamma dis-
tribution parameters. The degradation paths are similar in 
character to those in Fig. 3. 

The armature winding resistance Rm increases over time 
depending on the heat and humidity values of the operating 
environment [42]. The winding resistance, from Ref. [43], 
is typically modelled as 0 1 2( ) exp ( ) mR t R T RH ta a= +é ùë û  
where 0R  is the initial resistance value and 1 2,a a  are 
degradation rates for temperature T and humidity RH. How-
ever, with stochastic degradation models, the armature 
winding resistance, becomes 

 
2 2 3 2 4 3( ) exp ( ( ) ( )   X t V V C t V C t= +é ùë û   (45) 

 
where X2(t) is the resistance at time t, V2 is the uncertain resis-
tance at initial time, V3 is the uncertain temperature in Kelvin 
and V4 is the uncertain relative humidity in percentage. C2(t) 
and C3(t) are Gamma degradation processes. The parameters 
for the random variables and stochastic processes in the torque 
constant and armature resistance models are given in Table 6. 
The autocorrelation for Y(t) is r(t1, t2) = exp[-(t2 - t1)2/l2] with 
l = 1 year.   

 
The meta-model:  

For design purposes, the torque constant and gear ratio are 
selected as the design variables and then the mean and toler-
ance of the torque constant and the nominal gear ratio become 
the design parameters so pT = [m1, tol1, η] where tol1 is the 
statistical tolerance 3s1. A sensitivity analysis using initial 
reliability R(t = 0) and entries in p shows a very sensitivity 
system and thus to ensure a realistic minimum R(t = 0) the 
design space in Table 7 is allotted. The meta-model is built 
using 60 training sets from the design space, evaluated at time 
instances obtained from a life-time of 10 years and time in-
crements of Δt = 0.1 year. Corresponding system reliability 
curves, generated by MCS with N = 100000 samples, are 

shown in Fig. 11. The quite broad range of curves shows how 
sensitivity the reliability is to the design parameters.  

As a test of the efficacy of the meta-model, the system reli-
ability is obtained for arbitrary values [m1, tol1, η] = [0.0074, 
1.5, 0.45]. The results from the meta-models are compared 
and shown in Fig. 12 and the various percentage errors for 20  

Table 7. Upper and lower specification limits for design parameters. 
 

Design parameter lsl usl 

m1 7.3200´10-3 7.4600´10-3 

tol1  1 %m1 1.6 %m1 
h  0.448 0.462 

 

 
 
Fig. 11. Reliability curves (i.e. output) from training data (60 samples). 

 

 
 
Fig. 12. Comparison of reliability for meta-models. 

 

 
 
Fig. 13. Comparison of percentage error for 20 test points (servo actuator). 
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test points are shown in Fig. 13. At most of times, both mean 
and maximum percentage errors for qMLS meta-model are 
smaller than ones for Kriging meta-model. And overall the 
average errors are 2.40 % for the qMLS meta-model and 
2.28 % for Kriging. Also, in this example, we see the more 
noisy reliability profile from Kriging. 

 
Design applications:  

The meta-model is now used for design purposes. In order 
to show the flexibility of the methodology presented herein, 
three optimum designs are found using two different optimiza-
tion algorithms [44, 45].  

 
Design for life-time 

This problem is expressed in terms of the total cost objec-
tive (which is a function of the reliability) comprising produc-
tion cost, scrap cost and loss of quality cost. In this design 
there are no specific reliability constraints. We write the De-
sign for Life-Time problem as  

 
( ) ( )0Minimize   1 ( , ) ( , , )

                subject to
               

E
p S LQ F

L U

C c R t C cq+ - +

£ £

p p p

p p p
  (46) 

 
where the production cost Cp(p) = 3.5 +0.75/tol1, and  

( )( )1
1

( , , ) ( , ) ( , )
L

E t
LQ F F l l

l

C c c R t R t e qq -
-

=

= -åp p p  

For the second term (i.e. scrap cost) we set cs = $20, and for 

the third term (i.e. loss of quality cost or opportunity costs 
[46]) we set cF = $20 and θ = 3 % in Eq. (46). The optimum 
results are shown in Table 8 along with the reliability curves 
in Fig. 14. The reduction in total cost and increase in overall 
system reliability is substantial. The optimization design is 
reached in 133 iterations with the meta-models and 390 itera-
tions using traditional MCS. 
 
Design for dependability 

This problem also uses the total cost as the objective but 
now specific reliability constraints are introduced at initial 
time and some later time. We write the Design for Depend-
ability problem as 

 
( ) ( )0

0 0

Minimize   1 ( , ) ( , , )
                subject to
        ( , ) , ( , )
                    

E
p S LQ F

M M

L U

C c R t C c

R t R R t R
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³ ³

£ £

p p p

p p
p p p

  (47) 

 
For the scrap and loss of loss of quality costs, we set cs = $20, 
cF = $10 and θ = 3 % in Eq. (47). For the reliability constraints 
we consider two cases:  

Case (a): R0 = 0.999, and RM = 0.95 at tL = 10 year, 
Case (b): R0 = 0.999, and RM = 0.99 at tM = 7 year. 
 
The optimum results are shown in Table 9 and the accom- 

Table 9. Design results for design for dependability.  
 

Design for dependability Parameters  
and cost [$] Initial design 

Case (a) Case (b) 

m1 7.3200´10-3 7.3907´10-3 7.4179´10-3 

tol1 1.500 1.4638 1.3395 

η 0.4500 0.454 0.4547 

CP 4.000 4.0124 4.0599 
E
LQC  1.6131 0.2563 0.1553 

CT 5.6131 4.2687 4.2152 

 

 
 
Fig. 15. Reliability curves for initial and optimum designs (design for 
dependability). 

 

Table 8. Upper and lower specification limits for design parameters. 
 

Parameters and cost [$] Initial design Design for life-time 

m1 7.3200´10-3 7.4493´10-3 

tol1 1.5000 1.2892 

η 0.4500 0.4568 

CP 4.0000 4.0817 
E
LQC  3.0723 0.2725 

CT 7.0723 4.3542 

 

 
 
Fig. 14. Reliability curves for initial and optimum designs (design for 
life-time). 
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panying reliability curves are shown in Fig. 15. The optimum 
design for case (a) has been reached in 164 iterations using the 
meta-model (to provide reliability) and 4205 iterations with 
the traditional MCS. For case (b), the optimum design has 
been reached in 105 iterations using the meta-model; however, 
no solution was reached after 7000 iterations with the tradi-
tional MCS. 
 
Discussion:  

We note that the single reliability meta-model has been used 
for three design scenarios. In essence the investment of 60 
MCS to train the reliability meta-model has obviated the need 
to perform thousands of lengthy MCS in the traditional two-
loop optimization algorithms. Further, the more consistent 
gradients in the meta-model provide for a more assured con-
vergent to an optimal solution. 

 
6. Conclusions  

In this paper we have presented an efficient, two-stage, 
methodology for RBDO of engineering systems with time-
dependent system reliability. The time-dependence is caused 
by stochastic loads and stochastic degradations of structural 
and material characteristics. The traditional time-variant reli-
ability calculation is essentially uncoupled from the optimiza-
tion process via a meta-model that gives reliability in terms of 
the selected design parameters and their design space. Then, 
integrated design to minimize the objective function while 
meeting reliability constraints becomes trivial. The robustness 
of the methodology is shown by augmenting the usual design 
space with a noise space comprising uncertainty in the pa-
rameters and stochastic processes modelling both loads and 
degradation. 

To form the meta-model, training samples of the design pa-
rameters (and noise parameters if required) are selected and 
stored in an input matrix. Then, they are used, along with the 
mechanistic model, to generate corresponding vectors from 
time-sampled reliability to form up the output matrix. The 
Gaussian process (used for excitations) and the Gamma proc-
ess (used for the degradation models) are straightforward to 
program via MCS. The two matrices have been linked by two 
meta-model approaches: Moving least-squares and Kriging. 
The errors and their control are based primarily on the number 
of training sets and the length of the time increment.  

The moving least squares meta-model has been found to be 
much faster and as accurate as the ubiquitous Kriging model. 
The accuracy of the moving least squares meta model arises 
from the consistent shape of the family of reliability curves 
and the use of a regularized formula for choosing the weights 
that determine the so-called nearby samples 

The case-studies have pointed out the efficacy of the meta-
model approach. Herein, the meta-model produces the reli-
ability curve in a fraction of the time needed by the traditional 
MCS: this has led to the shortening of the optimization time 
by several orders of magnitude while retaining reliability ac-

curacy in the order of a fraction of a percentage. For more 
complex and/or implicit problems, it is expected that the 
methodology would show increased computational leverage. 
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Nomenclature------------------------------------------------------------------------ 

p : Vector of design parameters 
q : Vector of Gaussian noise parameters 
r : Vector of Gamma noise parameters 
V : Vector of random variables 
U : Standard normal space variables 
t : Time 
tL : Life-time 

( )Y t  : Gaussian process 
( )C t  : Gamma process 
( )W t  : Stochastic process 
( )F t  : Cumulative distribution function (cdf) 
( )R t  : Reliability function 

RM : Reliability policies at time M 
C : Cost 
( ), ( ),i l lg t tV W  : ith time-variant limit-state function 

lA  : System failure region 
lB  : Incremental system failure region 

RBDO : Reliability-based design optimization 
FORM : First-order reliability method 
MLFP : Most-likely failure point 
MCS : Monte-Carlo simulation 
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Appendix  

Let the Gaussian process, with the discretization of time 
given in Sec. 2, have the mean function ( )Y itm , the standard 
deviation function ( )Y its  and the autocorrelation function 

( , )Y i jt tr . The symmetric Covariance matrix (denoted as Σ ), 

has elements of the form ( , ) ( ) ( ) ( , )i j Y i Y j Y i jCov t t t t t ts s r= , 
where i = 0, 1,¼ L and j = 0, 1,¼ L. An eigenvalue solution 
of N N´Σ  provides its eigenvectors and eigenvalues; however, 
for s retained significant eigenvalues, we have the reduced 
matrix of orthonormal vectors F = [j1, j2,…, js]N´s and the   

reduced matrix of eigenvalues L = [l1, l2,… ls]s´s. Then the 
approximating symmetric covariance matrix is å » FIFT. 
There are various ways to determine the number of retained 
eigenvalues and eigenvectors (i.e. s) for sufficient accuracy 
[47].  

Of importance, Li [36] defines the time-related vector (con-
taining standard deviation and correlation parameters) 

 
0 0( ) [ ( ) ( , ) ( ) ( ) ( , ) ( )]T

Y Y Y Y Y L Y Lt t t t t t t t ts r s s r s=Σ L   (A.1) 
 
and provides a companion vector of standard normal variables 
U = [U1, U2, … Us]T. Finally, the expansion of the process is 
written as 

 
1

1

( ) ( ) [ ( )]
r

T
Y i i i

i

Y t t t I Um -

=

= + åΣ Σ φ   (A.2) 

 
If we define the scalar function 1( ) [ ( )]T

i it tj -= Σ Σ φ , pro-

vide a new matrix, 1 2[1 /  1 / 1 / ]r r rdiag l l l ´=Λ% L , and 

use the eigenvalue-eigenvector relation åF = FI, then Eq. 
(A.2) takes the compact matrix form  

 
( ) ( ) [ ( )] ( )T

YY t t tm= + Σ ΦΛ U%   (A.3) 
 

where ( )ΦΛ% is a matrix of constants.  
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