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Abstract 
 
For numerical analysis of multiphase flow, each interface boundary should be captured, and the geometric deformation of the interface 

needs to be predicted. To predict the interface, the singular interface model and diffusion interface model can be used. Among them, free 
energy based lattice Boltzmann method has adopted the diffusion interface model, with which it is easy to simulate complex multiphase 
flow phenomena such as bubble collapse, droplet collision, and moving contact lines. A new lattice Boltzmann method for the simulation 
of multiphase flows is described, and test results for the validation are presented. Finally, some simulations were carried out for the inves-
tigation of dynamic behavior of multiple rising bubbles.  
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1. Introduction 

In multiphase flow, which includes at least two phases 
among gas, liquid, and solid, the phenomena get to be shown 
differently with the flow having a single phase because the 
fluids with different property flows mutually interact with 
each other. Various investigations [1-4] have been carried out 
with experimental and numerical ways to declare or estimate 
these phenomena exactly because they are very important for 
not only academic studies but also industrial applications.   

For the simulation of multiphase flow, conventional CFD 
solving the Navier- Stokes equation has been mainly carried 
out with several interface capturing method such as the vol-
ume of fluid method [5], level set method [6], and front-
tracking technique [7]. However, these traditional approaches 
do not easily capture the interface boundary in dealing with 
complex multiphase flow phenomenon such as bubble col-
lapse, droplet collision etc.  

Recently, the lattice Boltzmann method (LBM) has ap-
peared as an alternative tool. The first LBM model for the 
simulation of multiphase flow is color gradient model pro-
posed by Gunstensen et al. [8] and modified by Grunau et al. 
[9]. In their models, red and blue colored particles are intro-
duced to represent two different fluids. The sustenance of 
interface and the separation of phases are achieved by the 
repulsive interaction based on the color gradient and color 

momentum. Shan and Chen [10] used interaction potential 
between particles at neighboring lattice sites to control the 
form of the equation of state (EOS) of the fluid, called pseudo-
potential model. Swift et al. [11] proposed a free energy based 
model. In their model, a non-ideal pressure tensor, which is 
derived from the free-energy function of non-uniform fluids, 
and an external chemical potential are introduced to obtain an 
isothermal model of phase separation. He et al. [12] presented 
a multiphase LBM in the nearly incompressible limit. In their 
model, the interfacial dynamics is modeled by incorporating 
molecular interactions, and two particle distribution functions 
are used to simulate pressure and velocity fields and to track 
the density field.  

Although the density ratio of the different fluids can vary 
with large range in practical problems, the above-mentioned 
methods are restricted to low density ratios. Therefore, some 
researchers have attempted to suggest an improved LBM for 
higher density ratios up to 1000. Among them, Zheng et al. 
[13] and Lee and Liu [14] are representative. Their models are 
based on a free energy approach, and they use two sets of 
particle distributions for the hydrodynamics of the flow and 
for the interface capturing. In the model of Zheng et al. [13], 
the Cahn-Hilliard equation (CHE) to capture the interface is 
completely recovered without any additional term unlike that 
of Lee and Liu [14], and their method can be easily imple-
mented. However, this method is unable to simulate two phase 
flow that needs to use densities of fluids separately for each 
phase, because the model uses mean value of two densities in 
the whole computational domain. On the other hand, the 
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model of Lee and Liu [14] uses real density of the fluid, so 
that the density ratio effect on the flow can be examined. 
However, the equation in the model of Lee and Liu [14] is 
more complicated, and it needs much more calculation time 
than the model in Ref. [13]. In addition, a second derivative of 
chemical potential has to be used in the CHE.  

The objective of this paper is to suggest a new LBM ap-
proach which compensates for the short comings of the mod-
els in Refs. [13, 14]. For the pressure evolution equation, the 
same model that Lee and Liu [14] suggested is used to impose 
the real density for each phase, and a simple lattice Boltzmann 
equation with the equilibrium distribution function given by 
Ref. [15] is adopted for the CHE to reduce the complexity and 
calculation time when capturing the interface. The rest of this 
paper is organized as follows. In Sec. 2, the multiphase LBM 
of this study is described. Numerical simulations for valida-
tion are carried out in Sec. 3. In Sec. 4, the results of multiple 
bubble rising under the gravitational force are shown. 

 
2. Multiphase lattice Boltzmann method  

2.1 Pressure evolution and momentum transport equation 

When two different phases, whose densities are lr  and 
gr ( l gr r> ), are mixed, the discrete Boltzmann equation for 

the pressure evolution and momentum transport equation can 
be given as follows [14]: 
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where fa  is the particle distribution function, ea

r  is the α-
direction microscopic particle velocity, p is the pressure, φ is 
the order parameter, jm  is the chemical potential, wa  is the 
weighting factor, sc  is the sound speed, and λ is the relaxa-
tion time. For the lattice model, the square lattice (D2Q9) is 
used. The set of discrete velocities is 
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By discretizing Eq. (1) along with the characteristic over the 

time step δt using the modified particle distribution function 
fa , following equation can be obtained [14]: 
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where ( )/f tt l d= is the non-dimensional relaxation time 
which is related to the kinematic viscosity ν as 2  f sc tn t d= . 
The momentum and pressure can be obtained by calculation 
of the zeroth and first moments of fa : 
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2.2 Interface capturing equation 

The interface capturing equation is modeled by Cahn-
Hilliard equation: 
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where Mq  is the mobility. After getting the order parameter 
j , the density can be taken as ( )1l gr jr j r= + - . The 
chemical potential jm  can be derived from the free energy 
density functional as ( )( ) 24 1 0.5jm bj j j k j= - - - Ñ . The 
profile of j  along the normal direction of the interface at 
equilibrium is ( ) ( )1 / 2 1 / 2 tanh 2 /z z Wj = + , where z is the 
coordinate normal to the interface, and W is the interface 
thickness. Given W and β, the gradient parameter κ and sur-
face tension coefficient s can be obtained as 2 / 8Wk b= , 

2 / 6s kb= . 
To derive the Cahn-Hilliard equation, Lee and Liu [14] used 

the following equation: 
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When Eqs. (6) and (12) are compared with the LB equations 

of Zheng et al. [13], they are more complicated and need 
higher calculation time. In addition, the second-order derivative 
of jm  needs to be calculated, and 
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The complexity of the above LB equations are due to the 
fact that they related the particle distribution function ga  for 
the composition j  to ha  by ( / )g ha aj r=  and eqga =  
( / ) eqhaj r , where ha  is the particle distribution function for 
the discrete Boltzmann equation for the transport of the mix-
ture density and momentum of incompressible binary fluids 
given as 
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2( )sF c p jr j m= Ñ -Ñ + Ñ

r
 is the intermolecular force. Eq. 

(15) can be transformed into Eq. (1) with the assumption of 
low Mach number.  

However, the particle distribution function for the interface 
capturing does not have to be related to that for the density 
and momentum as shown in Ref. [13]. In this study, a simple 
LB equation is used to overcome the short comings of Eq. 
(12):  
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The chemical potential jm  is included in the equilibrium 

distribution function as follows [15]: 
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Here γ is related to Mq  as M tjq t gd= , and the order pa-

rameter φ can be obtained as eqg ga a
a a

j = =å å . The Cahn-

Hilliard equation presented in Eq. (11) can be obtained when 
Chapman-Enskog multiscale analysis [16] is applied to this 
model in the long-time and long-wavelength limit.  

 
3. Validation 

3.1 A bubble in the stationary flow 

A benchmark test was carried out for the circular bubble 
placed at the center of the stationary liquid. In the computa-
tional domain 100 x 100 lattice cells are used, and the periodic 
condition is employed at all boundaries. The parameters are 
set as 1lr = , 0.001gr = , 0.3ft = , 0.5jt = , σ = 0.001, γ = 
0.01, and W = 5. The diameter of bubble is 40 in lattice unit. If 
the pressure is properly calculated in the bubble and surround-
ing liquid, then the bubble shape will remain the same even 
after a long time, and the pressure jump(∆p) across the phase 
interface will also be satisfied with the Laplace law ∆p = σ/R, 
where R is the radius of the bubble.  

Fig. 1 shows the variation of the pressure jump over time. It 
is seen that the value is oscillating early in the calculation, and 
the amplitude decreases until 15000 time steps. Fig. 2 shows 
the variation in density along the radial direction from the 
bubble center after 50000 time steps. The distance is normal-

 
 
Fig. 1. Variation of the pressure jump over time. 

 

 
 
Fig. 2. Variation in density along the radial direction from the bubble 
center. 
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ized by the initial radius of the bubble. The result agrees well 
with the analytic solution.  

In Fig. 3, the distribution of pressure around the bubble is 
shown. The pressure is expressed as the relative value to the 
pressure at the center of the bubble. Then, the pressure at the 
outside of the bubble should be 55 10-´  by the Laplace law. 
The pressure is nearly identical with the analytic solution 
showing an error of approximately 0.7 %. 

 
3.2 Rayleigh Taylor instability 

The next test for the validation is the problem of the Ray-
leigh-Taylor instability, which occurs when a heavier fluid lies 
on a lighter fluid in a gravitational field. If there is an interface 
perturbation, the heavy liquid moves down forming a spike 
and the light liquid travels up. Two important parameters in 
studying on Rayleigh-Taylor instability are the Atwood num-
ber ) / ( ),( l g l gAt r r r r= - +  and the Reynolds number 

/Re d gd n= , where d  is the characteristic length and g  
is the gravitational acceleration. 

The simulation was carried out in a two-dimensional do-
main of [-64,64] x [-256,256]. The initial interface is disturbed 
as ( ) ( )0.1 cos 2 / ,y x d xp l=  where l  is the wavelength. 
The results for 0.5,At =  Re 256,=  0.04,gd =  and 

128dl = =  are compared with those of previous study [12]. 
Fig. 4 shows the evolution of the fluid interface at 

* 1,2,3,4,5t = , where *t  is non-dimensional time step nor-
malized by / .d g  The patterns of the interface contour are 
in good agreement with those of Ref. [12]. At the early stage, 
the growing of the perturbation is symmetrical up and down. 
As time goes on, however, the heavy fluid falls into the light 
fluid as a spike and the light fluid rises up penetrating the 
heavy fluid. Then, the heavy fluid begins to roll up and forms 
two side spikes, which would be broken up into small droplets 
at a later time. 

In Fig. 5, the positions of bubble front and spike tip along 
the time are presented. The results of this study excellently 
agree with the previous work. 

By its definition, the Atwood number becomes larger as the 
density ratio increases. To verify that the model suggested in 

this paper can be applied for the multiphase flow with the high 
density ratio, a simulation with the much higher Atwood 
number was conducted in a domain of [-128,128] x [-256,256]. 
The results for 0.998At = , which represents the density ratio 
of 1000, Re 55,=  and 0.007155gd =  are compared with 
those of ANSYS FLUENT using VOF method. In the simula-
tions, the Weber number, 2( / ),lWe gdr s=  is set to 131. 

Fig. 6 shows the evolution of the fluid interface at 
* 0.5,1.0,1.5,2.0,2.5t = . For large Atwood number, the heavy 

fluid falls in much simpler shape than that of low Atwood 
number, and it is hard to find the secondary instability in the 
later stage. The patterns of the interface contour for both 
methods are in good agreement. For a quantitative comparison, 
the positions of bubble front and spike tip along the time are 
shown in Fig. 7. The results of this study almost exactly agree 
with those of VOF method. 

 
3.3 Single rising bubble 

Bhaga and Weber [3] studied the final shape and the termi-
nal velocity of a rising bubble by experimental way, and clas-
sified the bubble shape as spherical (S), oblate ellipsoid (OE), 

 
 
Fig. 3. Distribution of pressure around the bubble. 

 

 
 
Fig. 4. The evolution of the fluid interface at t* = 0, 1, 2, 3, 4, 5 for At
= 0.5. 

 

 
 
Fig. 5. Positions of bubble front and spike tip along the time for At = 0.5. 
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oblate ellipsoidal (OED), oblate ellipsoidal cap (OEC), spheri-
cal cap with closed, steady wake (SCC), spherical cap with 
open, unsteady wake (SCO), skirted with smooth, steady skirt 
(SKS), and skirted with wavy, unsteady skirt (SKW). These 
bubble types can be determined by the dimensionless parame-
ters of Eotvos number (Eo), Morton number (M), and Rey-

nolds number (Re): 
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where tV  is the terminal velocity of the bubble. 

In this section, the simulation of single rising bubble flow is 
carried out, and the results are compared with past calculation 
results.  

For the first validation, 320 x 480 lattice cells are used and 
all boundaries are assumed as walls. The parameters are set as 

1lr = , 0.001gr = , 0.5jt = , and 5W = . Other parameters 
are determined to fit Eotvos and Morton numbers as in Table 1.  

The results of Re and final shapes of bubbles are compared 
with those of Ryu and Ko [17] in Table 1 and Fig. 8. It is seen 
that present results are in good agreement with the existing 
calculation results in quantitative and qualitative terms. For 
the case C, however, the bubble shapes are somewhat differ-
ent from each other. The LBM result of Ryu and Ko [17], in 
particular, seems to be much more stretched sideways than the 
others. The LB method [13] used in their simulation is hard to 
apply real densities in two different fluid regions [18]. They 
mentioned that they used different densities and viscosities for 
two fluids, but actually used the same values. For high Eo and 
M, therefore, the rising bubble might be hard to reach to the 
terminal state because of this characteristic of Ref. [13], and 
Ryu and Ko were able to get the terminal speed and bubble 
shape when the bubble reached near the top wall, which has a 
great effect on making the bubble stretched.  

 
(a) 

 

 
(b) 

 
Fig. 6. The evolution of the fluid interface at t* = 0.5, 1.0, 1.5, 2.0, 2.5 
for At = 0.998: (a) VOF method; (b) present study. 

 

 
 
Fig. 7. Positions of bubble front and spike tip along the time for At =
0.998. 

 

Table 1. Comparison of numerical results for Re. 
 

Ryu & Ko [17] 
Case Eo M 

VOF LBM 
Present study 

A 5 0.012 5.8 6.2 5.7 

B 16 0.038 9.3 12.2 9.4 

C 40 0.096 14.0 16.0 15.8 

 

 
 
Fig. 8. Comparison of final shapes of single rising bubble. 
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For the rising bubble problem, Hysing et al. [19] proposed 
quantitative benchmark configurations and compared several 
incompressible interfacial flow codes using them. They de-
fined benchmark quantities such as centroid, circularity, and 
mean rise velocity as follows: 

 

Centroid:     
1c

xdx
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dx
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 (22) 

Circularity:    a a

b b
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Rise velocity:  
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where W  denotes the bubble region and aP  denotes the 
perimeter of a circle with diameter ad , which has an area 
equal to that of a bubble with perimeter bP . 

For the validation with the above quantities, a second rising 
bubble test was performed. The initial and boundary condi-
tions can be seen in Fig. 9. The center of the bubble of radius r 
is located at [2r, 2r] in a [4r x 4r] rectangular domain. The no-
slip boundary condition is used at the horizontal top and bot-
tom boundaries, while the free-slip condition is used on the 
side walls. The physical parameters and dimensionless num-
bers, which specify the test cases, are listed in Table 2. The 
Reynolds number and the Eotvos number are defined as 

 

l g

l

U L
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r
m
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2

l gU
Eo

Lr
s

= , 

where 2L r= , and 2gU gr= . 
The figures of centroid, circularity, and rise velocity are 

shown in Fig. 10 which correspond to case 1. The time, *t , 
and the rise velocity used in the simulations are non-
dimensionalized by the reference time 2 /t r g=  and gU , 
respectively. For comparison, calculation results using Lee & 
Liu’s model are also presented as well as those of Hysing et al. 
[19]. The plots of centroid and rise velocity agree very well 

Table 2. Physical parameters and dimensionless numbers for the sec-
ond rising bubble test. 
 

Case rl rg  ml /mg  Re Eo 

1 1000 100 10 35 10 

2 1000 1 100 35 125 

 
 

 
 
Fig. 9. Initial and boundary conditions for the second rising bubble test. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 10. Test results for the case 1: (a) Centroid; (b) circularity; (c) rise 
velocity. 
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with each other, while the results of LB models slightly devi-
ate from that of Hysing et al. [19] in circularity.  

In Fig. 11, the results for the case 2 are presented. In the fig-
ure of rise velocity, the bubbles for the LB models appear to 
vibrate violently in the beginning, which may come from the 
compressibility effect of the LBM. For large Atwood number, 
the plots of the three quantities are in good agreement, but the 
present LB model shows results closer to those of Ref. [19] 

than Lee & Liu’s model.  
Fig. 12 shows the bubble shape at * 4.2t = . The results of 

case 1 show that the bubbles are quite similar to each other. 
For test case 2, three bubbles have a similar shape for the main 
bulk; however, there is no agreement with respect to the thin 
filamentary regions. Small satellite droplets can be seen in the 
result of TP2D [19], while long thin trails still remain in other 
results like that of MooNMD [19]. 

For the last test in this section, the calculation time of two 
LB models was compared. The test case 1 was performed for 
three different grid sizes of 160x320, 320x640, and 640x1280. 
The codes for LB models were compiled with the Intel Fortran 
compiler and the simulations were performed on a computer 
with Intel Core i7 5820k processor. As seen in Fig. 13, the 
computation time for both models is growing linearly as the 
number of grids increases, and Lee & Liu’s model takes more 
than twice as long as present model. Therefore, it is found that 
current approach has a benefit in computational time. 

 
4. Multiple rising bubbles 

Numerical investigations of a rising bubble were mainly fo-
cused on a single bubble or two bubbles. When the number of 
bubbles increases, it is not possible to perform the simulation 
considering all of them. In such case, a mixture model for the 
bubbly flow should be applied instead of direct numerical 
simulation, and it is important to understand the interferences 
between bubbles to develop a good model. 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 11. Test results for the case 2: (a) Centroid; (b) circularity; (c) rise 
velocity. 

 
 

 
 
Fig. 12. Comparison of the bubble shape at time t* = 4.2. 

 

 
 
Fig. 13. Comparison of calculation time. 

 



5258 N. Jeong / Journal of Mechanical Science and Technology 33 (11) (2019) 5251~5260 
 

 

To observe how the interactions between bubbles occur 
when three and five bubbles rise at the same time, calculations 
were performed for the cases that the gap between the center 
of the bubble was 50 and 80 lattice units. For the computa-

tional domain, 320 x 600 and 1000 x 600 lattice cells were 
used for three and five bubbles, respectively. 

Fig. 14 shows the shapes of the three bubbles changing as 
they rise when 5Eo = , 0.012M = . They are presented at 
every 10000 time steps. In case that the interval between cen-
ter of bubbles is 50, the rising velocity of the bubble in the 
center is initially lower than that of the side bubbles, and it is 
getting greater over time. However, if the bubble interval is 80, 
the rising velocity of the side bubbles is expected to be higher 
than the bubble in the middle from the beginning until the end.  

The bubble speeds depending on location are compared 
quantitatively in Fig. 15. For 50 bubble interval, the center 
bubble rises faster than the side bubbles after 14000 time steps. 
Fig. 16 shows the stream traces of the flow near the bubbles at 
the earlier stage. When the bubble interval is 50, rising flow 
forms strongly in the middle. For the bubble interval 80, how-
ever, rising flow from the center is suppressed by the effect of 
side bubbles, and the bubble in the middle is getting flattened 

    
              (a)                          (b) 
 
Fig. 14. Change of the shapes of rising three bubbles for Eo = 5; M = 
0.012: (a) Interval 50; (b) interval 80. 

 

 
(a) 

 

 
(b) 

 
Fig. 15. Comparison of bubble speeds depending on the location: (a) 
Interval 50; (b) interval 80.  

 

    
              (a)                          (b) 
 
Fig. 16. Stream traces of the flow near the bubbles: (a) Interval 50; (b) 
interval 80. 
 

 
 
Fig. 17. The shapes of three bubbles for interval 80. 
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by the effect (see Fig. 17). Fig. 18 presents the change of the 
shape of rising three bubbles at every 6000 time steps when 
Eo = 16, M = 0.038. The overall trend for bubble rising is 
similar to that in case of Eo = 5, M = 0.012. 

Fig. 19 shows how the shape and position of bubbles 
change, while the five bubbles rise at the same time for the 
case of Eo = 5, M = 0.012. 

When the bubble interval is 80, the bubble rising speed in-
creases as the bubble position gets closer to outside, and that 
trend is maintained even as time increases. For 50 bubble in-
terval, however, bubble speed in the outermost region is slow-
ing down. In Fig. 20, the shape and position of bubbles are 
presented at every 6000 time steps for the case of Eo = 16, M 
= 0.038. The overall trend for bubble rising is similar to that in 
case of Eo = 5, M = 0.012 for 80 bubble interval. In case of 50 
bubble interval, however, it can be seen that two bubbles on 
the outside are merged into one. 

 
5. Conclusions 

In this study a lattice Boltzmann method is proposed for the 
simulations of multi-phase flow. Using this method, validation 
tests for the problems of a circular bubble, which is placed at 
the center of the stationary liquid, Rayleigh-Taylor instability, 
and single rising bubble were performed. The calculation re-
sults, which were compared with those of analytic solution 
and other numerical studies, show good agreement. When 
compared with the past LB model, the present method can 
reduce the calculation time considerably. For the study of 
multiple rising bubble, some simulations were carried out for 
three and five bubbles. In the results for three and five bubbles, 
the difference of interaction of the bubbles was found between 
the case that bubbles are positioned close to each other and the 
case that they are not close enough. 

    
              (a)                          (b) 
 
Fig. 18. Change of the shapes of rising three bubbles for Eo = 16; M = 
0.038: (a) Interval 50; (b) interval 80. 

 
 

 
(a)          

                 

  
(b) 

 
Fig. 19. Change of the shapes of rising five bubbles for Eo = 5; M = 
0.012: (a) Interval 50; (b) interval 80. 

 

 
(a) 

 

 
(b) 

 
Fig. 20. Change of the shapes of rising five bubbles for Eo = 16; M = 
0.038: (a) Interval 50; (b) interval 80. 
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Nomenclature------------------------------------------------------------------------ 

fa , ga  : Particle distribution function 
j   : Order parameter 
wa   : Weighting factor 

ft , jt  : Non-dimensional relaxation time 
Mq   : Mobility 
jm   : Chemical potential 

s   : Surface tension coefficient 
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