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Abstract 
 
Compressive sensing is an efficient machinery monitoring framework, which just needs to sample and store a small amount of 

observed signal. However, traditional reconstruction and fault detection methods cost great time and the accuracy is not satisfied. For this 
problem, a 1D convolutional neural network (CNN) is adopted here for fault diagnosis using the compressed signal. CNN replaces the 
reconstruction and fault detection processes and greatly improves the performance. Since the main information has been reserved in the 
compressed signal, the CNN is able to extract features from it automatically. The experiments on compressed gearbox signal 
demonstrated that CNN not only achieves better accuracy but also costs less time. The influencing factors of CNN have been discussed, 
and we compared the CNN with other classifiers. Moreover, the CNN model was also tested on bearing dataset from Case Western 
Reserve University. The proposed model achieves more than 90 % accuracy even for 50 % compressed signal.  
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1. Introduction 

With the advancement of information processing technol-
ogy, traditional repair and preventive maintenance are gradu-
ally eliminated and replaced by condition-based predictive 
maintenance (CBPdm). An efficiency monitoring system is 
required to guarantee the core components operating normally. 
In such a system, high-speed data transmission is the key to 
intelligent management and maintenance. Facing fast sam-
pling rates and various monitoring requirements, there are 
great needs for methods that can reduce the burden of data 
saving and transmitting. 

Several algorithms have been proposed for signal compres-
sion, such as wavelet transform [1], arithmetic coding [2], and 
Huffman coding [3]. Nevertheless, compressive sensing (CS) 
[4-6] theory provides a new idea for solving this problem. CS 
framework first represents the original signal by a low-
dimension signal which preserves the main information. Then, 
the original signal can be acquired by appropriate methods, 
such as convex optimization algorithms [7], greedy-based 
algorithms [8]. In a CS monitoring system, the vibration signal 
is acquired and compressed in a sensor node, and then trans-

mitted to the upper node. The signal reconstruction will be 
conducted in the upper node for approximately getting the 
original signal.  

During the past few years, the application of CS in machin-
ery monitoring and fault detection has emerged. Sun et al. [9] 
adopted the block sparse Bayesian learning method for bear-
ing data compression. They also illustrated the efficiency of 
this algorithm by computing the fault classification accuracy. 
Zhang et al. [10] applied CS and K-SVD theory to fault detec-
tion. Special sparse dictionaries for each fault were trained and 
then testing data were classified according to the results of 
decomposition. In referring Ref. [11], a sampling strategy was 
proposed for preserving the harmonics information. As har-
monics often represent the fault frequencies in a vibration 
signal, the fault features can be derived from the compressed 
data before reconstruction. Wang et al. [12] proposed a paral-
lel FISTA-like proximal decomposition algorithm under the 
CS framework. The experiments show that their method can 
retain time-frequency signatures using only small measure-
ments. 

Although the CS reduces data size during transmission, it 
costs great time for signal reconstruction in the host computer. 
Since it is possible to reconstruct the original signal through 
the information preserved in the low-dimension signal, we can 
consider achieving fault classification using the compressed 
signal only. This is the starting point of our paper. 
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Improved by Hinton et al., deep learning [13] has become a 
hotspot in machine learning and artificial intelligence. Deep 
learning has strong capabilities in adaptive feature learning 
due to its multi-layer network structure. Convolutional neural 
network (CNN), as a new deep learning technique, has been 
developed and widely applied in fault diagnosis of machinery 
recently. Traditional fault diagnosis algorithm consists of three 
parts: feature extraction, feature selection and fault classifica-
tion. The feature extraction methods include time-frequency 
analysis, cepstrum analysis, wavelet transform, empirical 
mode decomposition, etc. Those methods highly rely on per-
sonal judgments. However, CNN can realize automatic feature 
extraction and deep learning through hidden layers. In recent 
years, new CNN architecture, such as AlexNet [14], Google-
Net [15], ResNet [16], continues to win the championship of 
the image recognition contest ImageNet.  

Traditional CNN are mainly used for the recognition of 
two-dimensional images. However, researchers have proposed 
a 1D CNN that can be used for vibration signal detection. Ince 
et al. [17] fused the feature extraction and fault classification 
into a single body using 1D CNN. The proposed method 
eliminates the need of complex feature extraction algorithms. 
Zhou et al. [18] adopted the modified 1D convolutional kernel 
and pool layers to adapt 1D domain signals. Wu et al. [19] 
tested the 1D CNN model with the compound fault data from 
a tank gearbox. The results show that the precision of pro-
posed model is higher than traditional fault diagnosis methods. 
Wen et al. [20] converted the 1D signal to 2-D images and 
tested the method using three famous datasets. The advantage 
of CNN is that it eliminates the effect of handcrafted features. 
Zhu et al. [21] utilized raw data from sensors and put them 
into CNN model. Aiming at the typical time shift property of 
vibration signal, they proposed the strategies of weight sum-
ming and large-scale maximum value pooling. It has been 
demonstrated that the shift invariant CNN has a higher accu-
racy than traditional fault diagnosis methods. 

For reducing the time consumption of host computer, this 
paper proposed a CNN-based fault detection framework using 
the CS compressed signal. The 1D CNN was directly applied 
to the CS compressed signal without reconstruction. Accord-
ing to CS theory, main information of original signal was pre-
served in the compressed data. Thus, 1D CNN can extract the 
fault features in CS compressed signal automatically. This 
method is tested on vibration signal from planetary gearbox 
test rig and bearing dataset from Case Western Reserve Uni-
versity. Some interesting conclusions have been obtained dur-
ing experiments. 

The main contributions of this paper are outlined as follows: 
(1) This paper is the first application of CNN model on com-
pressed signal directly. The 1D CNN framework is proposed 
for replacing traditional reconstruction and fault detection 
processes, and it has been demonstrated that the CNN has the 
ability of feature extraction from the compressed signal. (2) 
The effectiveness and influencing factors of CNN are dis-
cussed and CNN is compared with other classifiers. The struc-

ture of this paper is as follows. In Sec. 2, CS and CNN theory 
is briefly recalled. The new framework of 1D CNN on com-
pressed signal is then given in Sec. 3. Sec. 4 presents the ex-
periments of proposed method using compressed gearbox and 
bearing signal. Sec. 5 summarizes the paper.  

 
2. Related work 

2.1 Compressive sensing 

The Nyquist sampling principle tells us the sampling fre-
quency fs have following relationship with the signal fre-
quency f to guarantee the quality of sampling. 

 
2sf f³ .        (1) 

 
However, real-time monitoring with high sampling places a 

great burden on the sensors and transmission. To solve this 
problem, compressive sensing [4] uses a low-dimension signal 
to approximate the original signal. This can be seen as a 
breakthrough of Nyquist sampling. Because the vibration sig-
nal is not sparse, we need to decompose it with a sparse basis 
before compression. Assuming Ψ ϵ RN×N as the sparse trans-
form, original signal x (x ϵ RN ) can be represented as  

 
=x Yq ,        (2) 

 
where θ (θ ϵ RN ) is the coefficients vector in Ψ-domain. As-
suming the length of measurement is M, the compression ratio 
(CR) can be defined as: 

 
N MCR

N
-

= .       (3) 

 
If x0 represents N-M smallest coefficients of x set 0, then we 

have ║x0-x║2/║x║2 negligibly small when M << N. Based on 
this observation, the CS measurements may be represented as  

 
y = Φx = ΦΨθ = Θθ ,          (4) 

 
where y (y ϵ RM) represents compressed measurement, Φ (Φ ϵ 
RM×N) represents the measurement matrix, and Θ (Θ ϵ RM×N) 
is called the sensor matrix in CS. Solving a sparse vector θ is a 
commonly discussed problem [6, 7] with respect to Θ. The 

 
 
Fig. 1. The framework of compressive sensing. 
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framework of CS is shown in Fig. 1. Mathematically, this is a 
0-norm optimization problem that is NP-hard. The solving 
methods include orthogonal matching pursuit (OMP) [8] and 
basic pursuit (BP) [22]. 

Accurate reconstruction of sparse signal requires restricted 
isometric property (RIP) of measurement matrix Φ, that is  

 
2 2 2

2 2 2
(1 ) (1 )k kd d- £ £ +s Φs s ,      (5) 

 
where s represents a random k-sparse vector, and δk ϵ (0,1). 
The reconstruction problem is then converted to a 1-norm 
optimization problem when measurement Φ satisfies Eq. (5). 
The convex optimization problem can be solved by Lasso [23], 
LARS et al. [24]. 

 
2.2 Convolutional neural network 

Shallow machine learning algorithms use manually ob-
tained features for classification or prediction because they 
cannot extract features from the complex data. However, fea-
ture extraction heavily depends on people’s experience. Once 
the feature is not suitable or the number is insufficient, ma-
chine learning will be difficult to achieve the desired results. 
Compared with shallow learning, deep learning can get the 
expression of complex functions by training a deep nonlinear 
network structure which has better generalization ability. Deep 
learning includes three models: Deep belief network (DBN), 
convolutional neural network (CNN), and deep neural net-

work (DNN). CNN is a feedforward neural network inspired 
by mammalian visual multi-layer cells. Different from the 
fully connected artificial network, the neuron in each layer is 
only sparsely connected to a certain set of neurons from the 
previous layer. The theory is widely used in the field of image 
recognition and has almost monopolized the ImageNet com-
petition. The most famous CNN models include LeNet-5, 
AlexNet, and GoogleNet. The classical LeNet-5 [25] CNN 
network consists of 1) an input layer, 2) alternating convolu-
tion and 3) pooling layers, and finally 4) a fully connected 
layer, 5) a softmax regression layer, and 6) an output layer. 
Fig. 2 shows this CNN network. While the AlexNet, proposed 
by Alex Krizhevsky, greatly increases the depth of network. 
Moreover, it adopts the Relu function and local response norm 
(LRN) layer for the first time. 

There are several feature maps in a convolutional layer, and 
each feature map is obtained by convolving the data of previ-
ous layer by a corresponding convolutional kernel. The proc-
ess of convolution can be represented as  

 

, , , ,
1 1 1

( )
pm n

i i
x y z x y z

x y z

g i c w d
= = =

= ´ +ååå ,     (6) 

 
where g(i) is the feature map of i-th convolutional kernel, c 
represents the input data of previous layer and d represents the 
bias of the kernel. In Eq. (6), x, y, z represent the dimension of 
input data. After the convolution is completed, a nonlinear 
transformation is performed with activation function. 

The pooling layer implements two tasks: One is to reduce 

 
 
Fig. 2. Structure of classical LeNet-5 CNN. 
 

 
 
Fig. 3. Structure of 1D CNN. 
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the dimension of the feature graph and save calculation, and 
the other is to control overfitting. Typical pooling layers in-
clude maximum pooling, average pooling and 2-norm pooling. 
After convolution and pooling, a fully connected layer is per-
formed and this layer can use different classification models. 

With the depth increasing, the computational work of con-
volutional neural network increases exponentially. Therefore, 
in mechanical fault diagnosis, a five-layer convolutional neu-
ral network is commonly used for implementing feature learn-
ing and classification. 

 
3. 1D CNN for CS compressed vibration signal 

This section introduces a feature learning and fault diagno-
sis model based on 1D CNN for compressed vibration signal. 
The model performs adaptive feature learning through multi-
ple alternating convolutional and pooling layers, and com-
bines the fully connected layer to achieve fault diagnosis. In 
this paper, a classical LeNet-5 model has been improved to 
achieve 1D CNN. The model consists of two convolution 
layers, two pooling layers and one fully connected layer. The 
structure of 1D CNN is shown as Fig. 3. As for CNN structure, 
the following experiments have demonstrated that the LeNet-5 
model is efficient enough to achieve 97.5 % success rate, and 
there is no need for adding layers. Compared to 2D CNN, the 
1D CNN model has the following improvements: 

(1) The 1D convolution kernel and pooling kernel have 
been used for 1D vibration signal. For 1D time domain signals, 
1D convolution kernel and pooling kernel can directly process 
the original signal without pretreatment.  

(2) The first convolution layer uses large convolution kernel 
to extract time domain signal features because the signal 
length is big. However, the size of kernel decreases as depth 
increasing. 

Then we try to use the 1D CNN to process the CS com-
pressed signal. The CS algorithm uses a preset observation 
matrix to perform dimensional reduction projection on the 
original signal to achieve data compression. The compression 
and reconstruction of vibration signal will cost great complex-
ity and running time. Therefore, we consider combining the 

data compression and fault diagnosis. In this way, the fault 
diagnosis can be achieved directly without signal reconstruc-
tion. Fig. 4 compares the new monitoring and fault detection 
framework with the traditional one. 

The flowchart of the proposed method can be summarized 
as Fig. 5. Since the main features of the original signal are 
preserved in the compressed signal, CNN can easily extract 
the features and complete fault classification using com-
pressed signal. Considering that CNN training requires a large 
number of samples, the sliding window method is used here 
for compressed data sampling. Thus, there is a certain overlap 
between adjacent samples. The whole algorithm works as 
follows: 

(1) Data preparing. First, the original signal is split into sig-
nal blocks using a sliding window. Then, each signal block is 
compressed with a preset measurement Φ. The details of this 
part will be described in Sec. 4. 

 
 
Fig. 4. Comparison of 1D CNN for CS compressed signal with traditional monitoring and fault detection. 
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Fig. 5. The flowchart of the proposed method. 
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(2) CNN training. We set up a CNN model and configure 
parameters, including learning rate, epochs (training number), 
batch size, convolution kernel size. Then, we use the training 
samples made in the last step to train this CNN model. The 
training process consists of two steps: Forward propagation 
and Backward propagation. Through error back propagation, 
the CNN model is optimized by the gradient descent method. 
The residual is defined as the effects of the parameters on the 
error of the final output. It is calculated after each training, and 
the related parameters are updated to realize the automatic 
learning. The iterative processes are repeated until training 
finishes. 

(3) CNN testing. After the CNN model is trained, we use 
this model to test the unknown samples and calculate the clas-
sification accuracy. 

 
4. Experiment 

4.1 Case 1: Planetary gearbox fault diagnosis 

The proposed fault diagnosis method is validated using sig-
nals collected form the planetary gearbox. Fig. 6 shows the 
planetary gearbox test rig. The sampling frequency of the test 
rig is 20 KHz and the experiments are conducted under the 
following speeds: 400 rpm, 800 rpm and 1200 rpm. For each 
speed, four kinds of loads are applied, 0 Nm, 0.4 Nm, and 
0.8 Nm.  

The length of training sample is set to 4000 because the 
CNN requires a complete cycle for diagnosis. Each type of the 
training samples contains 300 signals which can be divided 
into three groups, and each group contains 100 signals accord-
ing to the different speeds and loads. All types of training 
samples and testing samples are shown in Table 1. 

We used compressed signals rather than the raw data for 
failure diagnosis. The preset failures are introduced to the 
gears and they are seeded on one tooth of sun gear, planet gear 
and ring gear, respectively. The specific failures are shown in 
Fig. 7. According to the failure position, the gearbox signals 
can be divided into four categories: 1. Normal state, 2. Planet 
gear failure, 3. Ring gear failure and 4. Sun gear failure. 

The preparation of training samples and testing samples 
consists of two steps: (1) Signal split using sliding window 
and (2) signal compression. For sufficient data, the original 
signal is swept by a sliding window, and the step size is 
smaller than the window size. Thus, a part of data between 

adjacent windows is duplicated, which increases the data 
amount, as shown in Fig. 8. According to Sec. 2, the design of 
measurement matrix Φ must follow the RIP criterion. The 
most commonly used measurement matrix includes the Gaus-
sian random matrix, Bernoulli matrix, and generalized or-
thogonal combination matrix. We selected the Gaussian ran-
dom matrix as the measurement matrix in this paper. Candes 
[25] proves that matrix Φ satisfies the RIP criterion with a 
large probability when it is a random Gaussian matrix. 

The compression ratio CR is set to 25 %; thus the com-
pressed signal block length is 3000. The parameters of CNN 

 
 
Fig. 6. Planetary gearbox test rig. 

 

Table 1. Training and testing samples. 
 

State of signal Load (Nm) Speed (rpm) 
Number of 

training  
samples 

Number of 
testing  

samples 

0 400 100 20 

0.4 800 100 20 Normal state 

0.8 1200 100 20 

0 400 100 20 

0.4 800 100 20 
Planet gear 

failure 
0.8 1200 100 20 

0 400 100 20 

0.4 800 100 20 
Ring gear  

failure 
0.8 1200 100 20 

0 400 100 20 

0.4 800 100 20 
Sun gear  
failure 

0.8 1200 100 20 

 
Table 2. The configurations of CNN model. 
 

Parameters Value 

Input 3000×1 

C1: Feature maps 8@2894×1 

S2: Feature maps 8@1447×1 

C3: Feature maps 8@1395×1 

S4: Feature maps 8@279×1 

Learning rate  0.2 

Batch size 4 

Epochs 100 

 

 
                     (a)                (b) 
 

 
(c) 

 
Fig. 7. Seeded wear failure: (a) Sun gear; (b) planet gear; (c) ring gear. 
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are listed in the Table 2. C1, C2 represent the first and second 
convolution layer while S2, S4 represent the first and second 
maximum pooling layer of CNN. The results show that CNN 
based on compressed signal has 97.5 % average accuracy, and 
the average running time is 188.93s. The confusion matrix of 
the CNN classification is shown as Fig. 9, and the four states 
are represented as ‘N’, ‘P’, ‘R’, ‘S’, respectively. As shown in 
Fig. 9, the latter states are easily to be confused with the pre-
vious states, which may be caused by the learning order of 
CNN. The confusion matrix of case 2 also demonstrated this 
conclusion. 

Moreover, we tried to visualize the feature learning ability 
of the 1D CNN. A principal component analysis (PCA) was 
used to reduce the dimension of feature matrix obtained from 
the fully connected layer and the dimension was reduced to 2. 
As shown in Fig. 10, the four states are highly separated con-
sidering two principal components (PC), which indicates good 
classification performance of 1D CNN. Therefore, we can 
obtain the following conclusion: 1D CNN can extract features 

from compressed signal and achieve states classification. 
 

4.1.1 Effect of learning rate 
Normally, a lower learning rate means more learning time 

and a better performance of CNN. The experiments based on 
original signal and compressed signal have demonstrated this 
assumption. The effects of learning rate on classification and 
running time are shown in Fig. 11. From the results, we find 
that the performance dropped sharply at around 0.2. This 
means that the learning rate of 0.2 is a critical value.  

From Fig. 11, we find that the CNN classification achieves 
better accuracy when learning ratio is small. But the compres-
sion ratio should not be too small, otherwise the success rate 
will decrease. 

 
4.1.2 Comparison of 1D CNN and 2D CNN 

In this section, we compared the time and precision of 1D 
CNN and 2D CNN and show the outcomes. To verify the 
efficiency of the comparison, we set the same amounts of 
layers (2), batch size (5), and training number (30). 

The number of training and testing samples of the two mod-
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Fig. 8. The process of signal preparation. 

 

 
 
Fig. 9. The confusion matrix of CNN on planetary gearbox data. 

 

 
 
Fig. 10. PCA analysis of the 1D CNN learned features. 

 

 
(a) 

 

 
(b) 

 
Fig. 11. The CNN performance with learning ratio increasing for (a) 
original signal; (b) compressed signal. 
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els is completely the same, so the length of the sample is the 
same. We converted the 1D 784 length signal into 2D 28×28 
images. From Table 3, we can see that the running of 2D 
CNN is less time consuming compared to 1D CNN. However, 
the accuracy of 1D CNN is higher than 2D CNN within the 
same circumstance. This may be due to the vibration signal 
structure that is destroyed in the process of converting to 2D 
CNN, thereby resulting in the loss of some feature information. 
Since the vibration signal is a 1D signal, we prefer a 1D CNN 
to maintain the signal structure. 

 
4.1.3 Effect of kernel size and amount 

In the past experiments we set the kernel size of two layers 
as 107-53, which achieved good results. The number of con-
volutional kernels for each layer should be an integer multiple 
of 8. And we set the number of convolutional kernels as 8, 8. 
If the length of convolution kernel is too small, the recognition 
rate is low. While if it is too large, an overfitting will occur. 
Thus, the choice of kernel size decides the efficiency of CNN 
directly. Normally, the kernel size is dependent on the length 
of each data sample.  

We tested the relationship between the best convolution 
kernel size and the length of data sample as follows. The 
learning ratio, batch size, and compression ratio were set to 
fixed values. We changed the data sample length L from 3000, 
4000 to 5000. From Tables 4-6, we find that the best convolu-
tion kernel sizes for three data sample lengths are 107-53, 
165-79, and 189-87. The best kernel size is increasing with the 
sample length growing. Therefore, the convolution kernel size 
has a great relationship with the data sample length.  

 
4.1.4 Comparison with CNN on reconstructed signal 

In previous study, CNN was used for fault diagnosis based 
on the compressed signal. In this section, we compared the 
effects of CNN based on both compressed and reconstructed 
signal. 

The CS reconstruction methods can be classified into three 
categories: Convex optimization algorithms [7], greedy-based 
algorithms [8], and Bayesian algorithms [26-28]. Among them, 
the Bayesian algorithm achieves the best performance. Bayes-
ian compressive sensing (BCS) uses Bayesian estimation to 
obtain the maximum posterior probability of the original signal.  

Table 3. Comparison of 1D CNN and 2D CNN using the same planetary gearbox sample. 
 

1D CNN 2D CNN 
Compression ratio 

Time/s Accuracy Time/s Accuracy 

10 % 269 96.2 % 146 80.9 % 

20 % 283 95.4 % 151 73.1 % 

25 % 277 92.5 % 154 72.5 % 

30 % 216 90.3 % 112 67.9 % 

40 % 217 72.6 % 115 33.1 % 

 
Table 4. The relationship between convolution kernel size and precision of fault classification (learning ratio = 0.2, batch size = 5, CR = 25 %, L = 
3000). 
 

Convolution kernel size 87-43 93-45 99-47 101-51 107-53 113-55 

Fault classification accuracy 25 % 25 % 25 % 65 % 97.5 % 95 % 

Convolution kernel size 119-57 120-60 125-59 127-63 131-61 133-65 

Fault classification accuracy 82.5 % 34 % 25 % 25 % 25 % 25 % 

 
Table 5. The relationship between convolution kernel size and precision of fault classification (learning ratio = 0.2, batch size = 5, CR = 25 %, L = 
4000). 
 

Convolution kernel size 125-59 131-61 133-65 139-67 145-69 151-71 

Fault classification accuracy 30 % 40 % 25 % 25 % 35 % 25 % 

Convolution kernel size 153-75 159-77 165-79 171-81 177-83 183-85 

Fault classification accuracy 50 % 92.5 % 97.5 % 55 % 25 % 25 % 

 
Table 6. The relationship between convolution kernel size and precision of fault classification (learning ratio = 0.2, batch size = 5, CR = 25 %, L = 
5000). 
 

Convolution kernel size 151-71 153-75 159-77 171-81 177-83 183-85 

Fault classification accuracy 25 % 25 % 25 % 40 % 20 % 45 % 

Convolution kernel size 185-89 189-87 191-91 197-93 201-95 205-97 

Fault classification accuracy 95 % 97.5 % 40 % 25 % 25 % 25 % 
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In BCS theory, a Gaussian prior-based model is widely 
used. However, the recent results of Ref. [29] show that 
Laplace prior-based model may have better sparseness promo-
tion. In this paper, we introduce the Laplace prior-based 
model to the multitask BCS [27], and call it Lap-CBCS 
method. For better sparse representation, we changed the tra-
ditional sparse transform bases with an over-complete diction-
ary. The basic idea is to use the K-SVD algorithm [30] for 
training various signal samples and adaptively update the dic-
tionary.  

In summary, we used a Lap-CBCS-KSVD method for sig-
nal reconstruction. The algorithm can be regarded as one of 
the most accurate reconstruction algorithms so far. And after 
that, we used the reconstructed signal samples for CNN train-
ing and testing. We selected three kinds of data for compari-
son: 10 % compressed signal (CR = 10 %), 25 % compressed 
signal (CR = 25 %), and the 50 % compressed signal (CR = 
50 %). Fig. 12 reveals following phenomenon: 

(1) The results of CNN fault diagnosis based on compressed 
signal are better than that based on reconstructed signal when 
CR = 10 %, 25 %. Although the Lap-CBCS-KSVD is an effi-
cient reconstruction algorithm, the reconstructed signal still 
has many differences with the original signal. The CNN 

method may be sensitive to those errors and cause the bad 
effects of fault diagnosis. Therefore, we reach an interesting 
conclusion that the CNN using compressed signal may 
achieve better performance than using reconstructed signal 
when the compression ratio is relatively small. 

(2) According to Fig. 12(c), there are some places where the 
classification accuracy of CNN based on compressed signal is 
the lowest. At this time, the compressed signal loses too much 
information of the original signal and the reconstructed signal 
can restore the original signal with higher precision. 

Table 7 lists the time and accuracy for CNN fault diagnosis 
in order to compare the compressed signal and reconstructed 
signal. We conducted 100 experiments for each compression 
ratio, and calculated the average value for running time and 
fault classification accuracy. From the results, it can be seen 
that the CNN with compressed signal is inferior to CNN with 
reconstructed signal when compression ratio is less than 45 %. 
The CNN using compressed signal not only has a better fault 
classification accuracy, but also costs less time. According to 
Table 7, the time consumption of the compressed signal is far 
less than the reconstructed signal.  

However, when the compression ratio is increasing, the re-
constructed signal comes better than the compressed, signal 

Table 7. The comparison of time and accuracy for CNN fault diagnosis on compressed signal and reconstructed signal. 
 

Reconstructed signal Compressed signal Improvement 

Time/s Time/s Compression 
ratio 

K-SVD Lap-CBCS  
reconstruction CNN Total 

Fault classification 
accuracy/% CNN 

Fault classifica-
tion accuracy/% ∆Time/s ∆accuracy/% 

10 % 34 2874 219 3127 87.1 199 100 2928 12.9 

15 % 32 2186 214 2432 85.3 195 99.1 2237 13.8 

20 % 29 1348 210 1587 82.5 193 98.8 1394 16.3 

25 % 34 1035 207 1276 75.3 189 97.5 1087 22.2 

30 % 31 982 206 1219 68.2 176 92.9 1043 24.7 

35 % 32 947 203 1182 62.0 165 82.5 1017 20.5 

40 % 30 928 201 1159 58.5 150 75.7 1009 17.2 

45 % 34 762 190 986 52.3 143 59.9 843 7.6 

50 % 30 541 189 760 49 140 47.5 620 -1.5 

55 % 28 479 184 691 40.8 133 35.9 558 -4.9 

60 % 33 457 178 668 25 121 25 547 0 
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                    (a)                                       (b)                                     (c) 
 
Fig. 12. Comparison of compressed signal and Lap-CBCS-KSVD reconstructed signal using (a) 10 % compressed signal; (b) 25 % compressed 
signal; (c) 50 % compressed signal. 
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although it still costs more running time. In this situation, the 
compressed signal loses too much original information and 
extracting features from the compressed signal is hard, even 
using the CNN method. Thus, a relatively good reconstruction 
will recover some important information, which is a great help 
for fault classification. 

 
4.1.5 Comparison with other classification methods 

For evaluating the performance of proposed deep learning 
method, other classification methods are selected to test the 
efficiency in this case. They are BP artificial neural network 
(BPANN), support  vector machine (SVM), and random 
forest (RF).  

The fault diagnosis effects are displayed in Fig. 13, which 
shows that CNN achieves 100 % fault classification accuracy 
with the compressed signal, which indicates a feature extrac-
tion advantage for CNN. The accuracies of CNN are stable at 
around 100 % when the compression ratio is less than 0.3. 
And the BPANN obtains 100 % classification accuracy only 
when original signal is not compressed at all. However, SVM 
and random forest are not suitable for fault diagnosis in this 
case. 

Moreover, we compared CNN with other statistical meth-
ods and deep learning models. Deep belief network (DBN) 
[31, 32], artificial neural network (ANN) [33], and deep neural 
network (DNN) [34, 35] were selected for comparison in this 
paper. Taking four compressed signals for example, we con-
ducted 100 experiments for each approach and calculated the 
mean accuracy ρ. And the variance τ was calculated for each 
method to evaluate the stability. Table 8 gives the range of [ρ-
2τ, ρ+2τ] for each method, which can be regarded as the 95 % 

confidence interval. 
From Table 8, we can see that with CR increasing, the mean 

accuracy and running time decrease gradually. But the CNN 
model obtains a good result. The mean accuracy of the 25 % 
compressed signal is as high as 97.5 %, and it is better than all 
other methods. Although DNN costs less time, it is slightly 
less accurate compared to CNN. The DBN costs much more 
time than others, and it has less accuracy than CNN, DNN. 
The result of traditional ANN is the worst, which is obviously 
inferior to the CNN model.  

 
4.2 Case 2: Bearing fault diagnosis 

In this section, our proposed 1D-CNN method is performed 
on the bearing data provided by the Case Western Reserve 
University (CWRU) [36]. This dataset was produced by deep 
groove ball bearing from SKF and NTN manufactures. Ex-
periments were carried out under each of the following bear-
ing conditions: Normal, inner race fault (IR), outer race fault 
(OR), and ball fault (B). The faults were divided into four 
categories according to the cutting depth: 7 mm, 14 mm, 21 
mm, and 28 mm. We selected ten kinds of faults (see Table 9). 

There are 800 training samples and 400 testing samples 
prepared for CNN diagnosis. In other words, each fault type 
contains 80 training samples and 40 testing samples. To im-
prove the efficiency, the structure was simplified which con-
tains just one alternating convolutional layer and one pooling 
layer. The configuration of this CNN model is displayed in 

Table 8. Comparison results of CNN with other methods. 
 

CR = 10 % CR = 25 % CR = 40 % CR = 50 % CR = 60 % 
Methods Mean  

accuracy/% 
Running 
time/s 

Mean  
accuracy/% 

Running 
time/s 

Mean 
accuracy/% 

Running 
time/s 

Mean  
accuracy/% 

Running 
time/s 

Mean  
accuracy/% 

Running 
time/s 

CNN 99.37±0.11 199 97.5±1.76 189 75.7±3.82 150 47.5±4.21 137 25 121 

DBN 95.17±0.26 265 92.5±3.16 235 64.5±4.77 196 37.8±6.39 174 25 167 

DNN 97.29±0.43 178 93.45±2.78 162 66.35±4.18 143 40.33±5.53 128 25 111 

ANN 83.70±3.75 164 65.8±5.42 138 41.87±7.69 102 25 99 25 93 
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Fig. 13. Comparison of different classification methods. 

 

Table 9. The 10 kinds of bearing faults selected. 
 

No. Bearing 
condition 

Fault 
type 

Motor speed 
(HP) Motor load 

1 Normal - 0/1/2/3 1797/1772/1750/1730 

2 IR 7 mm 0/1/2/3 1797/1772/1750/1730 

3 B 7 mm 0/1/2/3 1797/1772/1750/1730 

4 OR 7 mm 0/3/1/2 1797/1730/1772/1750 

5 IR 14 mm 0/1/2/3 1797/1772/1750/1730 

6 B 14 mm 0/1/2/3 1797/1772/1750/1730 

7 OR 14 mm 0/1/2/3 1797/1772/1750/1730 

8 IR 21 mm 0/1/2/3 1797/1772/1750/1730 

9 B 21 mm 0/1/2/3 1797/1772/1750/1730 

10 OR 21 mm 1/3/0/2 1772/1730/1797/1750 
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Table 10, taking the 30 % compressed signal for example. The 
cutting length of original signal is 4000 to insure at least one 
cycle is included, and the compressed signal is of the length 
4000×70 % = 2800. The convolutional kernel size is 101×1 
with 10 channels; thus the length of feature map is 2800-
101+1 = 2700. The filters of maximum pooling layer are of 
the size 2×1, and there are ten filters in this layer. The CNN 
model is written in Python 3.6 with TensorFlow and run on 

win10 with i5-8250 CPU. 
This CNN model was tested using the 10 %, 20 %, 30 %, 

40 %, 50 %, 60 % compressed signal. Tables 11-16 display 
the CNN training processes of those compressed signals. 
Sample success represents the diagnosis accuracy of training 
samples, while test success represents the accuracy of testing 
samples. The average running time for each training was also 
calculated. The maximum accuracies for those compressed 

Table 10. The configuration of CNN model.  
 

Parameters Input C1: Feature maps S2: Feature maps Learning rate Batch size Number of epochs 

Value 2800×1 10@2700×1 10@1350×1 0.2 16 50 

 
Table 11. Training process of 10 % compressed bearing data (CR = 10 %) using CNN model. 
 

Epoch 5 10 15 20 25 30 35 40 45 50 

Sample success/% 0.1024 0.3040 0.7119 0.9169 0.9219 0.9317 0.9371 0.9370 0.9419 0.9452 

Test success/% 0.1023 0.3040 0.7114 0.9168 0.9217 0.9315 0.9370 0.9367 0.9417 0.9448 

Time/s 1.867 1.745 1.740 1.770 1.817 1.751 1.823 1.816 1.753 1.834 

 
Table 12. Training process of 20 % compressed bearing data (CR = 20 %) using CNN model. 
 

Epoch 5 10 15 20 25 30 35 40 45 50 

Sample success/% 0.1 0.4110 0.7724 0.9135 0.9135 0.9147 0.9154 0.9152 0.9166 0.9224 

Test success/% 0.1 0.4110 0.7724 0.9132 0.9133 0.9144 0.9153 0.9152 0.9164 0.9221 

Time/s 1.703 1.758 1.705 1.767 1.788 1.789 1.705 1.770 1.758 1.703 

 
Table 13. Training process of 30 % compressed bearing data (CR = 30 %) using CNN model. 
 

Epoch 5 10 15 20 25 30 35 40 45 50 

Sample success/% 0.1 0.3824 0.6525 0.9025 0.9035 0.9044 0.9051 0.9055 0.9071 0.9155 

Test success/% 0.1 0.3822 0.6524 0.9024 0.9032 0.9043 0.9049 0.9053 0.9066 0.915 

Time/s 0.564 1.667 0.590 0.561 0.558 1.640 0.596 0.578 0.556 0.576 

 
Table 14. Training process of 40 % compressed bearing data (CR = 40 %) using CNN model. 
 

Epoch 5 10 15 20 25 30 35 40 45 50 

Sample success/% 0.14 0.2701 0.5634 0.9049 0.9057 0.9057 0.9068 0.9072 0.9079 0.9096 

Test success/% 0.14 0.2701 0.5633 0.9046 0.9055 0.9056 0.9065 0.9072 0.9077 0.9094 

Time/s 0.508 0.542 0.548 0.541 0.5 0.502 0.545 0.513 0.528 0.525 

 
Table 15. Training process of 50 % compressed bearing data (CR = 50 %) using CNN model. 
 

Epoch 5 10 15 20 25 30 35 40 45 50 

Sample success/% 0.12 0.3024 0.5036 0.7155 0.8957 0.8981 0.8994 0.9004 0.9028 0.9032 

Test success/% 0.12 0.3023 0.5035 0.7155 0.8957 0.8979 0.8986 0.9001 0.9027 0.9030 

Time/s 0.477 0.476 0.443 0.432 0.419 0.448 0.416 0.476 0.475 0.453 

 
Table 16. Training process of 60 % compressed bearing data (CR = 60 %) using CNN model. 
 

Epoch 5 10 15 20 25 30 35 40 45 50 

Sample success/% 0.09 0.2416 0.4559 0.6738 0.8882 0.8891 0.8903 0.8916 0.8935 0.8985 

Test success/% 0.09 0.2415 0.4558 0.6738 0.8881 0.8889 0.8901 0.8911 0.8934 0.8982 

Time/s 0.268 0.346 0.393 0.398 0.405 0.418 0.402 0.426 0.433 0.438 
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signals are 94.48 %, 92.21 %, 91.5 %, 90.94 %, 90.3 %, and 
89.82 %.  

And can be seen, the diagnosis accuracy grows with the 
training samples increasing. However, there are few changes 
when epoch is larger than 25, because no more features can be 
learned by the CNN model. 

Moreover, we found that the training time was decreasing 
for deeply compressed signal. Fig. 14 shows the PCA analysis 
of 30 % compressed signal. Fig. 15 shows the confusion ma-
trix of diagnosis results for 30 % compressed signal. The rows 
of confusion matrix stand for predict labels and columns stand 
for the actual labels of fault types. It shows that the normal 
state has 97.5 % accuracy, and B_14 mm, OR_21 mm are the 
worst two states, which have 87.5 %, 87.5 % accuracy.  

 
5. Conclusion 

This paper presents a new fault diagnosis method using the 
compressed signal. The main contributions of this work are 

developing a 1D CNN feature extraction and fault detection 
method, replacing the traditional signal reconstruction and 
fault diagnosis, and applying this approach to the mechanical 
fault detection field. According to the experiments on gearbox, 
our framework obtains a significant improvement over tradi-
tional monitoring and fault detection methods on both accu-
racy and time cost. Moreover, we compared CNN with other 
classifiers, such as BPANN, SVM, Randomforest, DBN, 
DNN, and ANN. Experimental results show that CNN is the 
best for compressed signal processing. The CNN model was 
also tested on bearing dataset, and it achieved more than 90 % 
accuracy even for 50 % compressed signal. 

The limitations of the CNN include two aspects. First, CNN 
is a bit slow compared to DNN. The efficiency of CNN needs 
to be improved in future research. Otherwise, we have found 
that CNN is sensitive to parameters such as learning rate, 
batch size, and epoch. A parameters optimization method can 
be studied for choosing appropriate parameters. 
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