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Abstract 
 
Min-max selector structure is traditionally used as the industrial control architecture of commercial turbofan engines. However, recent 

studies indicate that this structure with linear compensators suffers from lack of safety guarantee in fast demands. On the other hand, 
model predictive control (MPC) technique, which incorporates input/output constraints in its optimization process, has the potential to 
fulfill the control requirements of an aircraft engine. In this paper, a practical approach is performed for design and optimization of the 
turbofan engine controller through a comparative study where all control modes and requirements have been taken into account simulta-
neously. For this purpose, a thermodynamic nonlinear model is firstly developed for the turbofan engine. The linear regulators of min-
max structure are then optimized via genetic algorithm (GA). The MPC technique is formulated based on the proper discrete-time lin-
earized state-space models at desired operating points with real-time optimization, in which the MPC tuning horizons are obtained 
through GA optimization procedure. The both controllers are implemented on appropriate hardware taking the real-time aspects into 
account. Finally, a hardware in the loop (HIL) platform is developed for the turbofan engine electronic control unit (ECU) testing. The 
software and HIL simulation results confirm that MPC improves the response time of the system in comparison with min-max algorithm 
and guarantees the engine limit protection. This study demonstrates competitive advantages of MPC in terms of limit protection assur-
ance and fast response, despite more computational burden.  
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1. Introduction 

Due to higher reliability and lower fuel consumption, 
turbofan engine is commonly used for commercial aircrafts 
[1]. Control system is one of the most critical and advanced 
technologies of turbofan engines. The objective of an aircraft 
engine control system is to provide the requested thrust and 
guarantee the safe operation of the engine. For this purpose, 
the aeroengine control system adjusts pressure ratio or fan 
speed as the thrust representative based on the requested 
throttle level, and also maintains the engine outputs within the 
permissible bounds at all times. In this way, fast engine 
response with limit protection assurance is the main challenge 
of engine control as this control system should fulfill fast 
thrust response in emergency maneuvers without limit 
violation [2].  

A survey on aero-engine control techniques shows that 
various control methods have been used for engine fuel con-
trol [3-9]. Among them, min-max algorithm is traditionally 

used as the industrial control architecture of turbofan engines 
[10-13]. However, recent studies have shown that there is no 
guarantee for min-max algorithm with linear compensators to 
protect engine limits during transient state [14-16]. Imani and 
Montazeri-Gh investigated this issue in Ref. [16] and pre-
sented an analytical approach to guarantee the limit protection 
of min-max algorithm at one operating point. However, the 
controller provided a conservative response with a slow time 
response. 

MPC is an advanced model-based controller which has at-
tracted the attention of researchers in recent years for gas 
turbine engines [17, 18]. MPC considers input/output con-
straints in the production of control input signal while ensures 
the engine limit protection, which introduces it as a potential 
alternative approach for turbofan engines control [19]. Vroe-
men et al. [20] investigated the feasibility of MPC for a labo-
ratory gas turbine installation. Mu et al. [21] designed an 
approximate model predictive control (AMPC), nonlinear 
MPC (NMPC) and PID gain-scheduling controller and com-
pared the performance of these methods in engine fuel con-
trol. They designed MPC only with input and rate of input 
constraints and PID gain-scheduling controller with satura-
tion constraints on the control input, without min-max struc-
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ture. DeCastro [22] developed MPC strategy for a fast re-
sponse closed-loop control of turbine blade tip clearances to 
regulate them and optimally maintaining a predefined mini-
mum clearance. Also, Kai et al. [23] utilized an active gener-
alized predictive control (GPC) with auto-regressive (AR) 
error modification and fuzzy adjustment on control horizon 
for an aero-engine turbine blade tip clearance control. Richter 
[24] expressed the formulation of MPC based on a LTI state-
space model of an aircraft engine, but only the limited num-
ber of required constraints of the engine were considered. 
Moreover, the optimization process was off-line and the 
MPC horizons were selected by trial and error. Richter et al. 
[25] proposed a multiplexed MPC approach using linear 
state-space model while focusing on the reduction of the 
computational burden of MPC. 

Hardware implementation and HIL simulation are two main 
steps as a practical approach for the development of turbofan 
engine control system. There are several studies have been 
reported for the HIL simulation of the control system of gas 
turbine engines and aerospace vehicles [26-30]. Montazeri-Gh 
et al. [31] constructed a new HIL simulation for testing a sin-
gle-spool turbojet engine fuel control system using multiple 
processors for multi-rate simulation. They set up an HIL 
framework consisting of an industrial PC for the engine model 
as the plant, commercial I/O board and an ECU with min-max 
control architecture. In another study, Montazeri-Gh et al. [32] 
presented an HIL simulation for a single-spool turbo-shaft 
engine's ECU using a simplified engine model. They utilized 
Wiener block structure method for modeling of the engine and 
the min-max fuel control algorithm was implemented on a 
PC/104 hardware. In these studies, min-max control algorithm 
was used for fuel control of single-spool turbojet and turbo-
shaft engines. However, there is no published report about the 
comparison between these two controllers (MPC and min-
max) both from design point of view and hardware implemen-
tation and real-time simulation. 

In this paper, a practical approach is performed for design 
and optimization of the turbofan engine controller through a 
comparative study where all control modes and requirements 
have been taken into account simultaneously. For this purpose, 
an MPC with optimal tuning horizons and real-time optimiza-
tion and a competitive min-max algorithm with optimized 
regulators are designed for a turbofan engine. In this way, all 
the challenging real-world constraints are translated into 
mathematical inequalities in the design process to ensure the 
safe and optimal operation for the engine. In addition, a 
nonlinear thermodynamic model of the engine is developed 
and its computer simulation is performed. To achieve an en-
hanced response of min-max controller, the linear compensa-
tors are obtained through genetic optimization algorithm. 
Moreover, MPC is designed based on the proper discrete-time 
linearized state-space model at several operating points in the 
flight envelope. Finally, hardware implementation and HIL 
testing are performed for both controllers, and the comparative 
study is carried out. 

2. The engine model 

In this section, development of a real-time thermodynamic 
nonlinear turbofan engine model for the HIL test of the con-
trollers is performed. Aircraft turbofan engines contain various 
main components characterized by nonlinear characteristic 
maps. These characteristic maps make the engine thermody-
namic modeling complicated. In addition, engine computer 
simulation requires multiple iterative loops with heavy com-
putational burden. Moreover, the thermodynamic model de-
veloped in this study is linearized for the MPC design. 

A two-spool high-bypass unmixed flow turbofan engine is 
studied in this research. The components of the engine and the 
stations' numbering are defined in Fig. 1. Table 1 presents the 
take-off specifications of the engine. The engine transient 
model is a component level model (CLM) which is composed 
of two parts. The first part refers to a set of nonlinear algebraic 
equations that describe the thermodynamic relations in the 
engine components as follows: 
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Table 1. Take-off specifications of the studied engine. 
 

Parameter Value 

Bypass ratio 5.5 

Overall pressure ratio 34 

Max. thrust (kN) 134 

Inlet air mass flow (kg/s) 427 

Fuel mass flow (kg/s) 1.307 

Inlet HPT temperature (K) 1580 

LPS and HPS speeds (rpm) 5000, 14460 
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Fig. 1. Schematic of a two-spool high-bypass-ratio turbofan engine and 
its typical stations numbering. 
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The second part refers to nonlinear dynamic equations that 

describe transient process. Due to the complex geometry of 
the engine components and the complexity of gas flow, the 
dominant engine dynamics should be considered during 
controller design. The dynamics of the engine shafts are 
commonly considered as the necessary dynamics and play a 
key role in the engine transient behavior. The dynamic 
equations of the engine shafts are as follows: 
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The parameters used in Eqs. (1)-(5) are defined in the 

Nomenclature section. 
Thus, aircraft engine dynamic model is based on the 

characteristic curves of the engine components and contain 

multiple loops with iterative numerical solutions [33, 34]. 
Generally, this procedure is achieved via matrix solution 
procedure and is commonly enhanced by Newton-Raphson 
iterative solving technique [35]. This procedure is simulated in 
Simulink/MATLAB environment using MATLAB functions. 
Therefore, the state equations of engine dynamics suitable for 
controller design are not available in closed form and the 
dynamic model is commonly linearized numerically. 
Therefore, the primary problem in controller design is to have 
a linear state-space model at considered operating points of 
the engine [36]. One of the approaches of extracting an 
accurate linear model from the thermodynamic nonlinear 
model is the application of system identification (SID) 
methods [37, 38]. The linearization is carried out using system 
identification toolbox of MATLAB software [37]. For this 
purpose, the input signal should be a persistent excitation in 
order to encompass all the input frequencies and amplitudes in 
the desired neighborhood of the operating point. The quasi 
amplitude-modulated pseudo random binary sequence 
(QAPRBS) signal is one of excitation signals suitable for 
identification of nonlinear systems. The generated QAPRBS 
signal is shown in Fig. 2. The hold time [39] is considered 
between 6 to 10 seconds and the signal amplitude range is in 
the interval of ±6 % of the mean value of the fuel flow about 
the desired operating point. Moreover, the ramp time is 
considered as 0.04 seconds for a signal from the minimum to 
the maximum range. This signal is applied to the 
thermodynamic model as input and the required outputs are 
collected. 

 
3. Turbofan engine control requirements 

As mentioned earlier, the objective of the engine control 
system is to provide the requested thrust according to the pilot 
demand while protecting the engine from exceeding its physi-
cal bounds. Limit protection assurance of jet engines is one of 
the main challenges in the controller design.  

A turbofan engine encounters several limits during its op-
eration which should be protected with the control system. 
Turbofan engine stall or surge is a physical instability which 
may occur in a compressor due to a sudden fuel increase. An 

0 100 200 300 400 500

1.2

1.25

1.3

Time (sec)

W
f (k

g/
se

c)

 
 
Fig. 2. The QAPRBS signal of the fuel input. 
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abrupt fuel decrease may cause combustor flame-out and 
over-pressurization of the compressor discharge causes com-
bustor blow-out. Other structural limitations including rotor 
over-speed and turbine over-temperature may occur due to 
excessive fuel injection. These detrimental factors create limi-
tations for engine operation. 

Each of these constraints can be satisfied by controlling one 
or more parameters. The maximum static pressure of HPC 
discharge (Ps3) limiter is used to prevent combustor over-
pressurization. The Ps3 minimum limit is used to provide 
stable engine operation at idle power. The fuel flow rate di-
vided by static pressure of HPC discharge ( 3fW Ps ) is com-
monly used as a popular control parameter which is called 
“ratio unit (RU)” limiter. The minimum ratio unit limiter pro-
tects the engine against combustor lean blow-out and LPC 
stall. A safe margin from HPC surge line is considered to pre-
vent HPC stall. Although HPC stall margin has a decreasing 
trend during acceleration, it should be considered as a maxi-
mum limit. The maximum speed limiter of fan and core shafts 
are applied to ensure that over-speed of the engine shafts do 
not occur. Since HPT inlet temperature is not measurable, the 
over-temperature of the turbines is controlled via LPT exit 
temperature limiter. The safe operation of the engine depends 
on the protection of all these constraints at all times. 

 
4. Engine fuel control system design 

4.1 Min-max algorithm 

The most common fuel control structure for aircraft engines 
is min-max selector scheme. The basis of this algorithm is to 
control a main output using a single control input while main-
taining the other intended outputs within their limits. So, this 
structure contains multiple control loops. The accomplishment 
of this method is based on a selection strategy between the 
various control loops. This selection logic decides which con-
trol loop should be made active at any given time. Several 
linear control theories have been applied to design the single 
feedback control loop such as PID regulators, LQG and H¥ . 
This algorithm does not require state-space model and can 
easily be implemented on thermodynamic model. 

Because the major part of commercial turbofan engine 
thrust is due to the fan bypass flow, the fan speed is a good 
indicative of thrust to regulate. In this study, the min-max 
control structure contains 7 loops. The power lever angle 
(PLA) command is the main control loop and the other loops 
are related to min and max limiters.  

The min-max selection strategy can be explained as fol-
lows: 
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where f PLAW -  represent the fuel flow rate calculated by the 

PLA loop, 3max 45max,f Ps f TW W- - , minf HPC SMW - -  and maxf NHPW -  
demonstrate the fuel flow rate computed by the Ps3-max, T45-
max, HPC-SM-min and NHP-max limiter loops, respectively, 
and 3minf PsW -  and minf RUW -  are the fuel flow rate obtained by 
the Ps3-min and RU-min limiter loops, respectively. Thus, this 
selection strategy determines the final value of the engine 
transient fuel flow rate at each time instance. Finally, the tran-
sient fuel flow rate is added to the steady-state fuel flow and 
the sum is injected to the fuel actuation system. Another ap-
proach in applying the steady-state fuel flow rate is the use of 
integral control action. The ability of the control system to 
track varying reference commands and reject disturbances can 
be enhanced by including integral control action [24]. 

The performance of the min-max algorithm strongly de-
pends on the loops' controller types. If only proportional con-
trol is used, high frequency oscillations will occur in the lim-
ited outputs responses and also there is always an error be-
tween the desired input and actual response [10]. So, the use 
of integral and derivative control is effective or in some cases 
inevitable. Thus, the min-max algorithm is designed using 
linear compensators, as illustrated in Fig. 3. Linear control 
theories can be used to design the controller gains, but in this 
case the min-max algorithm provides a conservative engine 
response. Because the objective of this study is to achieve an 
enhanced response, an optimization algorithm is used to ob-
tain the controller gains. Due to the nonlinear and switching 
nature of the min-max algorithm, a non-gradient optimization 
approach on the basis of the evolutionary algorithms is used. 
The application of evolutionary algorithms has been investi-
gated for the optimization of fuel controller parameters in 
turbojet engines [40-43], however, they are not employed for 
turbofan engines, so far. 

 
4.1.1 Min-max controller tuning using GA 

Genetic algorithms (GAs) are numerical optimization algo-
rithms based on natural genetics and natural selection, thus, 
they are great methods to apply to a wide range of problems 
[44]. In advanced turbofan engine control system, the control 
objective should be achieved by minimum fuel consumption 
as well as the shortest possible engine response time. In this 
paper, this work is accomplished using GA optimization 
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Fig. 3. Min-max controller structure with linear regulators and input 
integration. 
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method, as depicted in Fig. 4. The arrow in this figure illus-
trates that the linear regulators of the min-max structure are 
obtained using GA optimization algorithm. 

For this purpose, a cost function should be defined. The 
goal of this optimization problem is minimization of the cost 
function.  

In order to minimize the engine fuel consumption and re-
sponse time, the cost function for the min-max controller op-
timization is defined as follows: 
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where fw is the instantaneous fuel flow, ( )

maxfw is the 
maximum total fuel flow, sim-time is the simulation time that 
is the time interval in which the simulation is performed, sam-
ple time is the simulation time step and t is the time index. In 
addition, acct and dect  are the acceleration and deceleration 
times required by the engine to follow the PLA command [43]. 
In this study, the simulations are performed in 25 seconds, as 
shown in Figs. 9-26. Moreover, the ( )

maxfw  parameter is the 
fuel flow value in which the spool speeds of the engine reach 
to their maximum limits.  

The settling time is an acceptable representative of the re-
sponse speed of the system. Each term in Eq. (7) is weighted 
according to their importance by the coefficients of iw , where 
the sum of iw  (i = 1,2) should be equal to 1. 

The physical limitations should also be satisfied for safe en-
gine operation. The penalty technique is the most common 
method in constrained GA optimization problems to handle 
constraints. Various methods are used to apply the penalty 
function to the optimization problem. In this research, Taguchi 
& Yakota method [45] is used to define the penalty function. 
According to the requirements of Sec. 3, the penalty factor is 
formulated as follows: 
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where bD  is the maximum value of violation for the con-
straints.  

Finally, the penalty function of Eq. (8) is multiplied by the 
cost function (Eq. (7)), and thus, the final objective function is 
constructed. 

 

4.2 Model predictive control 

Based on the predictive control strategy, future behavior of 
a process is predicted over a determined prediction horizon 
using a model of the process [46]. Fig. 5 represents the MPC 
strategy. The predicted control signal is calculated by mini-
mizing an objective function to keep the predicted output as 
close as possible to the reference trajectory. The first value of 
the control signal is applied to the process while the remaining 
values are rejected due to the receding horizon concept [47]. 
Fig. 6 illustrates the components of general MPC structure 
which is applied to a turbofan engine. 

Consider a proper discrete-time linear model of the turbofan 
engine which is augmented to control update equation to form 
the incremental discrete state-space system as [48]: 
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Fig. 4. Optimization procedure using genetic algorithm. 
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where ( )( )fW kD D  is the incremental control input and the 
state and output variables are defined as follows: 
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It is worth mentioning that matrix Dd is not zero and the size 

of its elements depends on the direct effect of the change in 
fuel flow on the desired outputs. As shown in Fig. 6, the linear 
model obtained from the thermodynamic model of the engine 
is augmented with the control update equation to attain an 
offset-free response. So, the augmented model in general form 
is: 
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where the augmented state vector is given as: 
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and the definition of matrices M, N and Q is obvious. As 
shown in Fig. 6, MPC structure contains an optimizer to pro-
duce an optimal control input. The objective function and the 
engine limits are the requirements of the optimizer. Thus, the 
objective function simply can be defined as [48]: 
 

( )( ) ( )
( )

ˆ ˆ

ˆ      2

T
T

f f

T T T
a f

J W W

W

l¢ é ù= D D + D Dë û

é ù+ - D Dë û

Φ Φ I

x F Φ r Φ
  (13) 

 
where l  is a scalar weighting factor and r is the reference 

trajectory and matrices F and Φ  are described as: 
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Depending on the system constraints, the objective function 

should be minimized with respect to the following constraints:  
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where min max min, , fWU U  and maxfW  are upper and lower 
bounds of input and outputs, nu is control horizon and ny is 
prediction horizon. 

In this research, the MPC has been programmed in C++ 
language. The solution to this problem relies on application of 
a quadratic programming procedure [49]. In this study, in 
order to solve this problem, Hildreth’s quadratic programming 
procedure is utilized which offers simplicity and reliability in 
real-time implementation [49]. 

 
4.2.1 Optimization of MPC horizons 

The final goal of a new control algorithm design is its im-
plementation on a real hardware. So, it must have real-time 
simulation capability while providing a satisfactory perform-
ance. Therefore, the MPC control and prediction horizons 
should be selected reasonably. In order to have lower compu-
tational burden, the horizons selected should be as small as 
possible. But, in order to have a satisfactory performance, it is 

 
 

 
Fig. 6. Model predictive structure for turbofan engine fuel control. 
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better to have an overshoot/undershoot free response which is 
provided by larger values of the horizons. Thus, an optimiza-
tion procedure can be applied to find trade-off values of the 
horizons.  

For this purpose, the cost function is composed of the con-
troller run-time and the engine response time. Therefore it is 
defined as follows: 

 

1 2
acc dec

h

run time t tJ w w
sim time sim time

- +æ ö æ ö= +ç ÷ ç ÷- -è ø è ø
  (16) 

 
where run-time is the time it takes to run the MPC program 
once. Moreover, the penalty factor should penalize the over-
shoot/undershoot percentage of the controlled output (NLP). 
Therefore it is formulated using Taguchi & Yakota method as 
follows: 
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  (17) 

 
where ( )cony t  is the controlled output (NLP) time response. 
Multiplication of Eq. (16) by Eq. (17) forms the final objective 
function. 

 
5. Hardware-in-the-loop setup 

The implementation of the controller on a hardware is a 
main challenge toward the development of the ECU. In order 
to confirm the performance accuracy of the controller, multi-
ple tests should be performed because the faultless operation 
of the controller is essential for the efficient performance of 
the engine at any operating point.  

To implement the designed control algorithms, the appro-
priate hardware should be selected due to the computational 
burden of the controller. There are numerous commercial I/O 
boards with different specifications including processing 
power, RAM, clock speed, I/O number, and etc. One of the 
most widely used commercial boards is the Arduino micro-
controllers that initially among them, the Arduino DUE mi-
crocontroller board, with a processing speed of 84 MHz is 
selected for implementation of the min-max algorithm. Speci-
fications of this microcontroller are listed in Table 2. To 
evaluate the feasibility of a real-time simulation of the MPC 
algorithm with this hardware, the runtime of one time step of 
the algorithm is calculated. Performing each time step of the 
MPC algorithm takes 1.78 seconds using Arduino DUE. Since 
each sample time of Simulink solver of the thermodynamic 
model for generating smooth responses should be less than 
0.04 seconds, so, it is not possible to run a real-time simula-
tion of the MPC using the Arduino DUE board. Therefore, 
real-time testing of the MPC algorithm requires a microcon-

troller with a stronger CPU. In this regard, one of the most 
suitable and reliable options is Intel board. 

The Intel Edison board is selected which has a CPU of 600 
MHz processing speed. The specifications of this microcon-
troller have been listed in Table 2. This hardware is a devel-
opment board which uses the Intel processor. The runtime of 
one time step of the MPC algorithm is again calculated using 
this electronic board. The runtime of 0.02 seconds for each 
time step of the MPC algorithm is obtained which indicates 
that the Intel Edison board is suitable for the real-time HIL 
implementation of the MPC algorithm for the sampling times 
of more than 0.02 seconds. 

As shown in Fig. 7, an HIL test bench is prepared. In this 
figure, the thermodynamic model of the turbofan engine on a 
personal computer (PC), the built-in box including the Intel 
Edison board, a lever as the PLA and an input/output data 
display and serial communication between the PC and the 
Intel board have been presented. The power lever angle is 

Table 2. The specifications of Arduino Due and Intel-Edison boards. 
 

Component Specification of  
Intel Edison 

Specification of  
Arduino DUE 

SoC 

Dual-core, dual-threaded 
Intel® Atom™ CPU and a 

32-bit Intel® Quark™ 
microcontroller 

AT91SAM3X8E 

Digital I/O pins 
20 (of which 6 provide 

analog input and 4 provide 
PWM output) 

54 (of which 12 provide 
analog input, 12 provide 

PWM output and 2 provide 
analog output) 

Input voltage 7-15 V 7-12 V 

Operating voltage 3.3 V / 5 V 3.3 V 

Flash storage 4 GB eMMC 512 KB 

RAM 1 GB LPDDR3 POP 96 KB 

Clock speed 

500 MHz  
(Intel® Atom™ CPU) 

100 MHz  
(Quark™ microcontroller) 

84 MHz 

SoC: System on chip; PWM: Pulse width modulation; RAM: Random 
access memory 

 

 
 
Fig. 7. The HIL platform. 
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converted to a voltage signal using a potentiometer and it is 
transmitted to the Intel board via the analog input pin. 

As shown in Fig. 7, the nonlinear thermodynamic model of 
the turbofan engine which has been simulated in a PC is the 
software section of this test and represents the real engine. The 
model uses the Simulink real-time environment. Moreover, 
the control strategy is implemented on a hardware as the en-
gine ECU, so, it is the hardware component of the HIL simu-
lation. To run the simulation in real-time the "real time win-
dows target" and "stream input, stream output" blocks of the 
Simulink are utilized. 

 
6. Results and discussion 

In this section, an operating point in sea level static (SLS) 
and international standard atmosphere (ISA) conditions in 
98 % of the fan speed are considered for controller design. 
The thermodynamic model is linearized about this operating 
point. In addition, the input delay is fixed to zero and the noise 
matrix is omitted. The input and state variables as well as the 
outputs and their incremental bounds are listed in Table 3. The 
fit to estimation data of the linearization results are obtained 
[98.04;98.41;95.38;98.59;98.11;98.07] for the various outputs, 

respectively. The outputs of the linear and thermodynamic 
models due to the QAPRBS signal are compared in Fig. 8. In 
order to make the outputs of the two models comparable, the 
steady value of each variable is added to the output of the 
linear model. Fig. 8 demonstrates the excellent compliance of 
the outputs, which indicates the high accuracy of the linear 
model. 

The model-in-the-loop (MIL) simulations are conducted on 
a PC with a Core2Due CPU of 2.5 GHz and 4 GB of RAM 
using MATLAB software. Moreover, in the HIL simulation, 
the thermodynamic model presented in Sec. 2 has been run on 
this computer. The run time of each time step of the thermo-
dynamic model is about 0.0025 sec for the sample time of 
0.01 sec, which is fast enough for HIL simulation and online 
optimization purposes. 

 
6.1 Model-in-the-loop (MIL) simulation 

The parameters used for genetic algorithm for optimization 
of the min-max regulators' coefficients are presented in Table 
4. These parameters are selected as common, and the popula-
tion size and the generation increase do not change the results. 
Moreover, the objective function weight factors 1 0.5w =  and 

Table 3. The state variables, control input, outputs and incremental output limits. 
 

State variables Input variables Output variables Output limits 

Fan speed, LPND  ---- 

Core speed, HPND  195 rpm£   Fan speed, LPND   

HPC stall margin, HPC SMD -   1 %³ -   
HPC discharge static pressure, 3PsD   1.3 bar, 1.3 bar£ ³ -   

HPT exit total temperature, 45TD   K27£ °   Core speed, HPND  

Fuel flow, fWD   

Ratio unit, / 3fW PsD  0.001 kg / bar.sec³ -   
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Fig. 8. Comparison of the outputs of the linear and nonlinear models. 
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2 0.5w =  are selected which means that the importance of the 
two objectives is equal in the optimization process. 

Figs. 9 and 10 illustrate the effect of various weighting fac-
tors ( l ) on the MPC performance. A fan speed scenario in-
cluding 5 different set-points is defined. Fig. 9(a) shows the 

LPND  response in following the desired profile for different 
values of l . As shown in the figure, the maximum percent 
undershoot decreases with decreasing value of l . Also, as 
depicted in Fig. 9(b), the settling time of the different com-
mands decreases with the reduction of l . Fig. 9(b) demon-
strates that the low values provide faster fan speed response. 
This issue is confirmed according to Fig. 10. As indicated in 
this figure, low values of l  lead to a quick response and 
saturation of the actuator. Thus, l  is selected so that it pro-
vides a satisfactory response with respect to the actuator's 
limitation. On the other hand, the values of the prediction and 
control horizons are calculated via GA optimization. Thus, the 
optimal values of nu and ny are obtained as 2 and 6, respec-
tively, and l  is selected as 104. 

MPC is designed based on the linear model and the min-
max regulators are optimized based on the thermodynamic 
model. Since the thermodynamic model is the representative 

of the real engine, it should be used as the plant to properly 
compare MPC and min-max performance. The control objec-
tive is to follow the fan speed set-point as the desired refer-
ence while maintaining constrained outputs within bounds at 
all times. A fan speed scenario is defined as the reference tra-
jectory of MPC. Different commands including acceleration 
and deceleration set-points of LPN are defined in the demand 
profile. Fig. 11 demonstrates that LPN response using both 
controllers follows the desired profile. 

One of the requirements of the engine performance is the 
need to operate the engine as close as possible to its limits. So, 

Table 4. Parameters used for genetic algorithm. 
 

Parameter Value 

Population size 200 

Percent of crossover 0.9 

Percent of mutation 0.1 

Generation 50 
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Fig. 9. Effect of weighting factor on fan speed response - using MPC 
with linear plant: (a) Fan speed response; (b) settling time. 
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Fig. 10. Effect of weighting factor on fuel flow consumption - using 
MPC with linear plant. 
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Fig. 11. Fan speed response - thermodynamic plant: MPC vs min-max. 
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Fig. 12. Limited output HPN  response and its limit- thermodynamic 
plant: MPC vs min-max. 
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the engine limit protection assurance is a serious challenge. As 
illustrated in Figs. 12-16, the limited outputs responses with 
MPC are completely close to their limits without exceeding 
the limits but min-max provides conservative responses. Fig. 
18 depicts the characteristic curve of the HPC and the operat-
ing trajectory using MPC. During acceleration, the operating 
trajectory in the HPC characteristic curve moves towards the 
HPC stall margin limit. 

Time response characteristics of the controlled output, i.e. 
LPN , using MPC and min-max in all 4 commands and the 

percentage difference of these characteristics are presented in 
Table 5. These characteristics are defined as [50]: 

(1) Rise time: The time required for the response to rise 
from 10 % to 90 % of its final value.  

(2) Settling time: The time required for the response to 
reach and remain within 5 % of its final value.  

(3) Delay time: The time required for the response to reach 
50 % of its final value. 

Control and prediction horizons and scalar weight of the 
MPC are designed in such a way that the system response has 
no overshoot or undershoot, as indicated in Fig. 11. Therefore, 
the maximum percent overshoot of the system response using 
MPC and min-max are almost zero. The results of Table 5 
represent that the rise time and settling time of the fan speed 
response in the second command with min-max is slightly less 
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Fig. 13. Limited output HPC SM-  response and its limit - thermo-
dynamic plant: MPC vs min-max. 
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Fig. 14. Limited output 3Ps  response and its limits - thermodynamic 
plant: MPC vs min-max. 
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Fig. 15. Limited output 45T  response and its limit - thermodynamic 
plant: MPC vs min-max. 
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Fig. 16. Limited output ( )3fW Ps  response and its limit - thermody-
namic plant: MPC vs min-max. 
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Fig. 17. Fuel control input - thermodynamic plant: MPC vs min-max. 
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Fig. 18. Transient trajectory using MPC - Scaled HPC map. 
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than MPC but the delay time of the response using min-max is 
higher than MPC. Moreover, the settling time and delay time 
of the system using MPC are significantly (21 % to 44.6 %) 
lower than min-max. According to the MIL simulation results, 
MPC has significantly improved the response time of the sys-
tem in comparison with min-max algorithm. 

Moreover, the computational time of min-max algorithm 
and MPC are 0.71 and 6.8 seconds, respectively. Although the 
real-time implementation of MPC is feasible using the men-
tioned computer, it requires a more expensive hardware than 
min-max for conducting a test-stand with actual engine and 
processor. Recent developments in distributed engine control 
architecture and processors power make it quite possible to 
implement MPC for turbofan engine control. 

 
6.2 HIL simulation 

After designing the MPC and min-max algorithms and per-
forming MIL simulations, the controllers are implemented on 
the hardware by considering the thermodynamic model as the 

plant and HIL testing is carried out to verify the implementa-
tion and operation of the controllers. In HIL simulation of the 
MPC algorithm, the selection of sampling time is very impor-
tant. In fact, the selection of appropriate sampling time for 
HIL testing has a significant effect on the accuracy of the re-
sults. In serial communication, there are three main factors to 
determine the speed required for data transfer, 1- The number 
of data sent on the serial port, 2- Maximum bit required to 
send data and 3- The sampling time. The minimum required 
data transfer speed determines by multiplying these three fac-
tors. Fig. 19 shows the fan speed response obtained from three 
HIL tests of the MPC algorithm with sampling times of 30, 50 
and 100 milliseconds. As shown in this figure, the sampling 
time of 100 ms has the highest amplitude fluctuations and the 
amplitude of fluctuations decreases by reducing the sampling 
time. Thus, the sampling time of 30 ms is selected for the HIL 
test. The sampling time less than 20 ms will cause the selected 
hardware not to have the ability to run real-time and a method 
to reduce the computational burden of the MPC should be 
taken.  

Table 5. Comparison of time response characteristics - thermodynamic plant - MPC vs min-max. 
 

Command 1 Diff. Command 2 Diff. Command 3 Diff. Command 4 Diff. 
 

MPC Min-max % MPC Min-max % MPC Min-max % MPC Min-max % 

Rise time (sec) 1.39 1.87 25.7 1.63 1.55 4.9 1.7 2.06 17.5 0.42 0.46 8.7 

Overshoot (%) 0 0 0 0 0 0 0 0 0 0 -5.6 5.6 

Settling time (sec) 1.85 2.8 34 2.12 2.06 2.8 2.24 2.98 24.8 0.61 0.88 30.7 

Delay time (sec) 0.51 0.91 44 0.7 0.96 27 0.82 1.04 21 0.31 0.56 44.6 

 
Table 6. Comparison of time response characteristics - HIL simulation - MPC vs min-max. 
 

Command 1 Diff. Command 2 Diff. Command 3 Diff. Command 4 Diff. 
 

MPC Min-max % MPC Min-max % MPC Min-max % MPC Min-max % 

Rise time (sec) 1.6 1.62 1.25 1.54 1.66 6.6 1.72 1.90 9.5 0.56 0.65 15.4 

Overshoot (%) 0 0 0 0 0 0 0 0 0 0 -3 3 

Settling time (sec) 3.86 2.28 40 1.93 2.20 12.3 2.28 2.66 14.3 0.68 0.93 26.9 

Delay time (sec) 0.54 0.89 39.3 0.72 0.96 25 0.85 1.01 15.8 0.34 0.55 38.2 

 
Table 7. Comparison of time response characteristics in various flight conditions - MPC vs min-max. 
 

Setpoint Rise time (sec) Settling time (sec) Delay time (sec) 
Mach number Altitude (m) 

From To MPC Min-max MPC Min-max MPC Min-max 

0 0 0 100 1.03 1.58 1.22 2.22 0.48 0.9 

0 0 100 0 0.55 0.65 0.64 0.93 0.29 0.55 

0.25 0 0 100 1 1.6 1.28 2.2 0.52 0.9 

0.25 0 100 0 0.57 0.65 0.65 0.93 0.3 0.55 

0.3 1500 0 100 1.26 1.67 1.48 2.32 0.62 0.9 

0.3 1500 100 0 0.64 0.71 0.73 0.99 0.34 0.57 

0.4 3000 0 100 1.65 1.74 1.99 2.43 0.71 0.95 

0.4 3000 100 0 0.69 0.76 0.78 1.05 0.35 0.59 

0.6 4500 0 100 2.41 2.48 3.23 3.48 0.87 1.08 

0.6 4500 100 0 0.74 0.82 0.85 1.11 0.37 0.61 
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A reference command is applied similar to the reference tra-
jectory in the MIL simulation, as shown in Fig. 20. In the HIL 
simulation of the MPC algorithm, this command is entered by 
the user via the lever shown in Fig. 7. Fig. 20 also indicates 
the fan speed response in the HIL simulations of the both con-
trollers in trajectory tracking. 

The response time specifications of the HIL simulation are 
presented in Table 6. As shown in this table, the rise time of 

the MPC is from 1.25 % in command 1 to 15.4 % in com-
mand 4 lower than min-max. In addition, the settling time of 
MPC is improved from 12.3 % in command 2 to 26.9 % in 
command 4, except in the first command. Moreover, the delay 
time of the system using MPC is significantly lower than min-
max from 15.8 % in command 3 to 39.3 % in command 1. 
Therefore, the HIL simulation results approve that MPC has 
considerably improved the response time of the system which 
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Fig. 19. Fan speed response for three different sampling times in the 
HIL simulation of the MPC algorithm. 
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Fig. 20. Fan speed response to a general command - HIL simulation: 
MPC vs min-max. 
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Fig. 21. Limited output HPN  response and its limit - HIL simulation: 
MPC vs min-max. 

 

0 5 10 15 20 25
22.5

23

23.5

24

24.5

25

25.5

 H
PC

-S
M

 (%
)

Time (sec)

 

 

MPC-HIL
Min-Max-HIL
Limit

 
 
Fig. 22. Limited output HPC SM-  response and its limit - HIL 
simulation: MPC vs min-max. 
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Fig. 23. Limited output 3Ps  response and its limits - HIL simulation: 
MPC vs min-max. 
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Fig. 24. Limited output 45T  response and its limit - HIL simulation: 
MPC vs min-max. 
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also confirm the results of the MIL simulation.  
Figs. 21-25 show the limited outputs responses in the HIL 

simulation confirm the MIL results and illustrate that the con-
trollers in both MIL and HIL simulations have not violated the 
limits. Fig. 26 shows the rate of fuel flow calculated in the 
HIL simulations. By applying the input command by the user, 
the MPC quickly changes the fuel flow rate to achieve the 
desired set-point and when the controlled output ( LPN ) is 
achieved to the final value, the fuel flow rate is reduced to a 
constant steady-state value. 

As shown in Figs. 20-26, the performance of the controllers 
implemented in both the steady state and the transient modes 
are very consistent with the MIL simulations which represents 
the successful implementation of the controllers. According to 
the comparison of the HIL and MIL simulation results of the 
MPC, the sampling time of 30 ms is acceptable and shows the 
accuracy of the hardware implementation and HIL test. How-
ever, oscillating behavior is observed in the HIL simulation 
results of the MPC. There are various reasons for these fluc-
tuations. The discretization of the internal model of MPC and 
the conversion of the analog to digital signal through the sam-
pling process lead to the loss of a part of data and create a 
delay between two consecutive signals. Moreover, the trans-
mission of the analog voltage signal of the potentiometer to 
the hardware generates noise on the signal. Therefore, the 
noise of the output analog voltage signal of the potentiometer 
and the selected sampling time of the HIL test are the main 
factors which contributes to these fluctuations.  

 
6.3 Analysis in the flight envelope 

In this section, different operating points are assumed in 
flight conditions to investigate the engine response time using 
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Fig. 25. Limited output 3fW Ps  response and its limit - HIL simula-
tion: MPC vs min-max. 
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Fig. 26. Fuel control input - HIL simulation: MPC vs min-max. 
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Fig. 27. The engine flight envelope and some flight conditions for the 
controller design. 
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Fig. 28. Incremental fan speed responses using MPC in various flight 
conditions. 
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Fig. 29. Incremental fan speed responses using min-max controller in 
various flight conditions. 
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MPC. The engine studied in this research is proper for the 
class of mid-range single aisle commercial aircrafts depicted 
in Fig. 27 as a typical flight envelope of this type of turbofan 
engines [35]. The operating points considered in the flight 
envelope are also shown in Fig. 27. The engine thermody-
namic model is linearized at these points and model predictive 
and min-max controllers are designed based on the linear 
models. The controllers are then applied to the linear models. 
For this analysis, a new scenario is defined for LPND  includ-
ing one acceleration and one deceleration commands. Figs. 28 
and 29 illustrate the incremental fan speed in tracking the de-
sired reference using MPC and min-max, respectively. As 
expected, by increasing the altitude the engine responds much 
more slowly and it is independent of the controller effort. This 
can be explained by the reduction of air density at high alti-
tudes. The time response data are presented in Table 7. The 
fan speed response time using MPC is significantly lower than 
min-max, at all operating points, as demonstrated in Table 7. 
As shown in this table, the rise time of the MPC is from 
minimum 2.8 % to maximum 37.5 % lower than min-max. 
Moreover, the settling time of MPC is from minimum 7.2 % 
to maximum 45 % lower than min-max which has signifi-
cantly improved. In addition, the delay time of the system 
using MPC is considerably lower than min-max from mini-
mum 19.4 % to maximum 47.2 %. 

 
7. Conclusion 

In this paper, a comparative study was carried out for com-
parison of the performance of MPC with optimized horizons 
and optimized min-max algorithm for two-spool turbofan 
engine fuel control, taking into account all the necessary con-
straints required for safe operation of the engine, as well as 
hardware implementation and HIL test of the both controllers. 
In order to achieve an improved transient performance as well 
as minimum fuel consumption, the linear regulators of min-
max algorithm was acquired through GA optimization ap-
proach. On the other hand, MPC was formulated and designed 
based on the proper discrete-time linearized state-space model 
and programmed in C++ language with real-time optimization 
using Hildreth’s procedure. The MPC horizons were also ob-
tained through GA optimization procedure. 

The MIL simulation results illustrated that MPC provided 
faster response than min-max whilst ensuring the limit protec-
tion. Also, the system response with MPC was as close as 
possible to the engine limits, which improved the performance 
of the engine, while min-max provided conservative response. 
Finally, an HIL test bench was developed to verify the MIL 
simulation results. MPC requires more expensive processor 
than min-max for real-time implementation. The HIL simula-
tion results confirmed the MPC ability for application as the 
control architecture of commercial engines. Moreover, the 
analysis was performed at several operating points in the en-
gine flight envelope of which the same results were achieved. 

Nomenclature------------------------------------------------------------------------ 

A, B, C, D : Matrices of the linear state-space model    
bi  : The value of the ith limit 
e   : The white-noise disturbance 
F, Φ  : Matrices of the predicted outputs equation 
f1  : The look-up table of the compressor map 
f3  : The look-up table of the turbine map 
f2, f4, g : The tables of the thermodynamic characteristics 
h   : Enthalpy 
H  : Fuel heating value 
HPC : High pressure compressor 
HPC-SM : High pressure compressor stall margin 
HPS  : High pressure spool 
HPT    : High pressure turbine    
I : Identity matrix 
J   : Objective function 
JLP, JHP : Moment of inertia of low pressure and high pressure 

shafts 
k    : Time step 
Ki  : Min-max compensators 
LPC  : Low pressure compressor 
LPS  : Low pressure spool 
LPT    : Low pressure turbine    
M   : Mach number 
M, N, Q : Matrices of the augmented model of MPC 
m   : The number of limits 
NLP, NHP : Speed of low pressure and high pressure shafts 

,LP HPN N& &  : Angular acceleration of low pressure and high pres-
sure shafts 

nu, ny  : Control and prediction horizons 
P  : Pressure  
PF   : Penalty factor  
PLA : Power lever angle 
PR  : Pressure ratio 
Ps3  : High pressure compressor discharge static pressure 
PW       : Power  
r    : Reference trajectory 
t : Time 
T   : Temperature 
T45 : High pressure turbine exit total temperature 
u  : Velocity 
u  : Vector of control variables 
û   : Vector of predicted inputs 
Umin, Umax : Vector of lower and upper bounds of the inputs 
Wf  : Fuel flow rate    
Wf /Ps3, RU : Ratio unit limiter 
wi   : Weighting values 
x  : Vector of state variables 
y  : Vector of output variables 
ŷ   : Vector of predicted outputs 
Ymin, Ymax : Vector of lower and upper bounds of the outputs 
h   : Efficiency 
l   : Scalar weighting factor 
 



 M. Montazeri-Gh and A. Rasti / Journal of Mechanical Science and Technology 33 (11) (2019) 5483~5498 5497 
 

  

Subscripts 

a : Augmented matrix 
acc  : Acceleration 
amb : Ambient 
b   : Burner 
c   : Corrected 
con  : Controlled 
d   : Discrete time 
dec : Deceleration 
e   : Exit 
f  : Fuel 
_g : Gas 
HP : High pressure  
in : Intlet 
LP : Low pressure  
out : Outlet 
s   : Static 
std : Standard atmospheric condition 
t : Total 

 
Superscripts 

T : Transpose    
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