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Abstract 
 
This study aims to improve the accuracy of the parametric estimation of systems with modal interference in the frequency domain. The 

theory of modal identification states that the frequency response function can be expressed as a rational function form by using the curve 
fitting technique, and the modal parameters can then be estimated from rational fractional coefficients. The conventional common de-
nominator model only indicates the frequency response function of a single-degree-of-freedom system; thus, it cannot acquire the mode 
shape information. In this paper, we propose the matrix-fractional coefficient model constructed by the frequency response functions of a 
multiple-degree-of-freedom system for modal identification. To avoid the phenomenon of omitted modes caused by the distortion from 
modal interference among the vibration modes of systems during modal estimation, we use a system model with higher-order matrix-
fractional coefficients, but fictitious modes may be caused by numerical computation. Structural and fictitious modes can be effectively 
separated by using a different-order constructed stabilization diagram. Modal identification can be implemented by solving the eigen-
problem of the companion matrix yielded from least-square estimation. Numerical simulations, including a full model of sedan and one-
half railway vehicle in the form of a linear 2D model, as well as the experimental testing of an actual plate, confirm the validity and ro-
bustness of the proposed parametric-estimation method for a system with modal interference under noisy conditions.  
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1. Introduction 

In the system identification of structures, the physical pa-
rameter of the stiffness matrix may not be identifiable due to 
the practical limitation on the number of measurement chan-
nels. However, the modal estimation of a linear system is gen-
erally implemented from input and output data provided that 
the system (or the model) is controllable and observable. Dur-
ing modal identification, the content of interference among 
structural modes often affects the accuracy of modal estima-
tion [1, 2]. Modal interference caused by the close frequency 
and high damping ratio means that the vibration energy of 
each mode of the system may overlap with other modes in a 
certain frequency range. The serious problems of modal inter-
ference may lead to difficulties in modal estimation, especially 
for identifying damping ratios. Accordingly, effective tech-
niques for modal identification must be developed under the 
distortion from severe modal interference among the vibration 
modes of systems. 

In the past, among many modal estimation techniques, the 

frequency-domain methods deal with the frequency response 
functions of a structure under consideration from which mo-
dal parameters are estimated. These methods have been used 
extensively because the frequency response functions are 
readily available from input and output data [3]. Once the 
frequency response functions have been obtained, we can 
implement the modal estimation of a structural system. Fast 
Fourier transform has been extensively applied to the vibra-
tion testing of structures [4]; then, modal estimation in the 
frequency domain can be developed through frequency re-
sponse function and spectrum analysis. Spitznogle and Quazi 
[5] proposed a complex exponential algorithm from the time-
limited output data only. In 1981, by using a squared output 
matrix ( )h té ùë û  consisting of multichannel impulse response 
functions [6], the least-square complex exponential (LSCE) 
algorithm was proposed to yield the global estimation of resi-
dues and poles. A poly-reference version of the LSCE 
method, that is, poly-reference complex exponential (PRCE) 
method [7], was subsequently proposed to implement modal 
estimation when one of the modes may not be present in 
structural vibration data. The closely spaced modes (even 
repeated modes with the same eigenvalues) are resolved us-
ing the PRCE method, but the determination of the proper 
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model order and modal properties remains subjective through 
the construction of the stabilization diagram. Richardson and 
Formenti [8] accomplished a parametric identification from 
frequency response measurements in the form of rational 
fraction polynomials by using ( )k

k jwW =  as a basis func-
tion in conjunction with an orthogonal polynomial function. 
This function may produce ill-conditioned problems in sys-
tem identification when using the excessive order of basis 
function ( )k

k jwW = . Selecting the orthogonal polynomial 
function in parametric estimation can not only reduce the ill-
conditioned problems but also increase relatively many calcu-
lations. In 2001, Auweraer et al. [9] proposed a fast-
stabilizing parametric estimation method in the frequency 
domain (LSCF) by using the frequency response function 
matrix ( )H wé ùë û  through the curve-fitting technique. In 2003, 
Guillanume et al. [10] introduced the concept of matrix frac-
tion description to extend LSCF for a poly-reference case and 
proposed the poly-reference least-square complex frequency-
domain (PolyMAX) method. The main advantages of the 
PolyMAX method are its computation speed and clear stabi-
lization diagrams [11] even with highly noise-contaminated 
measurement data. However, this method may yield poor 
estimates in damping ratios especially for a system with 
heavy damping and insufficient modes to be completely ex-
cited under noisy conditions. In addition, by using the stabili-
zation diagram in conjunction with the PolyMAX method, 
the accuracy of the identification results of structural modes 
is relatively consistent due to the sufficient order of the model 
to be estimated; therefore, the system and fictitious modes 
can be effectively separated [12]. In recent years, the applica-
tion of the PolyMAX method for modal estimation has been 
extensively considered [13] and investigated [14]. This 
method has been adopted for experimental modal analysis 
and parametric estimation in flight testing of large-scale flut-
ter analysis [15] and can effectively identify the damping 
ratios of offshore wind turbine on a monopole foundation 
[16] and estimate the modal parameters of transformer coils 
[17] in the electric power system. Furthermore, the PolyMAX 
method has been extended to estimate parameters of a local-
ized frame and implement the damage detection and assess-
ment of large-scale structures [18].  

In this paper, we propose the matrix-fractional coefficient 
model constructed by the frequency response functions of a 
multiple-degree-of-freedom (MDOF) system to perform the 
parametric estimation of structures with modal interference. 
By introducing a higher-order system model in conjunction 
with the different-order constructed stabilization diagram dur-
ing modal estimation, identification results are sorted as either 
structural or fictitious parameters caused by numerical compu-
tation. Thus, we can further determine the number of struc-
tural modes to be identified. Additionally, the modal parame-
ters of a system, including natural frequencies, damping ratios, 
and mode shapes, can be obtained by directly solving the ei-
genproblem of the companion matrix yielded from least-
square estimation.   

 
2. Poly-reference least-square complex frequency-domain 

method 

The theory of structural dynamics indicates that the fre-
quency response function can be expressed as a rational func-
tion form. Through the curve fitting technique, the response 
data can be expressed in rational fraction form, and the modal 
parameters can be obtained from rational fractional coeffi-
cients. The conventional frequency-domain method using the 
common denominator model only indicates the single-degree-
of-freedom (SDOF) frequency response function; thus, it can-
not acquire the complete modal information. In this study, we 
use the matrix-fractional coefficients model constructed by 
MDOF frequency response functions and introduce this model 
in the estimation procedures of the PolyMAX method for the 
system identification of structures with modal interference. 

The PolyMAX method [10] is based on a frequency re-
sponse function matrix ( )H wé ùë û  with symmetric form as 
primary data containing the FRFs between all inputs and out-
puts. The coefficients of numerator and denominator matrix 
polynomials can be identified through the least-square estima-
tion between ( )H wé ùë û  and the matrix rational mathematical 
model. The modal parameters of a system can then be esti-
mated from the coefficients of denominator matrix polynomi-
als. The higher the constructed order mathematical model, the 
more complete the modal information that can be obtained. 
The sensitivity of polynomial coefficients is, however, af-
fected by high-order polynomial curve fitting. A mathematical 
model of the frequency response function matrix ( )H wé ùë û  is a 
right matrix-fraction model as -1( ) = ( ) ( )H B Aw w wé ù é ùé ùë û ë ûë û , 
where ( )A wé ùë û  and ( )B wé ùë û  are the common denominator 
and numerator polynomials between the output and input de-
grees of freedom (DOFs). Any row in the frequency response 
function matrix ( )H wé ùë û  can be expressed as follows: 

 

( ) ( ) ( ) 1

j jH B Aw w w
-

é ù= ë û ,                    (1) 

 
where 1,2j n= L . The denominator coefficient polynomial 

( )A wé ùë û  and numerator coefficient polynomial ( )jB w  are 
respectively defined as 

 

0

0

( ) ( ) ,  

( ) ( ) ,

m

j jk k
k

m

k k
k

B

A

w b w

w a w

=

=

= W

= Wé ù é ùë û ë û

å

å
 (2) 

 
where ( ) k si T

k e ww -W =  and sT  is the sampling period. jkb  

and kaé ùë û  are the unknown polynomial coefficients of the 

numerator vector and denominator matrix, respectively. The 
order of the numerator polynomial is, in general, not the same 
as that of the denominator polynomial. m is the polynomial 
order of the mathematical model, and ( )k wW  is the polyno-
mial basic function, i.e., a frequency-domain model is derived 
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from a discrete-time model. ( )H wé ùë û  can be written for all 

values of the frequency axis of the FRF data. The unknown 
polynomial coefficients for the numerator vector and denomi-
nator matrix polynomials are then found using the least-square 
method after linearization. The constructed numerator and 
denominator matrix polynomial model can be viewed as a 
function of ib , a , and arbitrary iw . The prediction errors  

( ), ,j j ie b a w  between the constructed numerator/denominator  

matrix polynomial model ( ) ( ) 1
, ,j j i iB Ab w a w

-
é ùë û  and fre- 

quency response function ( )ˆ
j iH w  of a system obtained from 

practical data are defined as follows: 
 

( ) ( ) ( ) ( )1 ˆ, , , ,j j i j j i i j iB A He b a w b w a w w
-

é ù= -ë û .       (3) 

 
Directly solving Eq. (3) in the form of simultaneous nonlin-

ear equations may be difficult. To obtain the linearization of 
Eq. (3), we postmultiply Eq. (3) by ( ), iA a wé ùë û  and redefine 
the prediction errors ( , , )new

j j ie b a w  as follows: 
 

ˆ( , , ) ( , ) ( ) ( , )new
j j i j j i j i iB H Ae b a w b w w a w= - é ùë û .          (4) 

 
The prediction error matrix consisting of the prediction- er-

ror vectors associated with all values of iw  of the frequency 
axis of the FRF data is constructed as follows: 
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where Ä  denotes the Kronecker product, which is an opera-
tion on two matrices of arbitrary size resulting in a block ma-
trix. The Kronecker product is a generalization of the outer 
product from vectors to matrices and produces the matrix of 
the tensor product with respect to a standard choice of basis 
function. To obtain the optimum solution of a  and ib  
through the least-square method, we define the prediction 

error ( , )LS b al  in least squares as follows: 
 

{ }
1

( , ) ( , ) ( , )
n H

LS
j j j j

j

tr E Eb a b a b a
=

é ù é ù= ë û ë ûål .       (7) 

 
Given the complex numbers in conjugate pairs by solving 

the roots of denominator coefficient polynomial ( )A wé ùë û , we 
assume that jb  and aé ùë û  are constrained to real-valued co-
efficients and matrix. Only the real part in Eq. (7) would be 
considered, and the prediction error ( , )LS b al  can be ex-
pressed as follows: 
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Then, we will select jb  and aé ùë û  such that the measure 

of fit ( , )LS b al  is minimized. ( , )LS b al  is partially differ-
entiated with respect to jb  and aé ùë û , and the result is 
equated to zero: 
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The normal equation is obtained from Eq. (11) as follows: 
 

1

1

2 ( ) 0 .
n T

j j j j
j

T S R S a
-

=

ì ü
é ù é ù é ù é ù- =é ùí ýë ûë û ë û ë û ë û

î þ
å     (12)  

 

jTé ùë û , jSé ùë û , and jRé ùë û  can be obtained by substituting Eq. 

(6) into Eq. (10). To avoid a relatively high polynomial order 
to be chosen for obtaining numerous zero coefficients of poly-
nomials, we set m Ia =é ù é ùë û ë û , where maé ùë û  is the highest poly-
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nomial order of the denominator matrix polynomial model.  
To simplify the procedure of the PolyMAX method, we di-

rectly estimate the modal parameters of a structure by solving 
the eigenvalue problem associated with the companion matrix 
constructed by denominator polynomial coefficients. On the 
basis of the property of companion matrix, modal identifica-
tion can be implemented by directly solving the eigenproblem 
of the companion matrix instead of solving the coefficients of 
the numerator and denominator matrix polynomials in rational 
function form of ( )H wé ùë û . This approach significantly reduces 
the relatively many computations required in the conventional 
PolyMAX method. After deriving the denominator coefficient, 
the poles (indicating the information of natural frequencies 
and damping ratios) and mode shape vectors of a system are 
directly related to the eigenvalues and eigenvectors of their 
companion matrix. One can derive the following: 
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where 2 ( 1)
T

j t j t j m tV I I e I e I ew w wf f f fD D - Dé ù=é ù é ù é ù é ù é ùë û ë û ë û ë û ë ûë ûL  

is the eigenvector matrix and Lé ùë û  is the eigenvalue matrix 

consisting of the diagonal element r tel D . rl ’s are the com-
plex numbers in conjugate pairs and the roots of denominator 
coefficient polynomial ( )A wé ùë û . The dimension of matrix Ié ùë û  

depends on the order of a system to be identified, which can 
be estimated from the rich frequency content around the struc-
tural modes of interest through the stabilization diagram with 
a different order or frequency response function of the struc-
tural system. rl ’s are related to the natural frequencies rw  
and damping ratios rx  of the system as follows:  

 
2 ,  1r r r r r rjl l x w x w* = - ± - .             (14) 

 
The mode shape vectors of a system correspond to the ei-

genvectors related to the eigenvalues rl ’s. 

 
3. Estimation of identified modes from the phase of 

frequency response function 

In general, by examining the Fourier spectrum associated 
with each of the response channels, one can estimate the num-
ber of structural modes to be identified. However, such ap-
proach may lead to a distortion in the quantity estimation of 
identified modes due to the modal interference among the 
modes with relatively heavy damping and closely spaced 
modes. To estimate the natural frequencies and number of 

structural modes to be identified, the phase of the frequency of 
response function will be used in modal identification. On the 
basis of the theory of structural dynamics, the phase Hj  of 
the frequency of response function ( ) H w  associated with an 
SDOF system will vary instantaneously from 90- o  to 90o  
when natural frequencies of a structure are equal to the applied 
loading frequency. Hence, we can estimate the number of 
structural modes to be identified by roughly examining the 
phase Hj  of the frequency of response function ( ) H w  [19]. 
However, for most MDOF systems in practice, the number of 
structural modes to be identified may be erroneously deter-
mined due to the distortion in modal-identification informa-
tion among the modes with relatively heavy damping and 
closely spaced modes. In the case of the two-DOF system, the 
corresponding frequency of response function ( )rH w  can be 
expressed as follows:  
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22

2 2 2 2 2 2
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where rw  and rx  denote the frequency and damping ratios 
of the rth mode of a system. The phase Hq  of ( )rH w  can 
be defined as 

 
( )( ) ( )( )
( )( ) ( )( )

2 2
1 2 2 2 1 11

2 2
1 2 1 1 2 2
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tan

1 1 2 2H
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-
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ç ÷=
ç ÷- - -è ø

,    (16) 

 
where 11 /w w w=  and 22 /w w w= . w , 1w , and 2w  are the 
applied loading, first natural free-vibration, and second natural 
free-vibration frequencies, respectively. In Eq. (16), the phase 

Hq  of the frequency of response function ( )rH w  will vary 
instantaneously from 90- °  to 90°  when either the first or 
second natural free-vibration frequency of a structure equals 
the applied loading frequency. If the system has a serious 
problem with modal interference induced by close (even re-
peated) mode [i.e., 1 2w w w» » ], in which 1 2w w» , or heavy 
damping [i.e., 10%rx ³ ], then we cannot relatively accu-
rately determine the natural frequencies and number of struc-
tural modes by examining the phase Hq  of the frequency of 
response function. This case due to the distortion the modal-
identification information among the modes with relatively 
heavy damping and closely spaced modes. The more serious 
the problem of modal interference is, the more distortion the 
information of modal estimation has.  

The modal interference among modes will be considerable 
due to the closely coupled modes and may lead to a curve-
fitting problem associated with the frequency response func-
tion that involves the estimation of the appropriate model size. 
All MDOF curve-fitting methods assume that interference 
exists among all modes. The frequency response function data 
at any frequency is a summation of contributions from all 
modes. To avoid the phenomenon of omitted modes during 
the modal identification of systems with modal interference, 
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we use a higher-order model, but fictitious modes may be 
caused by numerical computation. The system and fictitious 
modes can be separated by using the different-order con-
structed stabilization diagram. This diagram is a powerful tool 
for effectively estimating the accurate number of poles, i.e., 
polynomial model order, for the PolyMAX method. The idea 
behind the stabilization diagram is to repeat the estimation 
process with a different polynomial model order each time. 
The stable poles should remain constant for all or most of the 
iterations, and then the polynomial model order can be deter-
mined. By using a stabilization diagram to estimate the stable 
poles, the curve-fitting problem involved in the modal inter-
ference can be solved through different model sizes. 

 
4. Numerical simulations 

The modal identification can be performed from the excita-
tion and response data of a structural system under external 
force excitation in dynamic tests. However, obtaining the ex-
act modal information in the practical dynamic testing of 
large-scale structure is difficult. Consequently, the effective-
ness of the present method must be verified in advance 
through the numerical simulations. To demonstrate the effec-
tiveness of the proposed method, we consider a six-DOF 
chain-model system with a pair of closely spaced modes (fre-
quency separation smaller than 0.42 rad/sec) and high damp-
ing ratios (whose values are above 10 % except for the first 
mode). Fig. 1 shows a schematic representation of this model. 
The mass matrix M , stiffness matrix K , and damping ma-
trix C  of the system are given as follows: 
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0 1 0 0 0 0
0 0 2 0 0 0

 kg
0 0 0 2 0 0
0 0 0 0 1 0
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0.05 0.01  N sec / m .+ ×C = M K  
 
The chain-model system has proportional damping, because 

the damping matrix C  can be expressed as a linear combina-
tion of M  and K . The simulated impulse function serves 
as the excitation input acting on each mass point of the system. 
The sampling interval is chosen as 0.01 stD = , and the sam-
pling period is 81.92 stT N t= × D = . Assuming that the sys-
tem is initially at rest, the displacement responses of the sys-
tem can be obtained using Newmark’s method [20]. To con-
sider the measurement noise in practice, we perform modal 

identification from the simulated impulse response data con-
taminated with 5 % white noise. 

To avoid the phenomenon of omitted modes, the polyno-
mial order m  in the PolyMAX method must not be less than 
the number of modes to be identified. However, a continuum 
structure theoretically has an infinite number of DOFs and 
modes. By examining the Fourier spectra associated with the 
measured vibration response histories, the important modes of 
a system under consideration could not be roughly found be-
cause of a distortion in the modal-estimation resulting from a 
system with modal interference among the vibration modes. 
Fig. 2 shows the typical plots of the amplitude frequency re-
sponse functions of the system, wherein the serious problems 
of modal interference exist in most structural modes except for 
the first mode. The theory presented in the previous sections 
indicates that the phase angle diagram of frequency response 
function, as shown in Fig. 3, cannot be used to determine the 
number of structural modes influenced by serious modal inter-
ference relatively accurately. Thus, the phenomenon of omit-
ted modes from the distortion of system order estimated by 
frequency response function exists. Only upon the phase angle 
diagram of frequency response function may lead to an erro-
neous estimation of the modal frequencies to be identified for 
the case of a MDOF system with modal interference. A typi-
cal plot of the phase frequency response function 16 ( )H w  
shows at least five excited modes of this six-DOF system with 
modal interference. However, corresponding modal frequen-
cies could not be accurately estimated except the first three 
structural modes.  

Table 1 shows the results of modal estimation when select-
ing the polynomial order 2m =  in the PolyMAX method, 
indicating that the errors in natural frequencies are less than 

 
 
Fig. 1. Schematic plot of the six-DOF chain system. 

 

 
 
Fig. 2. Typical plot of the amplitude frequency response function 

16 ( )H w  of the system showing modal interference among the struc-
tural modes except for the first mode. 
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1 % and those in damping ratios are around 17 %. The errors 
of identified damping ratios are higher than those of natural 
frequencies, which may be due to the system response gener-
ally having lower sensitivity to damping ratios. To obtain 
improved estimation results of damping ratios, we further 
increase the polynomial order m  to reach 4. Table 2 shows 
the corresponding results of modal estimation when selecting 

4m =  in the PolyMAX method, indicating that the errors in 
damping ratios significantly reduce to less than 2 %. The iden-
tified mode shapes are compared with the exact values in Fig. 
4, in which we observe good agreement with the value of the 

modal assurance criterion (MAC) [21] of 0.93 on average. 
In the proceeding, to avoid the phenomenon of omitted 

modes during the modal identification of systems with modal 
interference, we use a higher-order system model through 
PolyMAX, but fictitious modes may be caused by numerical 
computation. However, as the correct order of a model to be 
estimated is often unknown a priori, different model orders are 
postulated and then the “best” one is selected in accordance 
with a certain criterion, such as singular value analysis [19] or 
stabilization diagram method [11]. A stabilization diagram is 
used to display stable pole groups consisting of natural fre-
quency and damping ratio pairs that exist when applying 
curve fitting to the data of frequency response function ob-
tained from the measured response histories with different 
model sizes. This diagram is utilized to determine the number 
of modes to be identified in structural response data. Extra 
computational modes are always used with a stabilization 
diagram to account for the residual effects of additional “out 
of band modes” in the data and then are ignored in the final 
modal-estimation results. The system and fictitious modes can 
be separated by using the constructed stabilization diagram 
with different-polynomial order, as shown in Fig. 5. The num-
ber of structural modes to be identified is six, which is ob-
tained from the stabilization diagram associated with the dif-
ferent polynomial-order 1 ~ 8m = . Furthermore, the stabiliza-
tion diagram shows a relatively evident “location” of natural 
frequencies of the system, with no clear peak in the amplitude 
of frequency response function due to the modal interference 
caused by heavy damping. 

To demonstrate the effectiveness of the present method for 
relatively complicated structural systems, we further consider 

Table 1. Results of the modal estimation of a six-DOF chain system 
with a pair of closely spaced modes and high damping ratios through 
the PolyMAX method with polynomial order 2m =  (contaminated 
with 5 % white noise). 
 

Natural frequency (rad/s) Damping ratio (%) 
Mode 

Exact PolyMAX Error (%) Exact PolyMAX Error (%) 
MAC 

1 8.72 8.79  0.81  4.65 5.42  16.65  0.91 

2 19.89 19.98  0.45  10.07 11.84  17.57  0.90 

3 27.63 27.68  0.17  13.91 16.34  17.50 0.92 

4 31.74 31.78  0.13  15.95 18.74  17.50  0.89 

5 43.13 43.23  0.23  21.62 25.20  16.54  0.98 

6 43.55 43.62  0.15  21.83 25.37  16.19  0.96 

 
 

Table 2. Results of the modal estimation of a six-DOF chain system 
with a pair of closely spaced modes and high damping ratios through 
the PolyMAX method with polynomial order 4m =  (contaminated 
with 5 % white noise). 
 

Natural frequency (rad/s) Damping ratio (%) 
Mode 

Exact PolyMAX Error (%) Exact PolyMAX Error (%) 
MAC 

1 8.72 8.79  0.81  4.65 4.65  0.08  0.96 

2 19.89 19.91  0.10  10.07 10.10  0.09  0.95 

3 27.63 27.56  0.26  13.91 13.90  0.05 0.98 

4 31.74 31.59  0.47  15.95 15.89  0.37  0.95 

5 43.13 43.69  1.29  21.62 21.28  0.59  0.98 

6 43.55 43.11  1.02  21.83 21.47  1.67  0.97 

 

 
 
Fig. 3. Typical plot of the phases associated with the frequency re-
sponse function 16 ( )H w  of the system with a pair of closely spaced 
modes and high damping ratios. 

 

 
 
Fig. 4. Comparison between the identified and exact mode shapes of 
the six-DOF system with a pair of closely spaced modes and high 
damping ratios. 
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a full model of motor vehicle [19] with two pairs of closely 
spaced modes (frequency separation smaller than 0.2 rad/sec), 
as shown in Fig. 6. A full model of a motor vehicle can be 
generally viewed as a seven-DOF system, which includes the 
bounce, pitch, and roll motions for the body of a motor vehicle, 
and four bounce motions for the wheels. For further complex 
systems, the Lagrange equation can be used to derive the 
equation of motion whose advantage is that only displacement 
and velocity enter into the energy functions and can be written 
in a slightly simplified form without using free-body diagrams, 
as well as summing forces and moments; thus, intricate kine-
matic calculation of acceleration is avoided [22]. A model of 
the sedan under consideration, in this case, is a seven-DOF 
system with 1 2 3 4 5 6 7= u ,u ,u ,u ,u ,u ,ué ùë ûu , where 2u =j  and 

3u =q  are the rotational displacements of the pitch and roll 
behavior of the motor vehicle, respectively, and the others are 
the vertical displacements of the bounce behavior of the motor 
vehicle and four wheels, as shown in Fig. 6. The mass matrix 
is diagonal, diag 1 2 3 4 5 6 7= ,m ,m ,m ,m ,m ,mmé ùë ûM , where the 
sprung mass 1m  represents the corresponding body mass of 
the motor vehicle to the wheels and the unsprung mass, 

4 5 6m , m , m , and 7m , represents the wheel and its associated 
components. 2 ym I=  and 3 xm I=  are the pitch and roll 
moments of inertia of the motor vehicle, respectively. The 
stiffness matrix can be obtained as 

1 2 3 4 1 1 2 2 1 3 2 4
2 2 2 2

1 1 2 2 1 3 2 4 1 1 2 2 1 3 2 4

3 1 3 2 4 3 4 4 1 3 1 2 3 2 1 4 3 2 4 4

1 1

2 2 2

3 1 3

4 2 4

=

k k k k L k L k L k L k
L k L k L k L k L k L k L k L k
L k L k L k L k L L k L L k L L k L L k

k L k
k L k
k L k
k L k

+ + + - + - +é
ê- + - + + + +ê
ê- - + + - - +
ê

-ê
ê - -
ê

-ê
ê - -ë

K  

3 1 3 2 4 3 4 4 1 2 3 4

1 3 1 2 3 2 1 4 3 2 4 4 1 1 2 2 1 3 2 4
2 2 2 2
3 1 3 2 4 3 4 4 3 1 3 2 4 3 4 4

3 1 1 11

3 2 2 12

4 3 3 13

4 4 4 14

0 0 0
0 0 0
0 0 0
0 0 0

L k L k L k L k k k k k
L L k L L k L L k L L k L k L k L k L k

L k L k L k L k L k L k L k L k
L k k k
L k k k
L k k k
L k k k

- - + + - - - - ù
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ú

+ ú
ú+
ú

- + ú
ú- + û

 

 
where 1L , 2L , 3L , and 4L  are the half of the axle track of 
the front and rear wheels and the distances to the front and 
rear axles from the center of gravity of the motor, respectively. 
The summation of 3L  and 4L  is the wheelbase of a motor. 

( )1 2k k= , ( )3 4k k= , ( )11 12k k= , and ( )13 14k k=  are the front 
and rear suspension spring stiffness and the front and rear tire 
stiffness, respectively. Throughout this numerical study, 

1 4 5 6 7m ,m ,m ,m ,m 1365,46.8, 46.8, 41.4, 41.4 kg,=é ù é ùë û ë û  2m =  

 
(a) 

 

 
(b) 

 
Fig. 5. Typical plot of the stabilization diagram and 16 ( )H wé ùë û  of the 
system with a pair of closely spaced modes and high damping ratios: 
(a) Overall; (b) part of frequency information. 

 

Table 3. Results of the modal estimation of a seven-DOF system of a 
motor vehicle through the modified PolyMAX method with polyno-
mial order 2m = . 
 

Natural frequency (rad/s) Damping ratio (%) 
Mode 

Exact PolyMAX Error 
(%) Exact PolyMAX Error 

(%) 
MAC 

1 5.03 5.11 1.49 1.25 1.21 2.56 0.99  

2 7.82 7.89 0.92 1.03 1.01 1.64 0.95  

3 18.48 18.50 0.13 1.19 1.18 1.11 0.93  

4 73.79 70.77 4.09 3.76 3.45 8.20 0.99  

5 73.87 70.85 4.10 3.76 3.45 8.22 0.97  

6 87.93 82.93 5.68 4.45 3.96 11.10 0.99  

7 88.07 83.05 5.70 4.46 3.96 11.14 0.96  

 

 
 
Fig. 6. Schematic plot of the seven-DOF system of a sedan. 
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3 2
yI 1.831 10 kg m= ´ × , and 2 2

3 xm I 4.98 10 kg m= = ´ × ; 
4

1 2 2.2428 10 N / m,k k= = ´  4
3 4 2.7022 10 N / m,k k= = ´  

5
11 12 2.32342 10 N / m,k k= = ´  and 5

13 14 2.92982 10k k= = ´  
N / m;  1 2 0.7165 m,L L= =  3 1.1135 m,L =  and 4L =  
1.5415 m ; 0.1 0.001 N sec/ m= + ×C M K . The system of a 
motor vehicle has proportional damping because the damping 
matrix C  can be expressed as a linear combination of M  
and K . Table 3 summarizes the modal-estimation results, 
showing that the average errors in natural frequencies are less 
than 5 % and those in damping ratios are less than 10 %. The 
identified mode shapes are also compared with the exact val-
ues in Fig. 7, in which we observe good agreement with a 
minimum value of MAC [21] of 0.93. The first three mode 
shapes are modal behaviors with bounce, pitch, and roll 
modes, respectively, of the global motor vehicle, whereas the 
last four mode shapes are modal behaviors with bounce modes 
of the local left front, right front, left rear, and right rear 
wheels, respectively.  

We also consider a linear 2D model of one-half of a railway 
vehicle excited by a simulated impulse loading. This simu-
lated system in the numerical study, as shown in a sketch in 
Fig. 8, is identical to that in Ref. [19] and has the features of 

heavy damping (damping ratio above 10 %) and closely 
spaced modes (frequency separation smaller than 1.33 rad/sec). 
The system is a six-DOF system with =u 1 2 3 4 5 6u ,u ,u ,u ,u ,ué ùë û , 
where 4u =q  is the rotational displacement of the pitch be-
havior of the car body, and others are the vertical displace-
ments of the bounce behavior of the car body, leading (trail-
ing) bogies, and leading (trailing) wheelsets. The mass matrix 
is diagonal, diag 1 2 3 4 5 6= m ,m ,m ,m ,m ,m ,é ùë ûM  where 4 Bm I=  

is the mass moment of inertia of the rigid body B at the top of 
the structure. The stiffness and damping matrices can be ob-
tained as  

  
1 2 2

2 2 3 3 3

3 3 4 3 4 4
2 2

3 3 4 3 4 4

4 4 4 5 5

5 5 6

0 0 0 0
0 0

0 0
=

0 0
0 0
0 0 0 0

k k k
k k k k k L

k k k k L k L k
k L k L k L k L k L k L

k k L k k k
k k k

+ -é ù
ê ú- + - -ê ú
ê ú- + - -
ê ú

- - +ê ú
ê ú- + -
ê ú

- +ê úë û

K , 

1 2 2

2 2 3 3 3

3 3 4 3 4 4
2 2

3 3 4 3 4 4

4 4 4 5 5

5 5 6

0 0 0 0
0 0

0 0
=

0 0
0 0
0 0 0 0

c c c
c c c c c L

c c c c L c L c
c L c L c L c L c L c L

c c L c c c
c c c

+ -é ù
ê ú- + - -ê ú
ê ú- + - -
ê ú

- - +ê ú
ê ú- + -
ê ú

- +ê úë û

C , 

 
where L  is the horizontal distance between the center of the 
rigid body B and the springs/dashpots. Throughout this nu-
merical study, 1 2 3 5 6m ,m ,m ,m ,m 1200,850,4125,850,1220=é ù é ùë û ë û  
kg, and 5 2

4 Bm I 1.25 10 kg m= = ´ × ; 7
1 6 3.0 10 N / mk k= = ´ , 

6
2 5 1.0 10 N / m,k k= = ´  and 6

3 4 6.0 10 N / m;k k= = ´  1c =  
6 0,c =  3

2 5 6.0 10 N sec / m,c c= = ´ ×  and 4
3 4 1.8 10c c= = ´  

N sec / m× ; 8.53 mL = . The damping matrix C  that cannot 
be expressed as a linear combination of M  and K ; thus, 
this one-half of a railway vehicle is a six-DOF non-
proportionally damped system. The simulated impulse func-
tion serves as the excitation input acting on each mass point of 
the system. The sampling interval is set as 0.01 stD = , and 

 
 
Fig. 7. Comparison between the identified and exact mode shapes of 
the seven-DOF system of a motor vehicle with two pairs of closely 
spaced modes. 
 

 

 
 
Fig. 8. Simplified 2D model of one-half railway vehicle. 
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the sampling period is 81.92 stT N t= × D = . 
Table 4 summarizes the modal-estimation results obtained 

from the simulated impulse response data, showing that the 
errors in natural frequencies and damping ratios are less than 
10 % and 30 %, respectively. By solving a simplified general-
ized eigenvalue problem of the equation of motion in the state-
space form of the six-DOF non-proportionally damped system, 
the “exact” modal damping ratios, as listed in Table 4, are the 
equivalent values obtained from the free-vibration analysis of 
the structural system with nonproportional damping. In addi-
tion, the result is in good agreement with the minimum value 
of MAC [21] between the identified and exact mode shapes of 
approximately 0.87. The modal analysis of numerical simula-
tion models of a sedan and one-half of a railway vehicle is 
relatively complicated, but such analysis remains applicable 
for an accurate numerical simulation to confirm the validity of 
the proposed modal-estimation method.  

To demonstrate the effectiveness of the present method for 
relatively practical structural systems with the experimental 
point of view, we considered an actual plate example. An 
experimental testing is conducted on a plate, which is tested 
under a free-free boundary condition and suspended by simple 
strings. A Brüel & Kjær RT Pro Photon 7.0 data acquisition 
system, along with PCB piezoelectric accelerometer 352B10 
(with 10.3 mV/g sensitivity and 10 kHz frequency range), and 
a PCB impulse hammer 086C03 (with 2.25 mV/N sensitivity 
and 2224 N measurement range) are used to measure the re-
sponse of the structure. 

This experimental testing consisted of a 150 mm × 150 mm 
rectangular steel plate, which is studied in modal testing con-
dition. The thickness of the plate is 3 mm. As the sides of the 
structure only slightly differ (0.25-5 mm), the plate will have 
closely spaced modes. To confirm this assumption, a simple 
finite element model of the plate is created, and the approxi-
mate natural frequencies and mode shapes of the structure are 
identified. This structure possesses at least one pair of closely 
spaced (even probably repeated) modes around 1160 Hz, as 
shown in Fig. 9 and Table 5. Currently, an FRF-based roving 
hammer testing is performed to measure the actual modal 
properties of the plate structure. Fig. 10 shows the experiment 
setup of this test. Sixteen points on the plate are marked and 

hammer impacts are acted through these 16 locations of the 
plate. For the EMA testing, a simple hammer, to which the 
force sensor is attached, is used to excite the structure with a 
steel tip. 

Through this simple hammer testing, the 256 acceleration 
responses are extracted by a sampling frequency of 12800 Hz 
and recording length of approximately 0.5 s. Then, a stabiliza-
tion diagram with different model orders can be constructed 
using the PolyMAX method, as shown in Fig. 11. The natural 
frequencies and damping ratios of the plate are estimated di-
rectly by solving the eigenvalue problem associated with the 
companion matrix constructed by denominator polynomial 
coefficients, as listed in Table 5. The “exact” modal frequen-
cies and damping ratios listed in Table 5, as well as the exact 
mode shapes, are the equivalent values obtained by using the 
ibrahim time-domain (ITD) method from the impulse accel-
eration response data of the practical plate structure. These 
results show that the accuracy of the modified PolyMAX 
method in calculating the natural frequencies of closely spaced 
modes of the plate is reasonable. In general, as the structural 
response is less sensitive to damping ratios than to the natural 
frequencies, the identification errors of damping ratios, as 
shown in Table 5, are relatively higher, but the accuracy is 
acceptable. 

Table 5 lists the results of MAC verification between the 
mode shapes identified by the modified PolyMAX method 
and by modal testing. In Table 5, the mode shapes of the 
closely spaced modes are reasonably consistent with those 
extracted by hammer testing. The MAC values for the mode 

Table 4. Results of the modal estimation of a six-DOF system of a 
railway vehicle through the modified PolyMAX method with polyno-
mial order 4m = . 
 

Natural frequency (rad/s) Damping ratio (%) 
Mode 

Exact PolyMAX Error 
(%) Exact PolyMAX Error (%) 

MAC 

1 17.51 17.55 0.19  4.89 4.84 0.96 0.99  

2 23.31 23.28 0.12  6.62 6.53 1.31  0.98  

3 103.96 96.27 7.40  16.65 14.24 14.45 0.93  

4 121.07 109.50 9.56  18.78 15.34 18.33  0.91  

5 159.31 144.61 9.23  1.74 1.26 27.59  0.87  

6 160.64 145.42 9.48  1.75 1.27 27.89  0.89  

 
 

 
 
Fig. 9. Typical plot of the amplitude frequency response function 
H22(ω) of the system showing at least a pair of closely spaced (even 
repeated) modes around 1160 Hz. 

 
 

 
 
Fig. 10. Schematics of experiment setup of hammer testing for actual 
plate. 
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shapes estimated by the ITD and modified PolyMAX methods 
show that each set of mode shapes is well correlated within 
itself. Therefore, both methods present great robustness in 
identifying well-correlated mode shapes for the plate. 

In this study, the multi-reference identification of the Poly-
MAX method is used to implement the parametric estimation 
of structures with modal interference. In the procedure of mo-
dal estimation, we propose a modification to replace the ra-
tional fraction in the form of conventional scalar coefficients 
by constructing the frequency response function matrix of the 
rational fraction of the matrix coefficients. We can thus pre-
vent the incomplete modal information obtained from the 
scalar-coefficient rational fraction from the single-frequency 
response function only. A high polynomial order for the Po-
lyMAX method can be significantly reduced when the rational 
fraction of the matrix coefficients is used, and further accuracy 
of modal estimation can be effectively performed. In addition, 
such approach may significantly improve the computation 
efficiency in that modal identification can be implemented by 
solving the eigenproblem of the companion matrix only. The 
proposed algorithm is applicable for improving the validity 
and accuracy of the modal estimation of the system with mo-
dal interference. 

5. Conclusions 

The extent of interference among structural modes may of-
ten affect the accuracy of parametric estimation during modal 
identification. In this paper, the matrix-fractional coefficient 
model constructed by MDOF frequency response functions in 
the modified PolyMAX method is presented to perform the 
system identification of structures with modal interference. By 
introducing a system model with higher-order matrix-
fractional coefficients in conjunction with the different-order 
constructed stabilization diagram during modal estimation, we 
can determine the number of modes to be identified. We can 
thus avoid the erroneous estimation of the modal frequencies 
to be identified for the case of an MDOF system with modal 
interference only upon the phase angle diagram of the fre-
quency response function. Furthermore, the modal parameters 
of systems can be obtained by solving the eigenproblem of the 
companion matrix yielded from least-square estimation. 
Moreover, the computation required for the conventional Po-
lyMAX method can be significantly reduced. Numerical 
simulations, including a full model of sedan and one-half 
railway vehicle in the form of a linear 2D model, as well as 
the experimental testing of an actual plate, confirm the validity 
and robustness of the proposed parametric-estimation method 
for a system with modal interference under noisy conditions. 
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Nomenclature------------------------------------------------------------------------ 

( )H wé ùë û  : Frequency response function matrix   

( )A wé ùë û  : Common denominator polynomial matrix 

( )B wé ùë û  : Numerator polynomial matrix 

Ä  : Kronecker product 
M  : Mass matrix 
K  : Stiffness matrix 
C  : Damping matrix 
m  : Polynomial order 
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