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Abstract 
 
To minimize leakage and maintain the efficiency of turbomachinery, brush seal can be installed with zero clearance or interference as 

the flexibility. This leads to contact between the rotor and bristle pack, and may cause self-excited vibration, even instability. In this study, 
to establishment a mathematical model of the rotor system, a seal force model with bristle interference is proposed and the nonlinear oil-
film force is applied in view of short bearing assumption. The influences of main factors containing rotor rotational speed, installing in-
terval, disc mass, and disk eccentricity on the nonlinear characteristics of the rotor-bearing-brush seal system are conducted by adopting 
bifurcation diagram, spectrum cascade, axis orbit, and Poincaré map. The results indicate that the vibration amplitude of the system with 
bristle interference is a bit larger than that without interference. The system stability is enhanced with smaller disk mass at a higher rota-
tional speed. The proposed model could provide valuable reference for the design of a rotor-bearing-seal system.  
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1. Introduction 

Due to lower leakage, lighter weight, and longer service life, 
brush seals could enhance the working efficiency and reliabil-
ity of turbomachinery [1, 2]. As a type of flexible contact seal, 
brush seals have many advantages over traditional labyrinth 
seal [3]. Labyrinth seal usually needs to set a radial clearance 
to avoid collision with the rotor, but the clearance in brush 
seal can be zero or even interference. It leads to acting force 
between the rotor and brush seal, and this may cause self- 
excited vibration and instability. So the development of a 
mathematical model for analyzing the rotor dynamic charac-
teristics of rotor-bearing-brush seal system is of great impor-
tance to the stable operation of rotating machinery.  

It is hard to estimate the contact force of brush seal due to 
the elastic deformation of bristles. Flower [4] adopted a simple 
cantilever beam formula to calculate the bristle tip force. Long 
and Marras [5] used a non-rotating experimental device for the 
force measurement of brush seal. But the predicted theoretical 
and experimental results were not exact enough, as the authors 
claimed themselves. Sharatchandra and Rhode [6] analyzed 
the bristle force under the undeflected condition. Zhao and 
Stango [7] developed a mechanic model to evaluate the con-
tact force of single bristle with interference and fluid force. 

Demiroglu et al. [8] proposed an empirical model of seal tip 
force based on kinds of test results.  

Until now, an abundant amount of work has been done and 
focused on the nonlinear behavior of a rotor system with con-
sideration of the influence of nonlinear seal force and oil-film 
force [9-11], but most of the researches are focused on laby-
rinth seal using Muszynska model. The nonlinear performance 
analysis of rotor-bearing-brush seal system is still hardly 
known as lack of corresponding theory model for brush seal. 
In the present work, a nonlinear seal force model with bristle 
interference and eccentricity was established. The nonlinear 
oil-film force model with short bearing assumption was ap-
plied. The influence of rotational speed, installing interval, 
disk mass, and disk eccentricity on the dynamic characteristics 
of rotor system were presented. 

 
2. Mathematical model of a rotor system  

To investigate the seal force of brush seals and nonlinear 
behavior, lateral deflection of the disk is not considered here. 
Fig. 1 depicts the structural diagram of a rotor system. 

 
2.1 Equations of motion  

The dynamic equation of the 4-DOF rotor system could be 
derived as: 

 
g b s eMQ CQ KQ F F F F+ + = - + + +&& & ,           (1) 
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, 1 2diag[ , ]x yC C C C= = , C1 and C2 are the 

damping of disk and bearing, respectively. K is the rotor stiff-
ness matrix, diag[ , 2, , 2]K K K K K= , Q are the displace-
ments vectors of geometry center O1 and O2 in the X and Y 
directions, respectively, 1 2 2 1 1 2 2 1[ , , , ]TQ X X X X Y Y Y Y= - - - - , 
Fg is the gravity vector of the rotor system, 

g d b[0,0, , ]TF M g M g= , Fb is the bearing oil-film force vector, 

b b b[0, ,0, ] ,T
x yF F F=  Fs is the seal force vector, sF =  

s s[ ,0, ,0] ,T
x yF F  Fe is the unbalanced force vector, eF =  

2 2
d d d d[ cos( ),0, sin( ),0]TM r t M r tw w w w , rd is the eccentricity of 

disk.   
 

2.2 Nonlinear seal force  

To maintain sealing performance, the bristle tip is generally 
installed with an angle θ on the rotor. As the bristle is elastic, 
the radial interference of the bristle is an inevitable and sig-
nificant phenomenon. Bristle interference is a kind of interfer-
ence fit, which would affect the acting force between the rotor 
and bristle pack. It is assumed that the fluid flow is evenly 
distributed along a single bristle and the flow induced load in 
the axial direction is ignored. Fig. 2 depicts the force distribut-
ing diagrammatic sketch between rotor and bristle, and the 
bristle is treated as a cantilever beam. 

As can be seen from Fig. 2(b), for a single bristle AB, bend-
ing deformation is mainly induced by flow force and rotor 
acting force. And the influence of shear stress is neglected as 
the length of bristle is much greater than the diameter of bris-
tle. Then the expression of bristle bending can be obtained by 
using Euler-Bernoulli equation: 

 
d +
d F qEI M M
s
j
= .                                 (2) 

 
Through deduction of the bending moments induced by 

contacting force Fb and uniformly distributed load of fluid 
flow q0, Eq. (2) then can be rewritten as: 
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The value of bristle deflection vD  induced by Fb and q0 at 

contact point B can be derived by superposition method: 
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As observed in the right-angled trapezoid O1GBE, 
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Fig. 1. Structure diagram of a rotor-bearing-brush seal system. 

 

 
(a) Rotor and bristle contact schematic drawing 

 

 
(b) Bending analysis of bristle with interference 

 
Fig. 2. Force distributing diagrammatic sketch between the rotor and 
bristle. 
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Obviously, v BDD = , so the expression of Fb can be ob-
tained by solving Eqs. (4) and (5): 
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It is assumed that all bristles are very tightly arranged in the 

bristle pack. As Fb is the contact force of a single bristle with 
an arbitrary position angle Φ, then the seal force in the x and y 
directions could be integrated by following expression [12]: 

 
2

s b0
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2

s b0
sin( )dyF F

p
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2.3 Nonlinear oil-film force  

The expressions of oil-film force of bearing in the x and y 
directions could be deduced as follows by adopting the hy-
pothesis of short bearing theory [13, 14]: 
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The dimensionless oil-film force could be transformed as: 
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For easier calculation and derivation, dimensionless trans-

formations are adopted: 
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bricate, w  is the rotor rotational speed. 
Then, Eq. (1) can be transformed as: 
 

2
g b sj j eMq Cq Kq f f f fw d wd+ + = - + + +&& &  ( , 1,2) .i j =  (15) 

 
3. Numerical analysis and discussion 

Numerical integration method is used to integrate Eq. (15). 
For describing the nonlinear dynamic responses of the rotor 
system, a bifurcation diagram, spectrum cascade, axis orbit, 
and Poincaré map are employed. Bifurcation occurs depend-
ing on the bifurcation parameter γ; when γ varies from the 
state branches to another state at a critical value γ0, the dy-
namic behavior of the rotor system will change the motion 
states from stable to unstable. Power spectrum shows the fre-
quency content of the time variation of the dynamical vari-
ables and helps to identify quasi-periodic and chaos motion. 
Axis orbit and Poincaré map can also valuably define the be-
havior of a system [15]. If the axis orbit is a regular circle and 
there exist n points in the Poincaré map, the system is in peri-
odic-n motion or quasi-periodic motion. If the axis orbit is 
irregular and Poincaré map is discrete points, the system is in 
chaotic motion.  

Table 1 lists the structure and operating parameters of the 
rotor system.  

 
3.1 Effect of the rotor rotational speeds 

Rotational speed is a main factor predicting the nonlinear 
behavior of a rotor system. Fig. 3 exhibits the bifurcation 
diagram and spectrum cascade of the system adopting rotor 
rotational speed as the controlling parameter; the rotational 
speed varies from 0 to 1200 rad/s . As can be seen from Fig. 3, 

Table 1. Structure and operating parameters of the rotor system. 
 

Parameters    Value           

E (Pa) 2.07×1011 

I (m4) 1.278×10-18 

θ (°)  45 

Md (kg) 70 

Mb (kg)  38 

μ0 (Pa.s)  0.2 

rd (m)  0.0005 

δ1 (m) 0.0004 

δ2 (m) 0.0002 

R2 (m)  0.03 
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the change trend of the system in the situation with and 
without bristle interference is roughly identical, but the 
vibration amplitude with interference is a bit larger than that 
without interference. The motion of the system with 
interference can be concluded as: Period-1 motion (0 <w ≤ 
877 rad/s ) → quasi-periodic motion (877 <w ≤ 964 rad/s ) → 
period-5 motion (964 <w ≤ 979 rad/s ) → quasi-periodic mo-
tion (979 <w ≤ 1162 rad/s ) → period-1 motion (1162 <w ≤ 
1200 rad/s).  And the system motion without bristle 
interference is: Period-1 motion (0<w ≤ 875 rad/s ) → quasi-
periodic motion (875<w ≤ 934 rad/s ) → period-5 motion 
(934 <w ≤ 987 rad/s ) → quasi-periodic motion (987 <w ≤ 
1160 rad/s ) → period-1 motion (1160 <w ≤ 1200 rad/s ). As 
plotted in Fig. 3(c), in the situation of with interference some 
small frequency components two-times of fundamental 
frequency 2f0 appear in the interval ω∈[0,276] rad/s . When 
ω∈[877,1162] rad/s , there are some frequency components 
fw induced by self-excited synchronous vibration. And in the 
rest rotational speed the fundamental frequency f0 dominates 
the spectrum. As illustrated in Fig. 3(d), without considering 
the bristle interference, the rotational speed intervals of 
appearing frequency components fw and 2f0 decrease to ω∈
[875,1160] rad/s and ω∈[0,273] rad/s , respectively. 

For better understanding the vibration response of the rotor-
bearing-seal system with and without bristle interference at 

different rotational speed, the axis orbits and Poincaré maps of 
the rotor system are presented in Fig. 4. When the rotational 
speeds are 410, 600, and 1200 rad/s , the rotor axis orbits are 
regular ellipses and the Poincaré maps are single points, which 
represent that the system is stable and in synchronous period-1 
motion. When ω = 970 rad/s , rotor axis is irregular ring and 
five single points arise in Poincaré map, which illustrates that 
the system is in period-5 motion. And the axis orbit forms a 
sectorial ring and the Poincaré map forms one closed circle at 
ω = 1100 rad/s , which represents it is unstable and in quasi-
periodic motion. 

 
3.2 Effect of the installing interval 

As bristle interference is the main focus in this paper, so the 
interference is considered in the following discussion. The 
operation range of a bristle pack is directly decided by the 
installing interval between the front plate and rotor surface. 
Bifurcation diagram and spectrum cascade varied by installing 
interval are shown in Figs. 5 and 6. From Fig. 5, it is clear the 
bifurcation diagram is a smooth upward line, illustrating that it 
is in period-1 motion. And there is only an f0 in the spectrum 
cascade. As observed in Fig. 6, the bifurcation diagram is 
always in quasi-periodic motion when 1000w = rad/s , and 
combination of frequency components of fw and f0 appear- 

      
                          (a) Bifurcation diagram                      (b) Partially magnified bifurcation diagram  
 

      
              (c) Spectrum cascade with interference                         (d) Spectrum cascade without interference 
 
Fig. 3. Bifurcation diagram and spectrum cascade with varying rotational speed. 
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                           (a) Axis orbit                                          (b) Poincaré map 
 
Fig. 4. Vibration response at different rotational speed with interference and without interference. 

 
 

     
                        (a) Bifurcation diagram                                 (b) Spectrum cascade 
 
Fig. 5. Bifurcation diagram and spectrum cascade with varying installing interval at ω = 500 rad/s.  

 
 

     
                       (a) Bifurcation diagram                                 (b) Spectrum cascade 
 
Fig. 6. Bifurcation diagram and spectrum cascade with varying installing interval at ω = 1000 rad/s. 
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ances through all value of installing interval variation. And the 
vibration amplitude decreases sharply at lower installing in-
terval.  

 
3.3 Effect of the disk eccentricity 

An unbalanced mass could cause excited force and affect 
the system stability and dynamic performance. The bifurcation 
diagram and spectrum cascade by increasing disk eccentricity 
are shown in Figs. 7 and 8. As observed in Fig. 7(a), the mo-
tion of the system at 500w = rad/s  undergoes the following: 
Period-1 motion (0 < rd ≤ 0.06 mm) → period-2 motion (0.06 

< rd ≤ 0.09 mm) → quasi-periodic motion (0.09 < rd ≤ 0.12 
mm) → period-2 motion (0.12 < rd ≤ 0.14 mm) → quasi-
periodic motion (0.14 < rd ≤ 0.16 mm) → period-6 motion 
(0.16< rd ≤ 0.18 mm) → period-2 motion (0.18< rd ≤ 0.22 
mm) → period-1 motion (0.22< rd ≤ 1 mm). There exist 
combination frequency components of fw and f0 when rd∈

[0.06,0.22] mm, and the value of fundamental f0 increases the 
disk eccentricity rd (see Fig. 7(b)). As illustrated in Fig. 8(a), 
the motion at =1000w rad/s can be concluded as: Period-1 
motion (0< rd ≤ 0.26 mm) → quasi-periodic motion (0.26< rd 
≤ 0.40 mm) → period-5 motion (0.40 < rd ≤ 0.44 mm) → 
quasi-periodic motion (0.44 < rd ≤ 0.69 mm) → period-1 mo-
tion (0.69 < rd ≤ 1 mm). As shown in Fig. 8(b), fw appears at 
0.26 mm and disappears at 0.69 mm. The axis orbit and Poin-
caré map in Fig. 9 can further illustrate the changing process 
from synchronous motion to oil whirl, and reach a stable state 
with the increase of rd.  

 
3.4 Effect of the disk mass 

As the brush seal is a type of contact seal, the bristle pack 
would keep contact with the disk to guarantee the sealing ef-
fect. So the sealing performance largely depends on the disk 

 
(a) Bifurcation diagram 

 

 
(b) Spectrum cascade 

 
Fig. 7. Bifurcation diagram and spectrum cascade with varying disk 
eccentricity at ω = 500 rad/s. 

 

 
(a) Bifurcation diagram 

 

 
(b) Spectrum cascade 

 
Fig. 8. Bifurcation diagram and spectrum cascade with varying disk 
eccentricity at ω = 1000 rad/s. 
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mass. As observed in Fig. 10, the bifurcation diagram is a 
single line at ω = 500 rad/s , which represents the system is in 
period-1 motion. The vibration amplitude decreases with the 
increases of disc mass at first when Md is less than 51 kg, then 
increases with disc mass when Md ≥ 51 kg. And there is only 

one frequency component f0 dominating the spectrum cascade. 
As plotted in Fig. 11, the system is in period-1 motion in 

lower disk mass range of Md∈[40,46] kg at 1000w = rad/s . 
But the system is in quasi-periodic motion and period-n mo-
tion when Md ≥ 46 kg. The frequency component fw is about 

      
                           (a) Axis orbit                                            (b) Poincaré map 
 
Fig. 9. Vibration response with different dick eccentricity at ω = 1000 rad/s. 
 

      
                       (a) Bifurcation diagram                                   (b) Spectrum cascade 
 
Fig. 10. Bifurcation diagram and spectrum cascade with varying disk mass at ω = 500 rad/s. 
 

     
                        (a) Bifurcation diagram                                (b) Spectrum cascade 
 
Fig. 11. Bifurcation diagram and spectrum cascade with varying disk mass at ω = 1000 rad/s. 
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half fundamental frequency components 0.5f0, and oil whip 
phenomena may arise at this time. It is obvious that the sys-
tem stability is enhanced with smaller disk mass at 

1000w = rad/s . Axis orbit and Poincaré map in Fig. 12 rep-
resent that while disk mass is 60, 78, and 99 kg, the system 
is in quasi-periodic, period-8, and period-3 motion, respec-
tively. 

 
4. Conclusions 

For the investigation of dynamic characteristics of a rotor-
bearing-seal system, a nonlinear seal force with bristle radial 
interference is presented by adopting superposition method, 
and the short bearing theory is used to build the nonlinear oil-
film force model. The effects of main parameters containing 
rotor rotational speed, installing interval, disc eccentricity, and 
disk mass on the dynamic behaviors of the rotor system are 
discussed. The conclusions from this study can be summa-
rized: 

(1) The vibration amplitude of the system with bristle inter-
ference is a bit larger than that without interference. 

(2) The vibration amplitude of the system drops sharply at 
lower installing interval.  

(3) When disc eccentricity is varying from 0 to 1 mm at 
500w = rad/s,  bifurcation diagram branching at small disc 

eccentricity values undergoes period-n and quasi-periodic 
motion.  

(4) The combination frequency components triggered by 
oil-film force and system stability are enhanced with smaller 
disk mass at a higher rotational speed. 

 
Acknowledgments 

This research is financially supported by National Natural 
Science Foundation of China (Grant Nos. 11802168 and 
51575331). 

 
Nomenclature------------------------------------------------------------------------ 

e : Eccentricity of rotor   
E : Modulus of elasticity  
Fsx : Seal force in the x direction 
Fsy : Seal force in the y direction 
h : Bristle radial interference 
I : Moment of inertia of bristle 
L1 : Projection of the bristle AB on u axis 
L2 : Length of bearing  
Md : Disk mass 
Mb : Bearing mass 
Mq : Bending moment induced by distributed load of flow 
MF : Moment induced by contact force 
O : Bearing geometric center  
O1 : Disk geometric center  
O2 : Journal geometric center  
Fb : Contact force between the bristle and rotor  
q0 : Uniformly distributed load of fluid flow 
rd : Eccentricity of disc 
R : Rotor radius 
Rb : Distance between O1 and the bottom of the front plate 
s : Arc-length coordinate along the bristle 
α : Angle of BO1F 
μ : Angle between O1B and reverse extending line of Fb 
ρ : Bristle radius of curvature 
ω : Rotor rotational speed 
δ : Installation spacing between the rotor surface and housing  
Φ : Included angle between O1A and y coordinate 
φ : Bristle slope angle  
θ : Bristle lay angle 
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