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Abstract 
 
Previous research has shown that minimum entropy deconvolution (MED) is an effective technique for detecting impulse-like signals, 

such as the bearing fault and gear fault signals. However, some problems still exist in this technique. With the aim of overcoming these 
limitations, in this paper, an enhanced MED called multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) is pro-
posed. MOMEDA can succeed in detecting multiple impulses. Unfortunately, according to some simulations and real tests in this work, 
the results of applying this technique to the fault signals directly were grudgingly acceptable but not very satisfactory, especially under a 
harsh working condition. This means that MOMEDA is a little sensitive to intensive background noise and vibration interference. To 
overcome this drawback, a novel mode decomposition method, named time-varying filtering for empirical mode decomposition (TVF-
EMD), is applied to adaptively eliminate background noise and vibration interference prior to using MOMEDA. According to this pro-
posed method, the weak bearing fault features can be identified clearly. The proposed approach is utilized in bearing fault detection of a 
spur gearbox and the results show its superiority and effectiveness.  

 
Keywords: Bearing fault detection; Empirical mode decomposition; Time varying filter; Multipoint optimal minimum; Entropy deconvolution  
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 
1. Introduction 

The ball bearing, though a vital element of mechanical sys-
tems, often gives rise to catastrophic failures. Hence, to avoid 
unnecessary accidents and losses, the condition monitoring of 
bearings is indispensable. 

Fortunately, with the development of the non-linear and 
non-stationary signal processing techniques, bearing fault 
signals have been extensively studied and a range of effective 
detection tools are now available. Many of the popular bearing 
fault extraction methods have been presented, including wave-
let-based methods [1-3], spectral kurtosis and entropy [4-6], 
mode decomposition-based methods [7-10], independent 
cmponent analysis methods (ICA) [11, 12] and intelligent and 
optimization algorithms [13-18].  

When a failure occurs in the outer or inner rings of a bear-
ing, periodical impulsive components will appear in the fault 
signals, and these impulses generally carry useful and impor-
tant information [19]. However, numerous vibration signals 
measured from mechanical systems are severely corrupted by 
the noise and interfering components in the transmission paths 

from the vibration sources to the transducer [20]. Namely, the 
measured vibration signals usually contain inevitable noise of 
background and vibration interfering components. Since the 
periodical impulses are weak signals, they are easily sub-
merged by noise and interfering components emanating from 
complex mechanical systems. Consequently, the main chal-
lenge is how to detect the weak periodical impulses from the 
complex working environment.  

The minimum entropy deconvolution (MED) technique is 
specially designed to address this issue, which can reconstruct 
the impulse-like signals similar to the raw impulse signals. 
MED was first designed by Wiggins [21] in 1978 to process 
the measured seismic signals and the author successfully ob-
tained impulse-like signals. Realizing that many of mechani-
cal fault signals are similar to the seismic signals, MED was 
first applied by Endo et al. [22] to detect the gear tooth fault 
signatures. Due to its effectiveness in fault diagnosis, multiple 
studies in recent years have focused on this powerful tech-
nique [23-25]. Although these studies have provided a wealth 
of remarkable results with MED on machine fault detection, 
some of the crucial issues that are most important for a com-
plete application of MED remain unanswered. There are three 
central drawbacks as follows: 

(1) MED only extracts a single impulse instead of multiple 

*Corresponding author. Tel.: +86 2982334586, Fax.: +86 2982334588 
E-mail address: czyan@chd.edu.cn  

† Recommended by Associate Editor Kyoung-Su Park 
© KSME & Springer 2019 



2574 Y. Xu et al. / Journal of Mechanical Science and Technology 33 (6) (2019) 2573~2586 
 

 

impulses in most cases; 
(2) MED is an iterative approach and thus iterative parame-

ters have to be determined. 
(3) Although MED can offer an appropriate solution to the 

maximization problem, this solution is not necessarily optimal.  
To deal with the shortcomings, a novel deconvolution tech-

nique, called multipoint optimal minimum entropy deconvolu-
tion adjusted (MOMEDA) was proposed by McDonald in 
2017 [26]. Using MOMEDA, the position of the impulsive 
components derived from deconvolution can be defined by a 
time target vector. Additionally, an optimal solution can be 
provided for the filter banks with a non-iterative way directly. 
Meanwhile, MOMEDA can avoid a resampling stage as it is 
able to work with non-integer fault periods. Based on these 
advantages, Wang et al. [27] used this method to detect com-
pound faults extraction of a gearbox successfully. However, 
they reported that MOMEDA cannot precisely extract the 
fault period signals under a heavy noisy environment. Actu-
ally, the same phenomenon appears in our work. The raw 
vibration signals, therefore, need to be pre-filtered prior to 
using MOMEDA. Wang et al. [27] used MED to suppress the 
background noise and then applied MOMEDA to identify the 
multiple weak impulses from the MED denoised signals. 
However, as mentioned previously, MED still has some prob-
lems unresolved. Consequently, a self-adaptive denoising 

method is a wise choice.   
It is well known that mode decomposition techniques re-

semble a filter bank [28, 29]. Nevertheless, the existing mode 
decomposition techniques, more or less, have some shortcom-
ings. For example, empirical mode decomposition (EMD) still 
has an evident drawback unresolved, i.e., the mode mixing, 
especially in the presence of the signal with intermittent oscil-
lation. Another improved mode decomposition tool called 
variational mode decomposition (VMD) is more robust in 
processing the signal than EMD, but, like MED, the selection 
of the parameters in VMD may determine its performance, 
which may impede its application in industries. 

Most recently, an improved mode decomposition technique 
based on empirical mode decomposition (EMD) was proposed 
by Li et al. [30]. This new mode decomposition technique 
combines time-varying filtering with EMD. Although TVF-
EMD was developed on the basis of EMD, it can perfectly 
cope with the mode mixing in the EMD technique. Besides, 
the TVF-EMD method can still remain robust when the sam-
pling rate is lower. Finally, unlike VMD, the predefined pa-
rameters in TVF-EMD do not exert a strong influence on re-
sults, so it is a fully adaptive data analysis technique [30, 31].  

Hence, according to the previous analysis, an enhanced 
bearing signature detection approach based on MOMEDE and 
TVF-EMD is presented in this paper. The remaining sections 

 
 
Fig. 1. Flowchart of TVF-EMD. 
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of this paper are arranged as follows: the principles of TVF-
EMD and MOMEDA are described in Secs. 2 and 3, respec-
tively. Secs. 4 and 5 mainly validate the superiority of this 
proposed method through simulated and real tests. The brief 
conclusions are located in the last section. 

 
2. TVF-EMD technique 

The principle of TVF-EMD is easy to understand, whose 
procedure is summarized in following three steps: (1) Look for 
the local cut-off frequency, (2) obtain the local mean by using 
the (time-varying filtering) TVF, and (3) check if the residual 
component satisfies the stopping criterion. The flowchart of the 
TVF-EMD is shown in Fig. 1. For a detailed procedure of this 
technique, interested readers can refer to Ref. [28]. 

 
3. MOMEDA  

3.1 Principle 

MOMEDA is tailored to detect bearing fault signatures fea-
turing multiple impulses instead of a single impulsive compo-
nent. This maximization problem as multipoint optimal mini-
mum entropy deconvolution adjusted (MOMEDA) is defined: 
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in which the target vector t

r
 denotes a constant vector that 

determines the weightings and position of the impulsive com-
ponents. 

The extremes of Eq. (2) are calculated by taking the deriva-
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Thus Eq. (4) can be expressed: 
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We can simplify as follows: 
 

1 1 2 2 0... N L N Lt M t M t M X t- -+ + + =
r r r r

,    (6) 
 

and compute for extremes by equating to 0
r

 Eq. (6) can be 
found to be 
 

1 3

0 0 0Ty X t y t yX y- -
- =

rr rr r r r ,      (7) 

0 02

Tt y X y X t
y

=
r r rr
r .           (8) 

 
Since 0

Ty X f=
rr and assuming ( ) 1

0 0
TX X

-
exists 

                                     

( ) 1

0 0 02

T
Tt y f X X X t

y

-
=

r r r r
r .         (9) 

 
The optimal filter bank and output solutions are computed 

as follows: 
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Before detecting the fault features with MOMEDA, we 

should consider the solution targets of impulse trains and the 
solution is estimated as  
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in which δn represents an impulse at sample n. 

 
3.2 Simulated results 

To examine the fact that MOMEDA is superior to MED, a 

 
 
Fig. 2. Simulated fault signal. 
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simulated fault signal is used here. In this simulation, the 
period of a fault impulse is 50, i.e., T = 50. Fig. 2 shows a 
simulated fault signal.  

Different filter lengths L are selected to compare in this case 
since the filter length L produces a great influence on the 
kurtosis value of the output signals. As mentioned, MED is an 
iterative method, so the termination number of iterations is 
selected to be 30. The different results for MED versus 
MOMEDA are plotted in Fig. 3. As expected, MED can only 
detect a single impulsive component in each case, while the 
MOMEDA tool is can extract the multiple impulses. 

 
4. Synthetic fault signal analysis 

To examine the performance of the proposed approach, two 
cases using simulation data of faulty bearings are given here. 
The mathematical expression is 
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in which the mth impulse is Am = 1; the damping coefficient is 
α = 1500 N s/m; the period is T = 0.01 s, and thus the 
corresponding fault characteristic frequency is foc = 100 Hz; 
the ωr represents the excited resonance frequency and is set at 

2048 Hzrw = . The sampling frequency is fs = 12000 Hz. The 
period of the fault signal is equal to 120 by using Eq. (12). The 
flowchart of the proposed approach is presented in Fig. 4. 

4.1 Case 1- A synthetic fault vibration signal with a large 
magnitude of noise 

In this case, additional Gaussian noise (SNR = -10 dB) is 
mixed in this synthetic bearing fault signal. The mixed signal 
and Fourier spectrum are displayed in Fig. 5. As one can see, 
no obvious impulses can be identified in the waveform and 
meanwhile, the intensive background noise dominates the 
frequency spectrum. 

Now, TVF-EMD decomposes the mixed signal into 14 
IMFs, and the first three IMFs are used to be further analyzed. 
These IMFs are illustrated in Fig. 6. According to the kurtosis 
values, we can find that the 3rd IMF is the sensitive IMF. As 
mentioned, the parameter of the filter length L in MOMEDA 
has to be predetermined. Here, we considered the values in the 

 
(a) 

 

 
(b) 

 
Fig. 3. (a) MED filtered output; (b) MOMEDA filtered output. 

 

 
 
Fig. 4. The flowchart of the proposed approach. 
 
 

 
(a) 

 

 
(b) 

 
Fig. 5. (a) Mixed-signal; (b) Fourier spectrum. 
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case of L ≥ T (period) that the author recommended in Ref. 
[26]. Thus, L is set to be 1000 here. Then, the sensitive IMF is 
filtered by MOMEDA. Fig. 7 shows the part of the filtered 
IMF3 and its envelope spectrum. We can clearly see that the 
kurtosis value rises rapidly and the impulsive components are 
very obvious. Besides, the bearing fault characteristic 
frequency and its associated harmonics with obvious peaks 
can be detected in Fig. 7(b). 

For comparison, the IMF3 is filtered by MED. Similar to 
MOMEDA, some user-defined parameters are also needed to 
be set. However, unlike MOMEDA, another important con-
sideration in MED is the termination number of iterations 
which is also sensitive to the impulses except for the filter 
length L. Fig. 8 presents the convergence relationship of the 
kurtosis over the termination number of iterations. The con-
vergence of characteristic of MED with four filter lengths 
(100, 250, 500 and 1000) are compared with each other. 

Clearly, the convergence properties of MED are very dif-
ferent in the case of different filter lengths L and the termina-

tion number of iterations. Therefore, the selection of the two 
important parameters largely determines the performance of 
MED. Here, the filter lengths L and the termination number of 
iterations are selected to be 1000 and 10, respectively. As 
detailed in Fig 9, although the kurtosis value increases, the 
noise dominates the envelope spectrum and the simulated 
bearing fault characteristic frequency cannot be recognized. 

To better present the superiority of the proposed approach, 
it is also employed to compare with the MOMEDA+envelop 
analysis and TVF-EMD+envelop analysis methods. We can 
find from Fig. 10(a) that the simulated bearing fault 
characteristic frequency at 100 Hz is almost masked by the 
heavy noise and its some harmonics such as 3foc, 4foc and 5foc 
are unrecognizable. When investigating the result obtained by 
the “MOMEDA+envelop analysis” method in Fig. 10(b), the 
result is fully acceptable since the simulated bearing fault 
characteristic frequency and relevant harmonics can be clearly 
distinguished in the envelope spectrum. Nevertheless, when 
comparing with the result in Fig. 7(b), we can obviously see 
that the result yielded by the proposed approach is more 
satisfactory as the simulated bearing fault characteristic 
frequency and its associated harmonics have more remarkable 
peaks in Fig. 10(b). 

 
 
Fig. 6. IMFs.   
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Fig. 7. (a) MOMEDA purified signal; (b) associated envelope spec-
trum. 
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Fig. 8. Convergence of MED method. 

 
 

 
(a) 

 

 
(b) 

 
Fig. 9. (a) MED purified signal; (b) envelope spectrum. 
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4.2 Case 2- A synthetic bearing vibration signal with a large 
magnitude of noise and interfering components 

In this case, a more complex synthetic fault signal with a 
large magnitude of noise and interfering components is 
employed. Fig. 11 shows the complex synthetic signal and its 
Fourier spectrum. Likewise, the signal including the impulsive 
information cannot be identified in Fig. 11(a) and only the 
interfering components exist in the frequency spectrum, yet 
not including the information about defects. 

Subsequently, the synthetic fault signal is decomposed into 
6 IMFs by TVF-EMD. The first five IMFs are illustrated in 
Fig. 12. Obviously, the 2nd IMF is suitable for further analysis. 
The 2nd IMF is then filtered by MOMEDA and the filtered 

result, as well as the envelope spectrum, are displayed in Fig. 
13. 

The simulated bearing fault characteristic frequency and its 
associated harmonics clearly dominate the envelope spectrum.  

As before, using the MED method and envelope analysis to 
analyze the same synthetic fault signal yields the result in Fig. 
14. Similar to the result in Fig. 9, MED-based method cannot 
extract the simulated bearing fault characteristic frequency 
and its relevant harmonics.  

Finally, resembling case 1 previously, we also used the 
MOMEDA+envelop analysis and TVF-EMD+envelop 
analysis methods to compare with the proposed approach. The 
results produced by the two methods are displayed in Fig. 15 
in which the TVF-EMD+envelop analysis method produces 
an unacceptable result under this environment as the simulated 
bearing fault characteristic frequency is fully obscured by 
noise. On the contrary, the MOMEDA+envelop analysis 
method succeeds in detecting the simulated bearing fault 
characteristic frequency and its associated harmonics, but the 
result is similar to that in Fig. 10(b). Thus, the simulated 
bearing fault characteristic frequency and its associated 

 
(a) 

 

 
(b) 

 
Fig. 10. (a) Result produced by the TVF-EMD+envelop analysis 
method; (b) result produced by the MOMEDA+envelop analysis 
method. 

 

 
(a) 

 

 
(b) 

 
Fig. 11. (a) Mixed-signal; (b) Fourier spectrum. 

 
 

 
 
Fig. 12. IMFs.  
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(b) 

 
Fig. 13. (a) MOMEDA purified signal; (b) envelope spectrum. 
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harmonics in Fig. 15(b) are at lower amplitudes in comparison 
with those in Fig. 13(b). 

According to the previous tests, it is apparent that in all 
cases the proposed method not only succeeds in extracting the 
simulated bearing fault characteristic frequency and multiple 
harmonics, but also they are all at a higher amplitude and 
easily recognizable. In contrast to the MOMEDA technique, 
applying the MED technique and envelope analysis to the 
sensitive IMF decomposed by TVF-EMD gives rise to 
unsatisfactory results. For the TVF-EMD+envelop analysis 
method, its fault detection performance is not always reliable 
since it fails to detect the fault signature in case 2. We can see 

from the comparison results that the performance of the 
MOMEDA+envelop analysis approach is closely similar to 
the that of the proposed method, but its performance is less 
than perfect due to the lower amplitudes of the fault frequency. 
In addition, from the results in Figs. 7(b) and 13(b) the 
proposed method is almost unaffected when the working 
condition becomes tougher. Consequently, the proposed 
method outperforms the MED-based and mode 
decomposition-based methods. 

 
5. Case study 

To verify the usefulness and effectiveness of the proposed 
approach, it is applied to the real vibration signals in this 
section. 

 
5.1 Experimental set-up 

In real experiments, the bearing fault data provided by the 
University of New South Wales (UNSW) was used in this 
study [20, 30]. The bearing fault signals were extracted from a 
spur gearbox test rig, as shown in Fig. 16. The schematic 
diagram of the spur gearbox is given in Fig. 17.  

The speed of the output shaft was approximately set to 6 Hz 
(360 rpm) for all signals. The sampling frequency of these 
signals was 48000 sample/s (48 kHz). The specifications of 
the bearing used in the tests are listed in Table 1: 

The fault characteristic frequencies related to the bearing 
are listed in Table 2.  

Note that between the estimated fault characteristic 

 
(a) 

 

 
(b) 

 
Fig. 14. (a) MED purified signal; (b) envelope spectrum. 

 

 
(a) 

 

 
(b) 

 
Fig. 15. (a) Result produced by the TVF-EMD+envelop analysis 
method; (b) result produced by the MOMEDA+envelop analysis
method. 

 

Table 1. Specifications of the bearing. 
 

Ball diameter 
(mm) 

Pitch circle 
diameter (mm) 

No. of rolling 
elements Contact angle 

7.12 38.5 12 0° 

 

 
 
Fig. 16. Spur gear rig [30]. 

 

 
 
Fig. 17. Schematic diagram of this spur gearbox [30]. 
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frequency and measured fault characteristic frequency, there is 
an error by a small percentage s that is typical of the order 1-
2 % owing to slip [20]. Then, the periods corresponding to 
three types of fault signatures were calculated, as detailed in 
Table 3.  

 
5.2 Fault diagnosis of the outer ring  

Fig. 18 displays the details of the outer ring defect. It can be 
seen that a notch is machined into the outer ring of the bearing. 
The width and depth of the outer ring defect are displayed in 
Fig. 18. 

Fig. 19 illustrates the acceleration signal of the outer ring 
defect and its corresponding Fourier spectrum. We can find 
that the fault impulsive components fail to be seen from the 
acceleration signal and the fault characteristic frequency at 
29.34 Hz fails to be distinguished, and only the gear meshing 
frequency and its associated harmonics are dominant in the 
Fourier spectrum.  

Likewise, TVF-EMD first decomposes the outer race fault 
signal into 5 IMFs. Fig. 20 displays the time domain of the 5 
IMFs and their corresponding values of the kurtosis.  

The 2nd IMF is a sensitive IMF as it has a considerable 
kurtosis. As before, to start with, the filter length has to be 
predetermined. Fig. 21 illustrates the variation characteristic of 
the kurtosis over the different filter lengths L. It can be found 
that the values of the kurtosis of different filter lengths (L = 
2000, 2500, 3000, 3500 and 4000) remain constant 
approximately, so the filter length L is set to be 3000. 

Next, the 2nd IMF is enhanced by MOMEDA. The 
enhanced signal and its corresponding envelope spectrum are 

shown in Fig. 22. The fault impulse train is obviously 
extracted by MOMEDA and meanwhile, the value of the 
kurtosis of the enhanced signal is much greater than that of the 
original 2nd IMF. In Fig. 22(b), the fault characteristic 

Table 2. Fault characteristic frequencies. 
 

Positions  Value (Hz) 

Outer ring (BPFO)  
Inner ring (BPFI)  

Rolling element (BSF)  

29.34 
42.66 
15.67 

 
Table 3. Estimated periods. 
 

Positions of fault signatures  Value 

Outer ring  
Inner ring  

Rolling element  

1636 
1125 
3063 

 

 
 
Fig. 18. Outer ring defect [30]. 

 

 
(a) 

 

 
(b) 

 
Fig. 19. (a) Acceleration signal; (b) Fourier spectrum. 

 

  
 
Fig. 20. IMFs decomposed by TVF-EMD. 
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Fig. 21. Variation characteristic of the kurtosis. 
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frequency and its multiple harmonics can be also identified 
clearly. 

For comparison, the measured signal is directly enhanced 
by MOMEDA and pre-processing using TVF-EMD is omitted. 
The directly enhanced signal and its corresponding envelope 
spectrum are illustrated in Fig. 23. The kurtosis value of the 
directly enhanced signal is obviously much smaller and the 
fault characteristic frequency at 29.34 Hz can be detected, but 
some harmonics (3BPFO and 4BPFO) disappear as shown in 
Fig. 23(b). Furthermore, the amplitudes of the fault 
characteristic frequency and its relevant harmonics are smaller 

in comparison with the result in Fig. 22(b). Accordingly, the 
result in Fig. 23(b) is acceptable grudgingly but not very 
satisfactory.  

Finally, the TVF-EMD+envelope analysis method is 
employed to compare with the proposed approach. Fig. 24 
displays the envelope spectrum of the 2nd IMF. Similar to the 
result in Fig. 23(b), the outer ring fault characteristic 
frequency and its some harmonics are extracted, but their 
amplitudes are very small and some harmonics are not easily 
recognizable.  

 
5.3 Fault diagnosis of the inner ring  

The dimensions of the inner ring defect are in line with 
those of the outer ring defect. Fig. 25 displays the inner ring 
defect. 

The acceleration signal of the inner race with a notch and its 
corresponding Fourier spectrum are illustrated in Fig. 26. As 
before, the fault impulse train cannot be observed from the 
acceleration signal and the fault characteristic frequency at 
42.66 Hz fails to also be detected in the frequency spectrum. 

Similar to the previous test, we first apply the TVF-EMD 
method to decompose the raw signal. This time TVF-EMD 
decomposes the raw signal into 6 IMFs. The time domain 
waveforms of the 6 IMFs are shown in Fig. 27.  

According to the values of the kurtosis in Fig. 27, the 1st 
IMF is selected to be further processed by MOMEDA. 
Similarly, we first determine a filter length L that is larger than 
the fault period T. Fig. 28 shows the relationship between the 
kurtosis values and the filter length. Unlike the result of Fig. 
20, only the values of the kurtosis in the case of L = 2000 and 
L = 2500 are greater than that of the 1st IMF and therefore the 
filter length is selected to be 2500. 

 
(a) 

 

 
(b) 

 
Fig. 22. (a) Enhanced signal; (b) envelope spectrum. 
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(b) 

 
Fig. 23. (a) Directly enhanced signal; (b) envelope spectrum. 
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Fig. 24. Envelope spectrum of the 2nd IMF. 
 

 
 
Fig. 25. Inner ring defect. 
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Fig. 29 displays the fault impulse train extracted by 
MOMEDA and its envelope spectrum. As we can see in Fig. 
29(a), the value of the kurtosis is just a little bigger than that of 
the 1st IMF. The inner ring fault characteristic frequency and 
eleven of its harmonics can be clearly observed in the 
envelope spectrum after applying the MOMEDA technique.  

For the sake of comparing with the proposed approach, the 

raw signal is directly subjected to the MOMEDA method as 
before. The extracted fault impulse train and the result of the 
envelope are presented in Fig. 30. As indicated in Fig. 30, 
using the approach described above, the extraction result of 
the inner race fault is obviously superior to that of the outer 
race fault. It is found that there is a more obvious peak at the 
fault characteristic frequency. Despite this, compared to the 
proposed method, some of the associated harmonics in the 
envelope spectrum are still difficult to recognize due to the 
lower amplitudes. 

Finally, similar to the experiment above, the 1st IMF is 
directly analyzed by envelope analysis. The result of the 
envelope is shown in Fig. 31. We can observe from Fig. 31 
that, in this case, this TVF-EMD+envelope analysis method 
produces a satisfactory result which is identical to the result of 
the proposed approach. However, one is likely to prefer the 
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Fig. 26. (a) Measured signal; (b) Fourier spectrum. 

 

 
 
Fig. 27. IMFs decomposed by TVF-EMD. 
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Fig. 28. Variation characteristic of the kurtosis. 
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Fig. 29. (a) Enhanced signal; (b) its envelope spectrum. 
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Fig. 30. (a) Directly enhanced signal; (b) envelope spectrum. 
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strength of the proposed approach in consideration that the 
proposed approach succeeds in detecting the fault 
characteristic fault at a high amplitude with more discernible 
harmonics. 

 
5.4 Fault diagnosis of rolling element  

The generated gap that had a rectangular cross-section is 
displayed in Fig. 32. The depth and width of the gap are both 
set to be 0.5 mm.  

Fig. 33 shows the measured accelerometer signal of the 
rolling element defect and its corresponding Fourier spectrum. 
Similar to the previous tests, there are no signal components 
featuring impulsive signatures in the acceleration time signal 
and we cannot also observe the rolling element fault 
characteristic frequency in the frequency spectrum. Only the 

frequency components related to the gearing meshing and its 
harmonics dominate the Fourier spectrum of the acceleration 
signal. 

Now, similarly, TVF-EMD decomposes the acceleration 
signal into 5 IMFs. The obtained 5 IMFs are displayed in Fig. 
34. 

As detailed in Fig. 34, the 1st IMF that has the greatest value 
of the kurtosis is selected for further analysis. Then, we apply 
the MOMEDA technique to the 1st IMF. Here, the length filter 
L is selected to be 4000. The filtered signal including the 
obvious impulses and envelope spectrum are shown in Fig. 35. 
As one can see from Fig. 35, the fault impulses obviously 
exist in the enhanced signal and the rolling element fault 
characteristic frequency at 15.67 Hz, and some of harmonics 
at 31.34 Hz, 47.01 Hz, 62.68 Hz and 78.35 Hz can be clearly 
distinguished from the result. 

The same as the previous experiments, to compare the result 
in Fig. 35 with those of the other two methods, the raw signal 
is directly subjected to the MOMEDA technique. The directly 
filtered signal and its corresponding envelope spectrum are 
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Fig. 31. Envelope spectrum of the 1st IMF. 
 

 
 
Fig. 32. Rolling element fault. 
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Fig. 33. (a) Acceleration signal; (b) Fourier spectrum. 
 

 

 
 
Fig. 34. IMFs derived by TVF-EMD. 
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Fig. 35. (a) Enhanced signal; (b) envelope spectrum. 
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illustrated in Fig. 36. It is found from Fig. 36(a) that the 
harmonics of the fault signature have obvious peaks that are 
easily recognized, but the fault characteristic frequency at 
15.67 Hz is at a lower amplitude in contrast with the result of 
the proposed method. Hence, like the case of the detection of 
the outer ring fault characteristic frequency, the result is not 
incompletely satisfactory if the fault signal is directly filtered 
by the MOMEDA technique.  

Finally, Fig. 37 presents the envelope spectrum of the 1st 
IMF unfiltered by MOMEDA. The fault characteristic 
frequency at 15.67 Hz and its the first two harmonics at 31.34 
Hz and 47.01 Hz are almost masked by noise and other 
vibration components, which means that this method is not an 
ideal way to identify the rolling element fault characteristic 
frequency. 

Through the real experimental results, it can be found that 
in the test for inner ring fault detection, the performance of the 
two methods used for comparison is similar to that of the 
proposed approach, but as the simulated results presented 
above, the other two methods are not always workable in the 
whole real tests. Their performance would be affected by the 
change of the fault location. However, the performance of the 
proposed approach is always stable. Thus, on the whole, the 
proposed method evidently outperforms the other two 
methods.   

6. Conclusions 

A wealth of well-understood methods and algorithms used 
in detecting the weak bearing fault signature have been 
proposed recently, yet some of the problems in bearing fault 
diagnosis still remain unanswered. Thus, an alternative 
approach based on TVF-EMD and MOMEDA is proposed to 
extract the bearing fault features in this paper. Unlike other 
pre-filtering techniques, the TVF-EMD can decompose a 
vibration signal into a group of IMFs with physical meanings 
and meantime adaptively, separate the background noise and 
vibration interferences from the vibration signal, which 
prepares for the further analysis. Then MOMEDA is used to 
highlight the impulsive components, which can lead to more 
effective bearing fault identification. The envelope analysis 
reveals the fault characteristic frequency and relevant 
harmonics in the last step.  

Overall，the findings of this work are presented as follows: 
(1) The proposed approach requires little prior knowledge 

about the mechanical system, and only the length filter L is 
needed to be predefined. Generally, this parameter is easy to 
determine, i.e., L ≥ T.  

(2) The experimental results provide compelling evidence 
that the proposed approach can successfully detect fault 
characteristic frequencies of any component of a bearing 
under the harsh working condition. Besides, the proposed 
method outperforms some previous methods according to the 
experimental comparisons. 

(3) Moreover, it may also provide an alternative to fault 
diagnosis and fault features extraction of other mechanical 
elements, such as gear fault diagnosis. 

However, the index of selecting the filter length L only by 
kurtosis may not be an optimal solution, although kurtosis is 
recommended in numerous studies. Accordingly, it would be 
beneficial to provide an approach to obtain the optimal 
solution for the parameter of length filter in a future study. 
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