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Abstract 
 
When a higher-order or generalized beam theory is used for the buckling analysis of thin-walled beams, the analysis accuracy critically 

depends on the number and shapes of the cross-sectional modes associated with warping and distortion. In the study, we propose to use 
the hierarchically-derived cross-sectional modes consistent with the higher-order beam theory for the analysis of pre-buckling stress and 
buckling load. The proposed formulation is applicable to any box beams subjected to arbitrary loads and general boundary conditions. 
We demonstrate the effectiveness of the proposed method by performing buckling analyses for axial, bending, torsional, and general 
loadings. Length-to-height ratios of the beams are also varied from 1 to 100. If up to fifty cross-sectional and rigid-body modes are em-
ployed, the calculated buckling loads are found to match favorably those predicted by the shell finite element analysis. In that a unified 
buckling analysis under general loads is developed for box beams, the present study is expected to contribute towards new possibilities 
for the efficient buckling analysis of more general box beam structures involving several joints.  
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1. Introduction 

In contrast to solid beams, thin-walled beams involve global 
and local buckling modes when they buckle. Local modes 
involve localized cross-sectional deformations at several 
points along the beam axis. Specifically, these modes stem 
from the buckling of the wall plates of a thin-walled beam. A 
dominant deformation pattern in local modes is distortion, i.e., 
a sectional in-plane deformation. Cross-sectional deformations 
of box beams are developed even in global buckling, and thus 
the classical Euler or Timoshenko beam theories cannot accu-
rately predict the buckling loads and modes of thin-walled 
beams. The accuracy by these classical beam theories be-
comes worse especially when the box beams are not long. In 
the case when a box beam is shorter than a certain length, a 
local buckling mode appears as the primary buckling mode 
because the buckling of wall plates forming a box beam is 
dominant. Prior to proposing a method to accurately predict 
the buckling phenomenon of thin-walled box beams with a 
higher-order beam theory, we will review related extant inves-
tigations to validate the need for an alternative approach as 

discussed in the study. 
If a thin-walled box beam is viewed as a plate structure, a 

discrete plate model can be employed as in Refs. [1-3]. In the 
aforementioned studies, a thin-walled beam is considered as 
an assembly of thin plates having various boundary conditions. 
Typically, different boundary conditions are considered based 
on loading and bonding conditions between the wall plates of 
a box beam. Because they used a plate theory, the analysis 
was more complicated than that using a (higher-order) beam 
theory. The finite strip methods were proposed by Refs. [4-8], 
in which the distortional deformations of the beam section 
were taken into account. Methods mainly considering warping 
were also proposed [9-12]. In these methods, nodal displace-
ments at each corner were used as the beam degrees of free-
dom (DOFs) to describe warping deformation. 

The aforementioned methods utilized plate/shell theories al-
though there were alternative methods based on advanced 
beam theories such as generalized or higher-order beam theo-
ries. Vlasov’s theory [13] incorporating a distortional degree 
of freedom was expanded to perform buckling analyses of 
thin-walled beams by using the generalized beam theory 
(GBT) [14-19]. It was shown that the inclusion of the distor-
tional and warping degrees of freedom in addition to the clas-
sical beam DOFs accurately predicts the buckling phenome-
non of thin-walled beams [16]. Genoese et al. [20] and Garcea 
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et al. [21] proposed the generalized eigenvector method fo-
cused on the derivation of semi-analytic solutions. The 
method also used sectional DOFs to accurately describe buck-
ling behavior although the cross-sectional deformations of a 
box beam were derived based on three-dimensional contin-
uum analysis in contrast to other advanced beam theories. 
Alternatively, a higher order beam model was developed 
based on numerically derived sectional DOFs to capture 
global/local buckling modes accurately [22, 23]. One-
dimensional beam formulations were also used to predict the 
buckling behavior of thin-walled composite beams [24-26]. 
Meanwhile, non-linear beam formulations stemming from 
Abramowicz [27] and Kecman [28] were developed for the 
simplified analysis and design of thin-walled crashworthiness 
structures [29-32]. 

Here, we aim to employ another advanced beam theory 
called higher-order beam theory (HoBT) for buckling analysis. 
The HoBT has been developed for static and dynamic analy-
ses of box beams [33-39]. The theory was also shown to be 
effective in dealing with box beam joint problems [37, 38]. 
Because theoretical joint matching conditions appear to be 
available only for the HoBT, the buckling analysis of multi-
ply-connected box beam structures should be based on the 
HoBT. In this respect, the present buckling analysis based on 
the HoBT must be developed before the analysis of multiply-
connected box beams. The developed analysis method should 
be useful for any thin-walled box beams under general bound-
ary conditions and arbitrary loadings. 

In HoBT, warping and distortional DOFs are considered in 
addition to the classical six DOFs. To derive cross-sectional 
shape functions for the buckling analysis, we employ the 
method presented in Ref. [38]. Specifically, we use the hierar-
chical and systematic method to derive the cross-sectional 
deformation mode shapes related to warping and distortion. If 
the hierarchical method in Ref. [38] is used, one can adjust 
solution accuracy by selecting different numbers of the cross-
sectional deformation modes. Because the cross-sectional 
shape functions are expressed in closed form in HoBT, there is 
no need to derive them even if the sectional properties of thin-
walled box beam change. Furthermore, so far only the HoBT 
offers the explicit joint relations for thin-walled beams having 
angled joints, which will be critically useful for the buckling 
analysis of such beams in the future. 

In order to perform the buckling analysis of box beams by 
using the HoBT, the selected deformation shapes of the em-
ployed DOFs (see Table 1) are grouped into sets of deforma-
tions, each of which consists of extension, major-axis bending, 
minor-axis bending, and torsion. In the present study, we use 
up to three sets of DOFs (or sectional mode shapes). In order 
to describe the internal stress and displacement in each wall of 
a box beam, the plane stress assumption and the Kirchhoff-
Love plate theory are used. Therefore, if the number of DOFs 
increases, the results obtained by the HoBT-based buckling 
analysis approach the results obtained by the plate theory-
based buckling analysis. Note that we do not use any assump-

tion to perform the pre-buckling stress analysis. Therefore, the 
present results for buckling problems are expected to be suffi-
ciently close to those obtained by the shell-based analysis. 

With respect to the remaining sections, Sec. 2 presents the 
procedure to define the displacement field in the framework of 
the HoBT and also the procedure to calculate the pre-buckling 
stress. In Sec. 3, the detailed buckling analysis formulation is 
given in which three sets of DOFs in the HoBT are considered. 
In order to perform numerical investigations, the finite ele-
ment equation is derived in Sec. 4. The displacement fields are 
interpolated by the Hermitian cubic functions. If piecewise 
linear functions are used as opposed to the Hermitian cubic 
functions, a few of the strain components necessary for buck-
ling analysis cannot be computed, resulting in deteriorated 
solution accuracy. Sec. 5 presents numerical results for the 
buckling analysis of box beams subject to various loadings, 
namely axial, torsional, and bending loadings. For each case, 
the length-to-height ratios of the beams were varied from 1 to 
100. The effects of boundary conditions were also investigated. 
Furthermore, we considered arbitrary loading cases to demon-
strate the generality of the developed method. The effects of 
the sectional aspect ratio and the thickness were also exam-
ined. The accuracy of the numerical results obtained by the 
HoBT-based proposed formulation is compared with those 
obtained by using shell finite elements (ABAQUS). 

 
2. Employed higher-order beam theory (HoBT) 

2.1 Displacement field by HoBT 

The higher-order beam theory (HoBT) uses one-
dimensional (1D) beam DOFs and the corresponding sectional 
shape functions to express three-dimensional displacements at 
an arbitrary point on the beam cross-section [33]. As shown in 
Fig. 1, the geometry of a cross-section in a beam is described 
in terms of the global coordinates (x, y, z) while the location of 
an arbitrary point on a cross-section is expressed in terms of 
the local coordinates (n, s, z) assigned for each edge. The ori-
gin of the local coordinate system is located at the center of 
each edge, and n and s denote the outward normal coordinate 
and the tangential coordinate along the centerline of the con-
tour, respectively. The sectional shape functions that describe 
the cross-sectional deformations are separately expressed for 
each edge by using the local coordinates. Table 1 shows a total 
of 50 higher-order beam DOFs employed for the buckling 
analysis of box beams under general loadings. They are de-
rived by extending the method in Ref. [38]. There are 6 DOFs 
of the classical beam theory and additional 44 DOFs associ-
ated with the cross-sectional deformations [33-35, 38]. The 
employed DOFs in Table 1 represent all possible types of 
deformations in a box beam (extensional, bending, and tor-
sional). The x- and y-directional bending deformations are 
those associated with the overall transverse displacement of 
the cross-section along the x- and y-axes, respectively. In Ta-
ble 1, U, θ, χ, W and η represent the classical beam transla-
tions, classical beam rotations, cross-sectional distortions, 
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warping, and plate bending deformations, respectively. The 
subscripts e, bx, by and t are used in Table 1 to indicate that 
the subscribed kinematic measures (i.e., U, θ, χ and W) are 
related to the extension, x-directional bending, y-directional 
bending, and torsion, respectively. 

In the HoBT, the three-dimensional (3D) displacements at a 
point on the centerline of the cross-section are expressed by 
summing the products of the 1D deformation measure and its 
corresponding shape function as follows: 
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or 
 

, ,n n s s z zu u u= = =ψ d ψ d ψ d   (1b) 
 

where ( , , )iu i n s z=  refers to the i-directional displacement 
and i

ay  ( , , ;i n s z=  1 1 1_1, , , , , , , )z e e eU Wa c h= L L L L  de-

notes the sectional shape function that describes the i-
directional deformation caused by unit magnitude of α. Table 
1 illustrates all the sectional shape functions. Eq. (1b) is a 
compact form of Eq. (1a) that is expressed in terms of the 
shape function row vector, ( , , )i i n s z=ψ  and the 1D defor-
mation measure column vector, { 1 1z e eU Wc=d L L L  

}1_1

T

eh L . To obtain all of the shape functions in Table 1, we 

used the method developed in Ref. [38]. 
By using Eq. (1), 3D displacements ( ), ,n s zu u u% % %  for a ge-

neric point on a cross-section can be obtained as: 
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Eq. (2) is based on the Kirchhoff–Love plate theory in 

which the rotations of thin-walls caused by the n-directional 
deflection are considered. It should be noted that the last term 
in the expression for zu%  represents the rotation about the s-
axis due to distortion. In order to consider the contribution of 
the ( ) / z¶ ¶g  term in Eq. (2b), C1 continuity functions, such 
as the Hermite cubic interpolation function, must be employed 
for finite element implementation. 

With respect to accurate buckling analysis, both buckled de-
formations and pre-buckling stress should be accurately calcu-
lated. One advantage of using the higher-order beam theory 

adopting the kinematic variables (and the associated sectional 
shapes) in Table 1 is that the sectional deformations represent-
ing plate bending motions are also included. Because plate 
bending deformation arises due to compression or shearing 
loads acting on the edge when buckling occurs in thin-walled 
beams, the corresponding sectional deformations must be 
included. Note that the employed cross-sectional shape func-
tions in Table 1 are orthogonal to each other and hierarchically 
constructed. Therefore, the solution accuracy level can be 
adjusted by selecting a different number of the cross-sectional 
degrees of freedom in the order shown in Table 1. 

 
2.2 Stress analysis with HoBT 

In this section, the stress analysis procedure is presented be-
cause pre-buckling stress analysis must be performed for 
buckling analysis. First, we express strain fields in the frame-
work of the higher-order beam theory. Because walls forming 
a box beam are extremely thin, the plane stress assumption 
can be used for strain–stress analysis as follows: 
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where E and ν denote Young’s modulus and Poisson’s ratio, 
respectively. The symbols σ , ε  and C  denote the stress 
vector, strain vector, and elasticity matrix, respectively. By 
using Eqs. (3) and (4), the internal strain energy ( SEP ) is de-
fined as: 
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In Eq. (5), the expression é ùë ûg  implies the integration over 

cross-sectional area (i.e., 
A

dA=é ùë û òg g ). Given that 

( )1, ,6i i =D L  are the known functions expressed in terms of 

the cross-sectional shape functions, they can be directly inte-

grated with respect to local cross-sectional coordinates ( ),n s . 

Furthermore, the external work performed by applied forces 
( ),surf bodyf f  is expressed as: 
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notes the shape function matrix. In Eq. (6), the quantities in-
side the square brackets denoting the integration operation 
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Table 1. The degrees of freedom and the corresponding cross-sectional (deformation) mode shapes used in the present HoBT-based buckling analysis. 
 

 Beam DOFs The first set of 
cross-sectional DOFs 

The second set of 
cross-sectional DOFs 

The third set of 
cross-sectional DOFs 

Extensional DOFs   

  

Bending DOFs 
(x-directional) 

    

Bending DOFs 
(y-directional) 

    

Torsional DOFs   
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force vectors. They are the energy-conjugates of the 1D de-
formation measure vector, d. In order to express the governing 
equation for static analysis, the following minimum total po-
tential energy principle is used: 
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The displacement field that satisfies Eq. (7) is the solution 

for a box beam subjected to surff  and bodyf . Once the dis-
placement field is obtained from Eq. (7), the stress field can be 
calculated by using Eqs. (3) and (4). 

 
3. Buckling analysis based on HoBT 

Buckling patterns can differ based on boundary/loading 
conditions and beam dimensions. In case of local buckling, the 
beam deformations are mainly characterized by distortion and 
warping without rigid-body motions of the beam cross-section. 
(Therefore, one may assume 0x y z x y zU U U q q q= = = = = »  

for local buckling.) Even in global buckling, warping and 
distortional deformations are generally significant. Therefore, 
the buckling behavior of a thin-walled box beam must be ana-
lyzed by considering the plate behavior of the four walls con-
stituting a box beam. In this study, the linearized buckling 
analysis will be considered by taking into account the geomet-
rical nonlinearity. 

When buckling occurs, each wall of a box beam experi-
ences dominant bending that potentially induces normal and 
shear strains everywhere [40]. The corresponding geometric 
nonlinear strains ( , , )ss n s ze , ( , , )zz n s ze  and ( , , )sz n s ze , as 
expressed in terms of the von Kármán strain, are expressed for 
buckling analysis: 
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Fig. 2 sketches the mechanism how the nonlinear strain is 

           
                                  (a)                                           (b) 
 
Fig. 1. (a) Global; (b) local coordinates of a thin-walled box beam. The origins of the local coordinate system are placed at the center of each edge. 

 

 
 
Fig. 2. Infinitesimal length of a fiber on the middle surface of the beam section: AB : Undeformed infinitesimal fiber; A'B' : Deformed infinitesi-
mal fiber after bending deflection occurs due to nu . 
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developed.  
The geometric nonlinear strain fields in Eq. (8) are com-

bined with the pre-buckling stress fields to calculate the work 
performed by buckling. By using Eq. (8), the work ( WP ) 
performed by the nonlinear strain is defined as follows: 
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In Eq. (9), crl , preσ  and ε  denote the buckling load 

scale factor, pre-buckling stress vector, and geometric nonlin-
ear strain vector, respectively. The pre-buckling stress vector 

pres  is calculated as: 
 

( )pre pre= ×σ C ε d   (10) 
 

where pred  denotes the vector of deformation measures cal-
culated by a linear static analysis for a given loading and 
boundary condition by using Eq. (7). The pre-buckling stress 
vector describes the stress distribution in a box beam immedi-
ately before buckling occurs. 

The governing equation for buckling analysis is obtained by 
using the total potential energy totalP  that is the sum of the 
terms in Eqs. (5) and (9). We consider the variation in totalP  
as follows: 
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If the value of Eq. (11) is less than zero, a thin-walled beam 

is in an unstable state. Therefore, the unstable state corre-
sponds to the onset of buckling. Based on this argument, the 
condition for the occurrence of buckling [40] is expressed as: 
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The variation in the total potential energy always passes 

through a neutrally stable state ( 0totaldP = ) when buckling 
occurs. Therefore, by multiplying the prescribed unit load and 
critical scale factor crl  calculated from Eq. (12), a critical 
load can be obtained as: 
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where preP  denotes a prescribed unit load corresponding to 

the given loading and boundary conditions. The prescribed 
load ( ),T T

surf bodyé ù é ùë û ë ûf ψ f ψ  is defined consistently with the 

HoBT. 
 

4. Finite element formulation 

This section presents a finite element formulation for nu-
merical analysis based on the governing equation derived in 
the previous section. In the investigation, a Hermite cubic 
interpolation function that satisfies 1C  continuity is used to 
interpolate the deformation inside the discretized analysis 
domain. If a linear interpolation is used as opposed to the 
Hermite cubic interpolation function, the sectional rotation 
from the bending term of zze  in Eq. (3) disappears. Subse-
quently, omitting the energy corresponding to the term leads 
to inaccurate results. Thus, the 1D deformation measure α 
( 1 2, , ,z ie otU c c= L ) in Eq. (1) is interpolated by using the 
Hermite cubic interpolation function as: 

 
( ) ( ) ( ) ( ) ( )1 1 2 1 3 2 4 2' 'z H z H z H z H za a a a a= × + × + × + ×  

 (14) 
 

where 
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 ( )1 2 .z z z£ £  

 
In Eq. (14), ( 1,2)i ia =  denotes a nodal deformation 

measure at node i, 'ia  denotes a partial derivative of ia  
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about z ( )' /i i za a= ¶ ¶ , and iz  denotes the z coordinate of 
node i. When the Hermite cubic interpolation function is used, 

'ia  is treated as an independent kinematic DOF. Therefore, 
Eq. (14) is expressed in compact form as: 

 
=d HU  (15) 

 
where 

 

{ } { } { } { } { }1 31 1 1 2 2
' ' .

T

z z e z tU U Uc hé ù= ë ûU L L   
 
In Eq. (15), H denotes an interpolation matrix and U is a 

nodal displacement vector. The substitution of d in Eq. (15) 
into Eq. (3) yields the expressions of ε  in terms of U: 
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  (16) 

 
where B denotes a strain–displacement matrix. By substituting 
Eq. (16) into Eq. (5), the variation in the strain energy term 
( SEdP ) can be expressed in a discretized form as: 
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SE V V

V
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d
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=
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where K denotes a stiffness matrix. Similarly, the discretized 
geometric nonlinear strain is obtained in discretized form by 
inserting Eq. (15) into Eq. (8): 
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where ( , , )ij i j s z=B  is defined as the strain–displacement 
matrix for ije . Substituting Eq. (18) into the variation of Eq. 
(9) yields the following expression: 
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where G is termed as the load-geometry matrix. By using Eqs. 
(11), (17) and (19), the governing equation for the discretized 
system is expressed as follows: 
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'

0 .

total SE buckling

T T
cr preV V

T T
cr

T
cr

dV dV

d d d

d l d

d l d

d l

P = P + P

= -

= -

= -

=

ò òε Cε σ ε

U KU U GU
U K G U

  (20) 

 
Eq. (20) must be satisfied for arbitrary dU  that satisfies 

the boundary condition. The resulting system equation for 
buckling analysis is finally given as: 

 
( ) .crl- =K G U 0   (21) 
 
In order to obtain a nontrivial solution from Eq. (21), the 

determinant of the above equation must be zero: 
 

( )det 0 .crl- =K G   (22) 

 
 
Fig. 3. The effects of the boundary conditions on crP  (critical load) 
for case study 1. 
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Subsequently, crl  is calculated by solving the eigenvalue 
problem (Eq. (21)), and its eigenvector represents the buckling 
pattern. The critical load is obtained by multiplying the pre-
scribed load and crl  in Eq. (22). 

5. Numerical examples 

In this section, several case studies are performed by using 
Eq. (22). The results obtained by the present HoBT-based 

 
(a) Clamped-free condition with open end 

 

 
(b) Clamped-free condition with closed end 

 

 
(c) Simply-supported condition with closed end 

 
Fig. 4. Buckling mode shapes and 3-dimensional displacements plotted along the line of 0x =  and / 2y h=  for varying z values for case study 1. 
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buckling analysis are compared with those obtained by using 
the 8-node quadratic shell elements (S8R) in commercial 
software, ABAQUS. 

 
5.1 Case study 1: Axial compressive loading 

In case study 1, a buckling analysis of thin-walled beams 
under axial compressive loading is performed for different 
boundary conditions. With respect to the given bound-
ary/loading conditions, a parametric study with variations in 
the dimensionless length, L / b, from 1 to 100 is performed to 
verify that the presented formulation works irrespective of 
beam length. The sectional dimension of the thin-walled beam 
is b = 0.06 m (width), h = 0.12 m (height), and t = 0.002 m 
(thickness). The material properties of the beam are given by 
Young's modulus E = 210 GPa and Poisson's ratio ν = 0.3. 
The prescribed unit load preP  in Eq. (13) for axial compres-
sion is given by calculating Eq. (6) with surff  defined as fol-
lows: 

 

( ) ( ) ( )
( ) ( )

2

2

1 N/m 0

1 N/m .
surf z

z
f

z L

ì =ï= í
- =ïî

  (23) 

 
Fig. 3 examines the effects of the boundary conditions in-

cluding the clamped-free condition with open end (CFo), the 
clamped-free condition with closed end (CFc), and the sim-
ply-supported condition with closed ends (SSc). Here, a 
closed end refers to a beam end in which the sectional defor-
mations such as warping and distortion are fully constrained. 
It can have only rigid-body motions. If the end is free to warp 
and distort, it is referred to as an open end. All box beams are 
subjected to axial compressive loading. 

The results in Fig. 3 show that the results by the present 
HoBT formulation agree favorably with the shell finite ele-
ment results for all boundary conditions considered. For in-
stance, the averaged relative errors in the present results with 
respect to the shell results for the slenderness ratio L / h rang-
ing from 1 to 100 are only 0.9 % and 0.1 %, respectively, for 
the CFo and CFc cases. Clearly, the transition points of L / h 
from the global to local buckling are accurately captured by 
the proposed HoBT method when compared with the shell 
analysis. 

Fig. 4 sketches the deformed shapes for various L / h values 
and boundary conditions. Although the results by the shell 
analysis are not shown, the present deformed shapes agree 
well with those by the shell analysis. The figure also plots the 
three-dimensional displacements ( ), ,x y zu u u  along the z-axis 
lying on ( )0, / 2x y h= = . Excellent agreements between the 
present HoBT and shell results are observed in the plots. 

 
5.2 Case study 2: Torsional loading 

In this case study, the buckling analysis for torsional load-
ing is investigated in thin-walled box beams for various 

boundary conditions. The dimensions of the beam and the 
ranges of the slenderness ratio (L / h) are identical to those in 
case study 1. The same material properties as used in case 
study 1 are considered. The torsional loading is applied by 
constant shear stress surff  on the cross-sections at both ends 
with the exception of the clamped point as: 

 

( ) ( ) ( )
( ) ( )

2

2

1 N/m 0

1 N/m .
surf s

z
f

z L

ì - =ï= í
=ïî

  (24) 

 
The values of the critical load ( crP ) are plotted as a function 

of L / h for different boundary conditions in Fig. 5 and the 
buckling modes for some L / h values are sketched in Fig. 6. 
Excellent agreements between the results by the present 
HoBT-based formulation and those by the shell analysis (by 
ABAQUS) are apparent from Figs. 5 and 6.  

In contrast to the axial buckling considered in case study 1, 
there is no distinct change in crP  from local to global buck-
ling in this case; compare Figs. 3 and 5. However, the local 
buckling with significant distortion occurs throughout the 
entire range of L / h considered, as may be observed from Fig. 
6. This phenomenon is similar to that observed in the buckling 
of circular or polygonal tubes under torsional loading [41].  

Figs. 5 and 6 also show that the CFc- and SSc-conditioned 
beams have exactly the same critical loads and buckling 
modes. Both of their buckling patterns can be characterized by 
local modes that do not involve , , , , andx y z x y zU U U q q q  
(rigid-body motions of the cross-section) everywhere through-
out the beams due to their closed-end constraints. In case of 
the CFo-conditioned beams, no rigid-body motion of the 
cross-section occurs but significant cross-sectional deforma-
tions can occur due to the open-end condition.  

It is not surprising that the buckling loads for the CFc-
conditioned beams are larger than those for the CFo-
conditioned beams; the cross-sectional constraint imposed on 
the beam at its end effectively reinforces the beam, as in case 
study 1.  

 
 
Fig. 5. The critical load ( crP ) for case study 2 (torsional loading case). 
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5.3 Case study 3: Bending loading 

This case study considers thin-walled box beams under 
bending loads. The same geometry, material properties and 
slenderness ratios, as in the previous cases, are used. The nu-
merical results are given in Fig. 7 for the critical loads and in 
Fig. 8 for the buckling mode shapes. The results by the present 
HoBT-based formulation agree very well with those by the 

shell (solid) finite elements (ABAQUS). The bending loading 
is applied as: 

 

( )
( ) ( )

( ) ( )

2

2

2 N/m 0

2 N/m .
surf z

y z
hf

y z L
h

ì × =ïï= í
ï - × =
ïî

  (25) 

 
(a) Clamped-free condition with open end (CFo) 

 

 
(b) Clamped-free condition with closed end (CFc) 

 

 
(c) Simply-supported condition with closed end (SSc) 

 
Fig. 6. Buckling mode shapes for case study 2. 
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A few remarks on the obtained results in Figs. 7 and 8 are 
worth making. Unlike in solid or thin-walled open beams ex-
hibiting global lateral-torsional buckling when they are sub-
jected to bending loading, thin-walled box beams under bend-
ing loading buckle in the local mode pattern involving cross-
sectional deformations. In the CFo- and CFc-conditioned 
beams, global buckling can take place when L / h becomes 
larger than a certain value, which is about 40 and 50, respec-
tively, in the present case. (See the buckling mode shapes for 

/ 80L h = ). 
As remarked in case study 2, the buckling behaviors of the 

CFc-conditioned and SSc-conditioned beams are virtually 
identical, but some difference is observed when / 50L h >  as 
observed in the values of crP  for the two beams. The main 
 

 
(a) Clamped-free condition with open end (CFo) 

 

 
(b) Clamped-free condition with closed end (CFc) 

 

 
(c) Simply-supported condition with closed end (SSc) 

 
Fig. 8. Buckling mode shapes and the axial variations of some field variables ( 2 _ 2 1_ 2, ,x e byU h h ) for case study 3. 

 

 
 
Fig. 7. The effects of the boundary condition on crP  (critical load) for 
case study 3 (bending load case). 
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reason is that the CFc-conditioned beams exhibit global buck-
ling, decreasing the critical load ( crP ) while the SSc-
conditioned beams buckle in the local buckling pattern; see 
Figs. 8(b) and (c) for / 80L h = . (For the CFc-conditioned 
beams with / 50L h ³ , the solid finite elements were used to 
obtain crP  as the shell finite element calculations 
(ABAQUS) do not tend to yield consistent results).  

 
5.4 Case study 4: Effects of b / h (aspect ratio) and t (thick-

ness) 

The goal to consider case study 4 is to investigate how ac-
curately the present HoBT formulation predicts the critical 
load as compared with the shell finite element analysis for 
various values of b / h (the aspect ratio of the cross-section) 
and t (the wall thickness of the cross-section). The material 

properties and other geometric parameters are exactly the 
same as the CFo-conditioned and SSc-conditioned box beams 
subjected to axial compressive loading considered in case 
study 1. The results for various values of b / h with a fixed 
value of 0.12 mh =  ( 0.002 mt = ) are presented in Fig. 9 
for the SSc-conditioned beams and those for various values of 
t ( 0.06 m, 0.12 mb h= = ) are given in Fig. 10 for the CFo-
conditioned beams.  

As Figs. 9(a) and 10(a) show, the present HoBT-based for-
mulation yields almost identical results to those obtained by 
the shell finite element analysis. This confirms that the present 
HoBT approach developed for buckling analysis of thin-
walled box beams is uniformly valid for any values of b / h 
and t. The sudden transitions in the crP  values observed in 
the plots of Figs. 9(a) and 10(a) describe accurately how the 
buckling patterns change from the local to global modes. 

 
 
Fig. 9. The effects of /b h  on crP  considered in case study 4: (a) Critical load ( crP ); (b) buckling mode shapes. 
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Their behaviors are accurately predicted by the proposed 
HoBT-based buckling analysis. Some representative buckling 
modes are sketched in Figs. 9(b) and 10(b). 

 
5.5 Case study 5: Arbitrary loading 

The objective to consider case study 5 is two-fold: checking 
the applicability of the proposed HoBT formulation to arbi-
trary loading cases and examining the effects of the number of 
the sets of the cross-sectional deformation modes on the ob-
tained results. In this case, we consider two different loading 
conditions as:  

 
Problem 1 (depicted in Fig. 11(a)) 
Applied loading: 

( ) ( )
2

2
1

21 N/m at , .
2surf s

bf s x z L
h

æ ö æ ö= - × = =ç ÷ ç ÷
è ø è ø

  (26) 

Problem 2 (depicted in Fig. 12(a)) 
Applied loading: 
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  (27) 

 
For both problems, the following geometry data and mate-

rial properties are used: 
 

0.06 m, 0.12 m, 0.002 m, 0.6 m
210 GPa, 0.3 .

b h t L
E n

= = = =
= =

  

 
The boundary conditions for both beams are clamped-free 

 
 
Fig. 10. The effect of t on crP  considered in case study 4. 
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with open end (CFo). 
The critical loads and buckling modes obtained by the shell 

finite element calculations for Problems 1 and 2 are presented 
in Figs. 11(b) and 12(b), respectively. We present the HoBT-

 
 
Fig. 11. The results for problem 1 of case study 5: (a) Loading and boundary conditions; (b) the results by shell finite element analysis; (c) the re-
sults by the present HoBT-based analysis. 

 
 

 
 
Fig. 12. The results for problem 2 of case study 5: (a) Loading and boundary conditions; (b) the results by shell finite element analysis; (c) the re-
sults by the present HoBT-based analysis. 
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based results by using different numbers of the cross-sectional 
mode sets. Referring to Table 1, we use the following nota-
tions in Figs. 11(c) and 12(c): 

 

Representation Included modes Total 
DOFs 

HoBT mode 
(up to 1st 
mode set) 

( , , , , ,x y z x y zU U U q q q ) 
and ( 1 1 1 1, , , ,e e t tW Wc cL ) 

6 + 12 
= 18 

HoBT mode 
(up to 2nd 
mode set) 

All modes included in 
HoBT (up to 1st mode set) 
and ( 2 2 2_ 2, , ,e e tWc hL ) 

18 + 16 
= 34 

HoBT mode 
(up to 3rd 
mode set) 

All modes included in 
HoBT (up to 2nd mode set) 
and ( 3 3 3_ 2, , ,e e tWc hL ) 

34 + 16 
= 50. 

 
The results in Figs. 11(c) and 12(c) show that the use of the 

first set of the cross-sectional deformation mode shapes along 
with the six rigid-body motions of the cross-section is not 
sufficient to yield accurate buckling loads or predict correct 
buckling modes. This is because highly-localized sectional 
deformation shapes, as observed in shell-based results in Figs. 
11(b) and 12(b), cannot be correctly described only with the 
lowest cross-sectional mode set (and the rigid-body mode set). 
However, the use of HoBT including up to the 2nd cross-
sectional mode set yields favorable results in comparison with 
the shell-based results. 

The numerical calculations show that the predicted critical 
loads by the present HoBT-based formulations match the re-
sults by the shell finite element analysis only within 1.7 % 
(HoBT-up to 2nd mode set) and 1.3 % (HoBT-up to 3rd mode 
set) errors for problem 1. In case of problem 2, the errors are 
5.2 % (HoBT-up to 2nd mode set) and 2.1 % (HoBT-up to 3rd 
mode set). The predicted buckling mode shapes by the present 
analysis virtually match those by the shell-based analysis. This 
example may justify the use of up to the 3rd cross-sectional 
mode set if highly accurate results by a beam-based analysis 
are desired. 

 
6. Conclusions 

In the study, beam-based buckling analysis was performed 
for thin-walled box beams for general beam boundary and 
loading conditions by using the higher-order beam theory 
(HoBT). In order to accurately capture the sectional deforma-
tion of a box beam, three sets of cross-sectional beam DOFs 
of the HoBT were employed in addition to the classical six 
DOFs representing the rigid-body motions of the beam cross-
section. Then, the detailed finite element implementation pro-
cedure was presented to predict the critical loads and buckling 
modes. 

The critical loads for various boundary and loading consid-
ered here were obtained within a maximum error of approxi-
mately 5 % if up to the 2nd cross-sectional mode set of the 

HoBT (34 DOFs) was used. The errors were reduced to less 
than 2 % when up to the 3rd cross-sectional mode set of the 
HoBT (50 DOFs) was used. The present HoBT-based buck-
ling analysis was universally applied to the thin-walled box 
beams under arbitrary loading and boundary conditions. We 
expect that the present analysis can serve as a critical approach 
in performing buckling analysis of general box beam systems 
involving various joints. 
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