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Abstract 
 
Based on Reissner’s mixed variational theorem, the authors develop a finite annular prism method (FAPM) for the three-dimensional 

(3D) free vibration analysis of bi-directional functionally graded (FG) annular plates with assorted boundary conditions. In this formula-
tion, the FG annular plate is divided into a number of finite annular prisms with triangular cross-sections, in which Fourier functions and 
Lagrange polynomials are used to interpolate the circumferential direction and radial-thickness surface variations of primary field vari-
ables in each individual prism, respectively. The material properties of the FG annular plate are assumed to obey an exponential function 
distribution varying doubly exponentially through the radial-thickness surface. These FAPM solutions for the frequency parameters and 
their corresponding mode shapes of the FG annular plate closely agree with the solutions obtained using other 3D approaches available in 
the literature.  
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1. Introduction 

In recent decades, a new class of materials, the so-called 
functionally graded materials (FGMs), has been successfully 
developed and rapidly popularized for use in a variety of ad-
vanced industrial fields, such as high performance aircraft, 
heat engine, armor plating, electronics, and biomedical sectors 
[1, 2]. In practice, FGMs can be artificially made by mixing 
two or more different phase materials according to the prede-
fined distributions of the volume fractions of the constituents 
over the structural domain. Hence, FGM structures have mate-
rial properties that vary continuously and smoothly over the 
structural domain, which can be used to avoid interfacial stress 
concentrations, which often occur in conventional laminated 
composite structures, the material properties of which sud-
denly change when they across through the interfaces between 
adjacent layers. Both the assorted structural analyses of FGM 
beam-, plate-, and shell-like structures [3-10] and the optimi-
zation of the material composition of FGMs to obtain some 
desired physical properties [11-14], such as natural frequency 
parameters, critical load parameters, gross stiffness, and total 
weight, have thus attracted considerable attention. Among 
these, the review in this work focuses on articles examining 

the structural behavior of one- and multi-directional function-
ally graded (FG) annular and circular plates. 

A variety of two-dimensional (2D) plate theories for the 
analysis of conventional laminated composite plates were 
extended to the analysis of FGM plates, such as the classical 
plate theory (CPT), first-order shear deformation theory 
(FSDT), third-order shear deformation theory (TSDT), four-
order shear deformation theory (FOSDT), and discrete layer 
theory. Based on the CPT, Kumar and Lal [15] and Lal and 
Ahlawat [16] presented analytical and numerical results for 
the axisymmetric free vibration analysis of bi-directional FG 
annular and circular plates resting on the Winkler-type foun-
dation either subjected or non-subjected to an initial in-plane 
load. In conjunction with the FSDT and differential quadrature 
(DQ) method, Tornabene et al. [17] showed 2D DQ solutions 
for the vibration analysis of FG conical, cylindrical, and annu-
lar plate structures, in which two simple power-law distribu-
tions of material properties were assumed, and the issue was 
also studied by Su et al. [18] using the FSDT combined with 
the Rayleigh-Ritz method. On the basis of the FSDT and Ritz 
method, Wang et al. [19] proposed a unified method for the 
vibration analysis of FG circular, annular, and sector plates 
with general boundary conditions, in which the material prop-
erties of the plate were assumed to obey a general four-
parameter power-law distribution through the thickness direc-
tion according to the volume fractions of the constituents. The 
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material properties of the four-parameter power-law model 
were also used by Tornabene [20] for the dynamic analysis of 
moderately thick FG conical shells, cylindrical shells, and 
annular plates, in which the DQ method was used to discretize 
the system equations. Based on the FSDT combined with the 
von Kármán geometrical nonlinearity effect, Amini et al. [21] 
developed a nonlinear formulation to examine the geometrical 
nonlinearity effects on the free and forced vibration behavior 
of FG annular plates. Saidi et al. [22] developed an uncon-
strained TSDT for the axisymmetric bending and buckling 
analyses of thick FG circular plates, in which the results of the 
maximum displacement and critical load parameters of the 
plates with different values for the volume fractions of the 
constituents were presented. A TSDT-based finite element 
method (FEM) was developed by Talha and Singh [23] to 
investigate both static and free vibration analyses of FGM 
plates, in which a continuous isoparameter Lagrangian finite 
element with 13 degrees of freedom per node was used to 
obtain the corresponding numerical solutions. Hosseini-
Hashemi et al. [24] showed the exact closed-form solutions 
for the natural frequencies of thick circular plates using the 
TSDT. Sahraee and Saidi [25] investigated the axisymmetric 
bending behavior of thick FG circular plates using an FOSDT, 
in which it was found that the maximum values of deflections 
of the plate obtained using the FOSDT and TSDT were close 
to each other, while the through-thickness distributions of the 
shear stress components obtained using the FOSDT were 
more accurate than those obtained using the TSDT when they 
were compared with the exact 3D solutions available in the 
literature. Batra [26] developed a higher-order shear and nor-
mal deformable theory for FG incompressible linear elastic 
plates using the principle of virtual work, and applied it to the 
free vibration analysis of simply-supported FG rectangular 
plates. Based on the FSDT and TSDT combined with the 
meshless method, Ferreira et al. [27] examined the free vibra-
tion behavior of FG rectangular plates, in which the Mori-
Tanaka technique was used to estimate the effective material 
properties of these FG plates. Based on a refine theory, Lal 
and Rani [28] presented analytical and numerical results for 
the axisymmetric vibration of sandwiched annular plates. 
Malekzadeh and Hamzehkolaei [29] developed a discrete 
layer approach combined with the DQ method for the free 
vibration analysis of multilayered FG annular plates in ther-
mal environment. The above-mentioned 2D advanced and 
refined plate theories have been included in the Carrier unified 
formulation (CUF) [30] and can be regarded as its special 
plate versions.  

Some recently proposed numerical methods combined with 
the 2D refined and advanced plate theories were used for the 
free vibration analysis of FG plates. Mercan et al. [31] studied 
the free vibration behavior of FGM and carbon nanotube-
reinforced composite annular thick plates using the FSDT and 
the discrete singular convolution (DSC), in which the regular-
ized Shannon delta kernel and the Lagrange delta sequence 
kernel were used to discretize the derivatives of the primary 

variables with respect to the spacial coordinates in terms of 
linear combinations of their nodal variables. Based on the 
CST, Shi et al. [32] developed a unified formulation for the 
free vibration analysis of orthotropic plates of revolution with 
general boundary conditions, in which the spectro-geometric 
method and the Rayleigh-Ritz technique were used, such that 
the geometry of a variety of plates can be described in terms 
of mathematical or design parameters. An isogeometric finite 
element approach [33, 34] based on nonuniform rational B-
spline (NURBS) basis functions was developed for the free 
vibration analysis of circular, annular, and sector plates by Qin 
et al. [35] and that of bi-directional FG plates with variable 
thickness by Lieu et al. [36]. The NURBS basis functions 
were used to model the displacement field and geometry of 
the structures considered, such that they can preserve the exact 
geometry of the structures and can provide higher continuity 
of basis functions and their derivatives. 

In the above-mentioned 2D refined and advanced plate 
theories, including the CST, FSDT, TSDT and FOSDT, some 
kinematic assumptions have to be made a priori, and the accu-
racy of their results are difficult to evaluate when the structural 
behavior of a very thick plate is investigated because some 3D 
effects on the plates may not be captured. Development of the 
3D analytical and numerical methods for the current issue is 
thus necessary. 

Some three-dimensional (3D) weak- and strong-form for-
mulations have been developed for the assorted structural 
analyses of one- and multi-directional FG single- and multi-
layered plates. Based on the principle of virtual displacements 
(PVD), So and Leissa [37] and Kang and Leissa [38] devel-
oped a weak-form formulation of 3D polynomials-Ritz 
method to investigate the free vibration behavior of isotropic 
homogeneous thick circular and annular plates and linearly 
tapered annular plates, respectively, in which the displacement 
components were selected as the primary variables, the admis-
sible functions for which were chosen as trigonometric func-
tions in the circumferential coordinate and algebraic polyno-
mials in the radial and thickness coordinates. The 3D Ritz 
method was also extended to the free vibration analysis of 
circular and annular plates with different edge conditions by 
Liew and Yang [39, 40]. The above-mentioned issue was also 
re-examined by Zhou et al. [41] using a 3D Chebyshev-Ritz 
method, in which the nominal polynomials were replaced with 
the Chebyshev polynomials for the admissible functions of the 
displacement components in the radial and thickness direc-
tions, such that a stable numerical operation could be guaran-
teed even when a large number of admissible functions were 
used. The 3D Chebyshev-Ritz method was thus extended to 
the 3D free vibration analysis of isotropic homogeneous thick 
circular plates on the Pasternak-type foundation by Zhou et al. 
[42] and to that of FG annular plates in temperature-dependent 
and -independent environments by Shi and Dong [43] and 
Dong [44], respectively. Nie and Zhong [45, 46] developed a 
strong-form formulation of the state space differential quadra-
ture (SSDQ) method for the dynamic analysis of multi-
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directional FG annular plates with various boundary condi-
tions and simply-supported FG annular sectorial plates. In the 
SSDQ method, the admissible functions of the displacement 
components were selected as the harmonic functions in the 
time domain, Fourier functions in the circumferential coordi-
nate, and DQ interpolation functions in the radial coordinate, 
such that the 3D motion equations, which comprise a set of 
partial differential equations, will be reduced as a set of ordi-
nal differential equations in the thickness direction. As a result, 
the free vibration behavior of the plate can be examined using 
the state space method. The SSDQ method was also extended 
to a free vibration analysis of multi-directional FG circular and 
annular plates by Kermani et al. [47] and Malekzadeh et al. 
[48]. Vel and Batra [49] presented 3D exact solutions for the 
free and force vibrations of simply-supported, FG rectangular 
plates using the power series method. Within the framework 
of 3D elasticity theory, Zhao et al. [50] presented 3D exact 
solutions for the free vibration of thick functionally graded 
annular sector plates with arbitrary boundary conditions. The 
above-mentioned 3D exact and numerical solutions can pro-
vide a reference to assess the performance of a variety of 2D 
advanced and refined theories. 

Most of the 2D refined and advanced plate theories and 3D 
semi-analytical numerical methods mentioned above were 
derived on the basis of the PVD, in which the displacement 
components were regarded as the primary variables, rather 
than being based on Reissner’s mixed variational theorem 
(RMVT), in which the displacement and transverse stress 
components were regarded as the primary variables. It is well 
known that the RMVT-based models are superior to the PVD-
based models, especially in the case of laminated composite 
and multi-layered FGM plates [51-54]. This is mainly due to 
the fact that the continuity conditions of the displacement and 
transverse stress components are satisfied at the interfaces 
between adjacent layers for the former, while only the dis-
placement continuity conditions are satisfied for the latter, that 
results a set of single-valued solutions of transverse stress 
components is obtained at the interfaces for the RMVT-based 
models, while multiple sets of solutions of the transverse 
stress components are obtained at these places, which violates 
the 3D elasticity theory. In addition, the highest order of the 
derivatives of field variables involved in both the strong- and 
weak-form formulations of the former is one-half lower than 
that in those of the latter, that results less time consuming 
required for the RMVT-based models than that required for 
the PVD-based models.  

In order to capture the 3D behavior of FGM plates and 
shells and overcome the restrictions of 3D analytical methods, 
such as the complicated solution process and difficulty related 
to use for one- and multi-directional FGM plates, on the basis 
of the RMVT, Wu and Li [53, 54] developed the finite rectan-
gular and cylindrical prism methods (FRPM and FCPM) for 
the analysis of one-directional FG rectangular plates and hol-
low cylinders, respectively, with various boundary conditions. 
Wu and Yu [55] developed an isoparametric finite annular 

prism method (FAPM) with quadrilateral cross-sections for 
the bending analysis of bi-directional FG circular plates with 
different boundary conditions. Implementation of these 
RMVT-based FRPM, FCPM and FAPM proved their solu-
tions to be accurate and to converge rapidly. In the current 
paper, the FAPM with triangular cross sections is extended to 
the 3D free vibration analysis of bi-directional FG thick annu-
lar plates with combinations of free, clamped, and simply-
supported edges. The material properties of the FG annular 
plates are assumed to obey an exponential function distribu-
tion varying doubly exponentially through the radial-thickness 
surface. A parametric study with regard to some key effects on 
the natural frequency parameters and the corresponding mode 
shapes of the bi-directional FG thick annular plates with nine 
different boundary conditions is undertaken, including the 
material-property gradient indices, aspect ratios, and different 
boundary conditions. 

 
2. The isoparametric FAPMs 

Consider an Nl -layered bi-directional FG thick annular plate, 
as shown in Fig. 1, in which Nl is the total number of layers 
constituting the annular plate. The thickness and mid-surface 
inner and outer radii of the annular plate are defined as h, R1 
and R2, respectively. The thickness of each individual layer 
is ( )1m lh m N= - . The boundary conditions of the annular 
plate are considered to be combinations of free, clamped 
and simply-supported edges. The cylindrical global coordi-
nate system (i.e., r, q  and z coordinates) is located on the 
mid-surface of the annular plate. The typical three-node linear, 
six-node quadratic and 10-node cubic parent annular prisms in 
the natural coordinate system are shown in Fig. 2, in which 

andx h  denote the natural coordinates, which are located on 

 
 
Fig. 1. Configuration and coordinates of an annular plate and the (4x2) 
mesh of T6 FAPM models with (a) C-C; (b) C-S; (c) C-F; (d) S-S 
boundary conditions. 
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the right-angle node of the nodal triangular surface of a typical 
annular prism (i.e., the radial-thickness surface). The mapping 
relations between the global and natural coordinates of each 
point in the prism domain are expressed as 

 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1 1

, and ,
s sn n

e e e e e e
i i i i

i i

r r z zy x h y x h
= =

= =å å   (1) 

 
where sn  denotes the degree of approximation used to de-
scribe the coordinate transformation for the isoparametric 
annular prism, and ( ), 1i si ny x h = -  denote the shape (or 
interpolation) functions of the annular prism. The isoparamet-
ric annular prisms are used in the implementation of these 
FAPMs, in which the degree of approximation used to de-
scribe the coordinate transformation is equal to that used to 
represent each primary field variable, such that the values of ns 
are taken to be three, six, and 10 for the linear, quadratic, and 
cubic FAPM, respectively. 

 
2.1 Kinematic and kinetic assumptions 

Since the RMVT is used in this formulation, the displace-
ment and transverse stress components are selected as the 
primary field variables. Variations of the primary field vari-
ables over the radial-thickness nodal surface and circumferen-
tial direction are assumed to be separable, and for a typical 
annular prism of the mth-layer they are thus given by 
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where t represents the time variable; ( )( )( ) ,
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s  with ),,2,1( dni L=  

are the nodal displacement and transverse stress components 
of a typical annular prism of the mth-layer of the annular plate, 
and nd denotes the total number of nodes of a typical annular 
prism, such that the values of nd are three, six, and 10 for the 
linear, quadratic and cubic annular prisms with triangular 
cross sections, respectively. The symbols, T3, T6 and T10, are 
used to represent three-node linear, six-node quadratic, and 
10-node cubic annular prisms, the typical parent annular 
prisms of which in natural coordinates are shown in Fig. 2. 

( ) ( )( ) ( 1, , )
me

di
i nf = L  are the corresponding shape (or inter-

polation) functions used to interpolate the primary field vari-
ables over the nodal surface of the prism domain.  

The linear constitutive equations of the mth-layer, which are 
valid for the orthotropic materials, are given as 
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where )()()( and,, m

r
mm

r qq tss L  are the stress components; 
( ) ( ) ( ), , andm m m
r rq qe e gL  are the strain components, and 

)(m
ijc  

are the elastic coefficients, which are considered to be inde-
pendent of the circumferential coordinate in the analysis, 
while they are variable over the radial-thickness surface of the 
annular prism (i.e., ( )zrc m

ij ,)( ). 
The strain-displacement relations for a typical annular prism 

of the mth-layer, based on the assumed displacement compo-
nents in Eqs. (2)-(4), are given by 
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Fig. 2. The FAPM in the natural coordinates: (a) T3 linear prism; (b) 
T6 quadratic prism; (c) T10 cubic prism. 
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2.2 The Hamilton principle 

The Hamilton principle is used to derive the motion equa-
tions of the FG annular plate, and the corresponding functional 
( RI ) of the plate is written in the form of 
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where r  is the mass density of the plate considered, sG  
and uG  denote the portions of the edge boundary, in which 
the surface traction and displacement components (i.e., kt  
and ku  (k = r, q  and z)) are prescribed, respectively, and 

)( ijB s  is the complementary energy density function. 
Substituting the kinematic and kinetic assumptions, given in 

Eqs. (2)-(4) and (5)-(7), respectively, in Eqs. (16) and (17) and 
performing the first-order variation of IR lead to the following 
form 
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where the symbols Ne and Ae denote the number of annular 
prisms in each individual layer and the cross-sectional area of 
a typical annular prism, respectively; the superscript T stands 
for the transposition of the matrices or vectors, and 
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2.3 Motion equations 

The free vibration behavior of a multilayered FG annular 
plate with combinations of free, clamped, and simply-
supported boundary edges is studied in the following 
illustrative examples, in which the material properties are 
considered to obey an exponential function distribution vary-
ing doubly exponentially through the radial-thickness surface, 
while they are independent of the circumferential direction.  

Nine different boundary conditions considered in this work 
are given as follows: 

For clamped-clamped (C-C ) supports, 

0)()()( === e
z

ee
r uuu q    at r = R1 and R2 . (21) 

 
For clamped-simply supported (C-S) supports, 

0)()()( === e
z

ee
r uuu q    at r = R1,  (22a) 

0)()()( === e
r

e
z

e uu sq    at r = R2.   (22b) 
 
For clamped-free (C-F) supports, 

0)()()( === e
z

ee
r uuu q    at r = R1,   (23a) 

0)()()( === e
rz

e
r

e
r tts q    at r = R2.  (23b) 

 
For simply supported-clamped (S-C) supports, 
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0)()()( === e
r

e
z

e uu sq    at r = R1,  (24a) 

0)()()( === e
z

ee
r uuu q    at r = R2. (24b) 

 
For simply supported-simply supported (S-S) supports, 

0)()()( === e
r

e
z

e uu sq    at r = R1 and r = R2. (25) 
 
For simply supported-free (S-F) supports, 

0)()()( === e
r

e
z

e uu sq    at r = R1,   (26a) 
0)()()( === e

rz
e
r

e
r tts q    at r = R2. (26b) 

 
For free-clamped (F-C) supports, 

0)()()( === e
rz

e
r

e
r tts q    at r = R1,  (27a) 

0)()()( === e
z

ee
r uuu q    at r = R2. (27b) 

 
For free-simply supported (F-S) supports, 

0)()()( === e
rz

e
r

e
r tts q    at r = R1,   (28a) 

0)()()( === e
r

e
z

e uu sq    at r = R2.  (28b) 
 
For free-free (F-F) supports, 

0)()()( === e
rz

e
r

e
r tts q    at r = R1 and r = R2. (29) 

 
This formulation can also be used for the analysis of multi-

layered FG circular plates. In that case, the edge conditions at 
r = R2 for the free, simply-supported and clamped edges will 
remain the same as those mentioned above, while the edge 
conditions at r = R1 should be replaced with the continuity 
conditions at r = 0, which are given as 

 
0)()()( === e

rz
ee

r uu tq    at  r = 0.  (30) 
 
In this formulation, the primary field variables of each 

individual annular prism, which are given in Eqs. (2)-(7), are 
further expanded as the single Fourier series in the 
circumferential coordinate and assigned the harmonic function 
in the time domain, and they are rewritten as 

 

( ) ( ) ( ) tim

j
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n
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e
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d
wqf ˆcos
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)()()( åå
¥

= =

=   (31)
 

( ) ( ) ( ) tim

j
e

n
n

n

j

e
j

me envu
d

w
q qf ˆsin
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ˆ

0ˆ 1

)()()( åå
¥

= =

=
 
 (32)

 

( ) ( ) ( ) tim

j
e

n
n

n

j

e
j

me
z enwu

d
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ˆ

0ˆ 1

)()()( åå
¥
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=
 
 (33) 

( ) ( ) ( ) tim

j
e
n

n

n

j

e
j

me
zr en

d
wqtft ˆcos

)()(
ˆ13

0ˆ 1

)()()( åå
¥

= =

=  (34)
 

( ) ( ) ( ) tim

j
e

n
n

n

j

e
j

me
z en

d
w

q qtft ˆsin
)()(

ˆ23
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 (35)

 

( ) ( ) ( ) tim

j
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n

n

j

e
j
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z en

d
wqsfs ˆcos

)()(
ˆ3
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)()()( åå
¥

= =

=   (36)
 

 
where n̂  denotes the half-wave number of a typical vibration 

mode, the value of which is either a positive integer or zero, 
and w  represents the natural frequencies of the plate. 

Introducing the kinetic and kinematic models of the FAPMs 
(Eqs. (31)-(36)) and the corresponding boundary conditions at 
the edges, given in Eqs. (21)-(29), and applying the Halmiton 
principle (i.e., 0RId = ), we thus obtain the motion equations 
of the multi-layered FG annular plate as follows: 

 
( ) ( ) ( ) ( )
11 12 14 16
( ) ( ) ( ) ( )
21 22 25 26

( ) ( ) ( )
34 35 36

( ) ( ) ( )
41 43 441 1

( ) ( ) ( )
52 53 55

( ) ( ) ( ) ( )
61 62 63 66

( )
11

2

0 0
0 0

0 0 0
0 0 0

0 0 0
0 0

0 0 0 0 0
0

l e

e e e e

e e e e

N N e e e

e e e
m e

e e e

e e e e

e

k k k k
k k k k

k k k
k k k

k k k
k k k k

m
m

w

= =

ì é ù
ï ê ú
ï ê ú
ï ê úï ê úí

ê úï
ê úï
ê úï
ê úï ë ûî

-

åå

( )
( )
( )
( )
( )
( )

( )
( )

ˆ

( ) ( )( )
ˆ

( )
22 ( )

( ) ˆ
33

( )
1 1ˆ13

( )
ˆ23

( )
ˆ3

0
00 0 0 0
00 0 0 0 0
00 0 0 0 0 0
00 0 0 0 0 0
00 0 0 0 0 0

l e

m
e
n j

m me
n je
e N Ne n j

e
m en j

e
n j

e
n j

u

v

wm

t

t

s

= =

é ù
ê ú
ê úüé ù é ùê úïê ú ê úê úïê ú ê úê úïê ú ê úï ê ú =ê ú ê úý ê úê ú ê úï ê úê ú ê úï ê úê ú ê úï ê úê ú ê úï ë ûë û þ ê ú
ê ú
ê úë û

å å

 
 (37) 
 

where ( ) ( )( ) ( ) ( ) ( ) ( ) ( ), ,e e e e e e
ij i j ji j ik kf f f f= ; ( )e

ijk  can refer to Wu 

and Yu [55], and ( ) ( ) ( ) ( ) ( )
11 22 33 ,

e

e e e e e
i j eA

m m m r dAr j j= = = òò  

where i, j = 1-nd.  
By imposing the continuity conditions of each node’s nodal 

primary variables (i.e., the nodal displacement and transverse 
stress components) at the nodal lines between adjacent prisms, 
the local stiffness and mass matrices of each prism in Eq. (37) 
can be assembled as their corresponding global stiffness and 
mass matrices for the FG annular plate, and Eq. (37) can be 
rewritten as follows: 
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.

 (38)

 
 
Eq. (38) represents a standard eigenvalue problem, and a 

nontrivial solution of this exists if the determinant of the coef-
ficient matrix vanishes. The natural frequencies of the multi-
layered FG annular plate for a set of fixed values ˆ( )n  and 
their corresponding mode shapes can thus be obtained. 
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3. Illustrative examples 

3.1 One-directional exponential function-type FG circular 
plates 

For comparison purposes, the authors examine the free 
vibration behavior of a one-directional exponential function-
type FG circular plate with clamped boundary conditions, in 
which the continuity conditions at the center of the circular 
plate are used as mentioned in Eq. (30). The problem was 
previously investigated by Nie and Zhong [45] and Kermani 
et al. [47] using the SSDQ method, and the corresponding 
solutions are thus used to validate the accuracy and conver-
gence rate of solutions obtained using the current T3, T6 and 
T10 IFAPMs.  

The material properties of the one-directional FG circular 
plate are assumed to obey an exponential function distribution 
through the thickness direction, as follows: 

( ) ( )[ ]hz
ijij

zeeczc /5.00 += k   (39a) 

( ) ( )[ ]hzzeez /5.0
0

+= krr  (39b) 
 

where ezk  stands for the material-property gradient index in 
the thickness directions. 0r  denotes the mass density at the 
bottom surface of the circular plates. 0

ijc  (i, j = 1-6) are the 
elastic coefficients at the bottom surface of the circular plate, 
and are given as follows: 
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( )

( ) ú
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Table 1. Convergence of T3, T6 and T10 FAPM solutions for the first five frequency parameters of fully-clamped, one-directional exponential func-
tion-type FG circular plates with different vibration modes. 
 

n  Theories 1W   2W  3W  4W  5W  

0 

Current T3 (16x4) 
Current T3 (32x4) 
Current T3 (32x8) 
Current T3 (64x16) 
Current T6 (8x4) 
Current T6 (16x4) 
Current T6 (32x4) 
Current T6 (32x8) 
Current T10 (8x4) 
Current T10 (16x4) 
Current T10 (32x4) 
Kermani et al. [47] 
Nie and Zhong [45] 

0.1005 
0.0994 
0.0965 
0.0954 
0.0959 
0.0953 
0.0951 
0.0951 
0.0953 
0.0951 
0.0951 
0.095 
0.096 

0.3335 
0.3281 
0.3188 
0.3149 
0.3180 
0.3146 
0.3139 
0.3137 
0.3143 
0.3137 
0.3135 
0.314 
NA 

0.4113 
0.4101 
0.4101 
0.4097 
0.4097 
0.4096 
0.4096 
0.4096 
0.4096 
0.4096 
0.4096 
0.410 
NA 

0.6329 
0.6220 
0.6038 
0.5953 
0.6047 
0.5952 
0.5933 
0.5927 
0.5938 
0.5927 
0.5924 
0.593 
NA 

0.6986 
0.6946 
0.6945 
0.6933 
0.6952 
0.6934 
0.6930 
0.6930 
0.6935 
0.6930 
0.6929 
0.693 
NA 

1 

Current T3 (16x4) 
Current T3 (32x4) 
Current T3 (32x8) 
Current T3 (64x16) 
Current T6 (8x4) 
Current T6 (16x4) 
Current T6 (32x4) 
Current T6 (32x8) 
Current T10 (8x4) 
Current T10 (16x4) 
Current T10 (32x8) 
Kermani et al. [47] 
Nie and Zhong [45] 

0.2026 
0.1981 
0.1923 
0.1889 
0.1925 
0.1892 
0.1879 
0.1877 
0.1886 
0.1877 
0.1870 
0.187 
0.186 

0.4158 
0.4044 
0.4044 
0.3917 
0.4078 
0.3998 
0.3939 
0.3940 
0.4001 
0.3941 
0.3895 
0.390 
NA 

0.4740 
0.4678 
0.4547 
0.4482 
0.4531 
0.4482 
0.4463 
0.4459 
0.4460 
0.4457 
0.4450 
0.445 
NA 

0.6196 
0.6046 
0.6047 
0.5980 
0.6059 
0.5994 
0.5954 
0.5954 
0.5993 
0.5955 
0.5925 
0.593 
NA 

0.7782 
0.7793 
0.7569 
0.7465 
0.7574 
0.7466 
0.7437 
0.7426 
0.7409 
0.7422 
0.7418 
0.746 
NA 

2 

Current T3 (16x4) 
Current T3 (32x4) 
Current T3 (32x8) 
Current T3 (64x16) 
Current T6 (8x4) 
Current T6 (16x4) 
Current T6 (32x4) 
Current T6 (32x8) 
Current T10 (8x4) 
Current T10 (16x4) 
Current T10 (32x4) 
Kermani et al. [47] 
Nie and Zhong [45] 

0.2924 
0.2889 
0.2832 
0.2807 
0.2829 
0.2807 
0.2801 
0.2800 
0.2805 
0.2800 
0.2799 
0.280 
0.277 

0.5585 
0.5543 
0.5542 
0.5530 
0.5544 
0.5530 
0.5527 
0.5526 
0.5530 
0.5526 
0.5525 
0.553 
NA 

0.5993 
0.5906 
0.5774 
0.5711 
0.5787 
0.5713 
0.5697 
0.5693 
0.5703 
0.5692 
0.5690 
0.569 
NA 

0.7493 
0.7411 
0.7411 
0.7389 
0.7403 
0.7384 
0.7383 
0.7382 
0.7383 
0.7382 
0.7382 
0.738 
NA 

0.9238 
0.9195 
0.8966 
0.8851 
0.9055 
0.8864 
0.8827 
0.8819 
0.8849 
0.8815 
0.8811 
0.882 
NA 
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in which C0 is the elastic coefficient matrix at the bottom 
surface of the circular plate, the relevant coefficients 0

ijc  of 
which can be obtained using the corresponding Young’s 
modulus 0E  and Poisson’s ratio 0 ,u  as well as ( ) ( )( )[ ]0000

0
11 211/1 uuu -+-= Ec  ( ) ( )( )[ ]0000

0
11 211/1 uuu -+-= Ec , ( )00

0
11

0
12 1/ uu -= cc . In this paper, 

the ceramic material is used as the reference material, the 
material properties of which are 0 380E = GPa, 0 0.3u =  
and 3

0 3800 kg/mr =  [45, 47]. 
Table 1 shows the convergence studies for the current T3, T6 

and T10 FAPM solutions of the first five frequency parameters 
of the FG circular plate with clamped boundary conditions  
and different vibration modes, in which a dimensionless  
frequency parameter W is defined as 0

110 / ch rw=W 0
110 / ch rw=W . The  

material-property gradient index ezk  is taken to be ezk = 1,  
and the aspect ratios of the circular plate are taken to be h /R2 =  
0.2 and h = 0.2 m. Table 2 shows the convergence studies for 
the current T3, T6 and T10 FAPM solutions for the lowest 
frequency parameters of the FG circular plate with clamped 
boundary conditions, different aspect ratios, and different 
material-property gradient indices values. In these two tables, 
the uniform meshes on the nodal surface (i.e., the radial-
thickness surface) are taken to be (nr ´ nz) = (16x4), (32x4), 
(32x8) and (64x16) for the T3 FAPM, (nr ´ nz) = (8x4), (16x4), 
(32x4) and (32x8) for the T6 FAPM, and (nr ´ nz) = (8x4), 
(16x4) and (32x4) for the T10 FAPM, in which nr and nz are 
the total numbers of annular prisms used in the radial and 
thickness directions, respectively. 

It can be seen in Tables 1 and 2 that the current FAPM solu-
tions converge rapidly. The convergent solutions for T3, T6 

and T10 FAPM are obtained when meshes (nr ´ nz) = (64x16), 
(32x8) and (32x4) are used, respectively. These convergent 
solutions are shown to be in excellent agreement with the 3D 
SSDQ solutions obtained by Kermani et al. [47] and Nie and 
Zhong [45]. The performance of these FAPMs are T10 > T6 > 
T3, in which the symbol “>” represents more accurate solu-
tions and a fast convergence rate, such that the T6 with a uni-
form (32x8) mesh and the T10 with a uniform (32x4) mesh 
are recommended for the following parametric study with 
regard to the free vibration analysis of the bi-directional expo-
nential function-type FG annular plates with nine different 
boundary conditions. Results also show the frequency parame-
ters decrease when the material-property gradient index ( ezk ) 
becomes greater and the plate thickness-to-radius ratio (h /R2) 
becomes lesser, which represents the gross stiffness-to-mass 
ratio of the FG circular plate becomes softer. 

 
3.2 Bi-directional exponential function-type FG annular 

plates 

The free vibration behavior of a bi-directional exponential 
function-type FG annular plate with various boundary condi-
tions is investigated in this section. The material properties of 
the FG annular plate are assumed to obey a bi-directional ex-
ponential function distribution over the radial-thickness sur-
face. They are given as follows: 

 

( ) ( ) ( )20.5 / /0, e z e rz h r R
ij ijc r z c e ek ké ù+ë û= ,  (41a) 

( ) ( ) ( )20.5 / /
0, e z e rz h r Rr z e ek kr r é ù+ë û= ,  (41b) 

Table 2. Convergence of T3, T6 and T10 FAPM solutions for the lowest frequency parameters of fully-clamped, one-directional exponential func-
tion-type FG circular plates with different values of aspect ratios and material property gradient indices ezk . 
 

h/R2 Theories 0ezk =   1ezk =  2ezk =  3ezk =  4ezk =  5ezk =  

0.2 

Current T3 (16x4) 
Current T3 (32x4) 
Current T3 (32x8) 
Current T3 (64x16) 
Current T6 (8x4) 
Current T6 (16x4) 
Current T6 (32x4) 
Current T6 (32x8) 
Current T10 (8x4) 
Current T10 (16x4) 
Current T10 (32x4) 
Nie and Zhong [45] 

0.1030 
0.1016 
0.0987 
0.0976 
0.0981 
0.0975 
0.0973 
0.0973 
0.0975 
0.0973 
0.0972 
0.098  

0.1005 
0.0994 
0.0965 
0.0954 
0.0959 
0.0953 
0.0951 
0.0951 
0.0953 
0.0951 
0.0951 
0.096 

0.0947 
0.0938 
0.0907 
0.0896 
0.0900 
0.0895 
0.0893 
0.0893 
0.0895 
0.0893 
0.0893 
0.090 

0.0868 
0.0861 
0.0827 
0.0816 
0.0819 
0.0814 
0.0812 
0.0812 
0.0814 
0.0812 
0.0812 
0.082 

0.0784 
0.0779 
0.0740 
0.0728 
0.0730 
0.0725 
0.0724 
0.0724 
0.0725 
0.0724 
0.0724 
0.073 

0.0705 
0.0701 
0.0657 
0.0644 
0.0644 
0.0640 
0.0639 
0.0639 
0.0640 
0.0639 
0.0639 
0.064 

0.4 

Current T3 (16x4) 
Current T3 (32x4) 
Current T3 (32x8) 
Current T3 (64x16) 
Current T6 (8x4) 
Current T6 (16x4) 
Current T6 (32x4) 
Current T6 (32x8) 
Current T10 (8x4) 
Current T10 (16x4) 
Current T10 (32x4) 
Nie and Zhong [45] 

0.3315 
0.3293 
0.3210 
0.3181 
0.3190 
0.3179 
0.3175 
0.3172 
0.3177 
0.3173 
0.3171 
0.319 

0.3253 
0.3236 
0.3152 
0.3124 
0.3130 
0.3120 
0.3117 
0.3115 
0.3119 
0.3115 
0.3114 
0.313 

0.3104 
0.3091 
0.2997 
0.2967 
0.2971 
0.2962 
0.2959 
0.2957 
0.2961 
0.2958 
0.2957 
0.298 

0.2899 
0.2890 
0.2780 
0.2746 
0.2747 
0.2739 
0.2737 
0.2735 
0.2738 
0.2736 
0.2735 
0.275 

0.2675 
0.2669 
0.2540 
0.2500 
0.2498 
0.2490 
0.2488 
0.2487 
0.2489 
0.2487 
0.2487 
0.250 

0.2458 
0.2454 
0.2303 
0.2258 
0.2252 
0.2244 
0.2243 
0.2242 
0.2243 
0.2242 
0.2241 
0.225 
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where erk  stands for the material-property gradient index in 
the radial directions. 

A dimensionless frequency parameter W  is defined as 

having the same form as that used in the numerical example 
3.1.  

Table 3 shows the convergent solutions of T6 and T10 

Table 3. Convergent solutions of T6 and T10 FAPMs for the first five frequency parameters of bi-directional exponential function-type FG annular 
plates with different boundary conditions. 
 

BCs Theories 1W   2W  3W  4W  5W  

C-C Current T6 (32x8) 
Current T10 (32x4) 

0.2578 
0.2576 

0.4877 
0.4877 

0.5696 
0.5691 

0.7827 
0.7825 

0.8817 
0.8817 

C-S Current T6 (32x8) 
Current T10 (32x4) 

0.1726 
0.1725 

0.3558 
0.3557 

0.4877 
0.4877 

0.5046 
0.5043 

0.8817 
0.8817 

C-F Current T6 (32x8) 
Current T10 (32x4) 

0.0404 
0.0404 

0.0492 
0.0492 

0.2279 
0.2277 

0.3555 
0.3555 

0.5854 
0.5850 

S-C Current T6 (32x8) 
Current T10 (32x4) 

0.2283 
0.2282 

0.4877 
0.4877 

0.5451 
0.5449 

0.6344 
0.6343 

0.8817 
0.8817 

S-S Current T6 (32x8) 
Current T10 (32x4) 

0.1453 
0.1453 

0.2983 
0.2983 

0.4757 
0.4757 

0.4877 
0.4877 

0.8670 
0.8668 

S-F Current T6 (32x8) 
Current T10 (32x4) 

0.0276 
0.0276 

0.0492 
0.0492 

0.2000 
0.2000 

0.2980 
0.2980 

0.5574 
0.5573 

F-C Current T6 (32x8) 
Current T10 (32x4) 

0.1129 
0.1129 

0.3534 
0.3532 

0.4559 
0.4559 

0.6329 
0.6329 

0.6866 
0.6863 

F-S Current T6 (32x8) 
Current T10 (32x4) 

0.0485 
0.0485 

0.2823 
0.2823 

0.2977 
0.2977 

0.4559 
0.4559 

0.6257 
0.6256 

F-F Current T6 (32x8) 
Current T10 (32x4) 

0.0788 
0.0788 

0.2974 
0.2974 

0.3490 
0.3490 

0.5855 
0.5855 

0.7066 
0.7065 

 

 
(a)  

 
(b) 

 
(c) 

 
(d)  

 
(e) 

 
(f) 

 
(g) 

 

 
(h) 

 
(i) 

Fig. 3. The mode shapes of the displacement component zu  corresponding to the lowest frequency parameter of the bi-directional exponential 
function-type FG annular plate with (a) C-C; (b) C-S; (c) C-F; (d) S-C; (e) S-S; (f) S-F; (g) F-C; (h) F-S; (i) F-F boundary conditions. 
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FAPMs for the first five frequency parameters of the bi-
directional exponential function-type FG annular plates with 
nine different boundary conditions, which are the CC, CS, 
CF, SC, SS, SF, FC, FS and FF boundary conditions, where 

1er e zk k= = ; h/R2 = 0.2; R1/R2 = 0.2 and R2 = 1 m, and ˆ 0n = , 
which is the axisymmetric mode. It can be seen in Table 3 that 
the solutions of frequency parameters of the plate obtained 
using the T6 FAPM with the mesh (32x8) and the T10 FAPM 
with the mesh (32x4) are closely agree with each other, and 
that the effects of different boundary conditions on the fre-
quency parameters of the annular plate are significant. It is 
noted that the lowest frequency parameters of the annular 
plates do not always occur at n̂  = 0 when the plates under a 
free edge condition. For example, the lowest frequency 
parameters occur at ˆ 2n =  for the FF boundary conditions, 
and at ˆ 1n =  for the CF and SF boundary conditions, which 
are asymmetric vibration modes, while ˆ 0n = , which is the 
axisymmetric vibration mode, for the others. The magnitude 
order of the lowest frequency parameters of the annular plates 
for different boundary conditions is CC > SC > CS > SS > FC 
> FS for the axisymmetric vibration mode cases, which re-
flects the magnitude order with regard to the gross stiffness of 
the annular plates with different boundary conditions. This 
observation is also supported by the results of Liu and Lee 
[56] and Zhou et al. [57], in which the free vibration behavior 

of a single-layered isotropic annular plate with different 
boundary conditions was examined.  

Fig. 3 shows the mode shapes of the displacement zu  at 
the mid-surface of the bi-directional exponential function-type 
FG axisymmetric annular plates with nine different boundary 
conditions, CC, CS, CF, SC, SS, SF, FC, FS and FF, in which 
h/R2 = 0.1; R1/R2 = 0.2 and R2 = 1 m; 1er e zk k= =  and ˆ 0n = . 
As expected, the results show the axisymmetric behavior to 
occur in the circumferential direction for the plates with as-
sorted boundary conditions.  

Fig. 4 shows the mode shapes of the displacement zu  on 
the mid-surface of the bi-directional exponential function-
type FG annular plates with SS boundary conditions for the 
vibration modes corresponding to the first three lowest fre-
quency parameters, i.e., ( 1 3)i iW = - , in which h/R2 = 0.1; 
R1/R2 = 0.2 and R2 = 1 m; 2er e zk k= =  and ˆ 0n = . Again, 
axisymmetric behavior in the circumferential direction for 
these mode shapes of the displacement component zu  is 
observed, while there are no remarkable variations similar 
to those of trigonometric functions with a series of half wave 
numbers in the radial direction because there are variable 
coefficients appearing in the motion equations in the radial 
direction, which make it impossible to represent the vibration 
behavior of the annular plate as the simple harmonic vibration 
mode. 

Table 4. Convergent solutions of T6 and T10 FAPMs for the lowest frequency parameters of simply-supported, bi-directional exponential function-
type FG annular plates with different values of the inner radius-to-outer radius ratios. 
 

Theories R1/R2 = 0.05 R1/R2 = 0.1 R1/R2 = 0.3 R1/R2 = 0.5 R1/R2 = 0.8 

Current T6 (32x8) 0.1119 0.1207 0.1825 0.2333 0.1963 

Current T10 (32x4) 0.1118 0.1207 0.1825 0.2333 0.1963 

 
Table 5. Convergent solutions of T6 and T10 FAPMs for the lowest frequency parameters of simply-supported, bi-directional exponential function-
type FG annular plates with different values of the material-property gradient indices ezk  and erk . 
 

 1ezk =  2ezk =  3ezk =  

Current T6 (32x8) 0.1453 Current T6 (32x8) 0.1386 Current T6 (32x8) 0.1310 
1ezk =   

Current T10 (32x4) 0.1453 Current T10 (32x4) 0.1386 Current T10 (32x4) 0.1310 

Current T6 (32x8) 0.1367 Current T6 (32x8) 0.1305 Current T6 (32x8) 0.1236 
2ezk =  

Current T10 (32x4) 0.1367 Current T10 (32x4) 0.1305 Current T10 (32x4) 0.1235 

Current T6 (32x8) 0.1248 Current T6 (32x8) 0.1193 Current T6 (32x8) 0.1130 
3ezk =  

Current T10 (32x4) 0.1247 Current T10 (32x4) 0.1193 Current T10 (32x4) 0.1130 

 

(a) 
 

 
(b) 

 
(c) 

Fig. 4. The mode shapes of the displacement component zu  corresponding to the first three frequency parameters of the simply-supported, bi-
directional exponential function-type FG annular plate (a) 1W ; (b) 2W ; (c) 3W , in which n̂ = 0. 
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Table 4 shows the convergent solutions of T6 and T10 
FAPMs for the lowest frequency parameters of simply-
supported, bi-directional exponential function-type FG annu-
lar plates with different values of inner radius-to-outer radius 
ratios, in which h/R2 = 0.2, R2 = 1 m, 1er e zk k= = , ˆ 0n =  
and R1/R2 = 0.05, 0.1, 0.3, 0.5 and 0.8. It can be seen in 
Table 4 that the convergent solutions of T6 FAPM with the 
(32x8) mesh are exactly the same as those of T10 FAPM 
with the (32x4) mesh. The frequency parameters initially 
increase when the R1/R2 ratio change from 0.05 to 0.5, and 
then they will decrease when the R1/R2 ratio becomes greater. 

Table 5 shows the convergent solutions of T6 and T10 
FAPMs for the lowest frequency parameters of simply-
supported, bi-directional exponential function-type FG annu-
lar plates with different values of the material-property gradi-
ent indices erk  and e zk , in which h/R2 = 0.2, R1/R2 = 0.2, 
R2 = 1 m, and ˆ 0n = . It can be seen in Table 5 that the fre-
quency parameters decrease when the values of erk  and e zk  
become greater. Results also show the frequency parameter 
in the case of ( , ) (3, 1)er e zk k =  is 9.84 % lesser than that 
that in the case of ( , ) (1, 1)er e zk k = , and the frequency pa-
rameter in the case of ( , ) (1, 3)er e zk k =  is 14.1 % lesser than 
that that in the case of ( , ) (1, 1)er e zk k = . The effect of e zk  
on the frequency parameter of the FG annular plate is more 
significant than the effect of erk . 

 
4. Concluding remarks 

Within the framework of 3D elasticity theory, the authors 
develop a weak-form formulation of various RMVT-based 
FAPMs to examine the free vibration behavior of bi-
directional exponential function-type FG thick annular plates 
with nine different boundary conditions. Implementation of 
these FAPMs shows that the current FAPM solutions con-
verge rapidly and that their convergent solutions are in excel-
lent agreement with the 3D SSDQ solutions available in the 
literature. The performance of assorted FAPMs is T10 > T6 > 
T3, in which the symbol “>” represents more accurate results 
and a rapid convergence rate, and the current T6 and T10 
FAPMs with the (32x8) and (32x4) meshes, respectively, are 
recommended for the analysis of typical bi-directional FG 
thick annular and circular plates. 

In the numerical examples, the results show that the effects 
of different boundary conditions on the frequency parameters 
of the bi-directional FG annular plates are significant. The 
frequency parameters decrease when the material-property 
gradient index becomes greater and the plate becomes thinner, 
which represents the gross stiffness-to-mass ratio of the FG 
circular plate becomes softer. In addition, the effect of e zk  on 
the frequency parameter of the FG annular plate is more sig-
nificant than the effect of erk . Because accurate solutions for 
the issue discussed herein are rare in the literature, these con-
vergent solutions obtained using the FAPMs can provide a 
reference for assessing the performance of other numerical 
methods. 
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