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Abstract 
 
Fault diagnosis of a mechanical device such as a complicated aero-engine system is an interesting engineering topic. Present paper 

aims at providing a method to automatically extract abrupt information of signals to diagnose typical faults. This proposed method is 
based on singular value decomposition (SVD), and it decomposes a signal via reconstruction of singular value matrix. A criterion of 
difference spectrum is introduced into this method to terminate the analysis procedure. To verify the proposed method, both numerical 
simulation and experimental work on rotor test rig and an aero-engine generator were carried out. In addition, the kurtosis of rubbing 
resulting from wavelet, empirical mode decomposition (EMD) and this proposed method was compared. It is shown the proposed 
method is advanced to wavelet and EMD in rubbing fault diagnosis of aero-engines since it can extract the most significant periodic im-
pact feature of fault signals.  
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1. Introduction 

Machine fault diagnosis is concerned with finding faults 
arising in machines to identify the faults of a mechanical sys-
tem by monitoring its operating signals, from which the fault 
features are extracted once a fault occurs. Most of fault infor-
mation, including impact, oscillation and structure failure, is 
carried in abrupt signals [1]. Hence how to extract abrupt in-
formation from the detected signals has become the key to 
diagnosing typical faults, such as operational change of struc-
tures, rotor-stator rubbing, bearing pitting and gear tooth 
breaking/wearing [2-5]. 

Since an abrupt signal usually contains important fault in-
formation, much investigation has been conducted on the sig-
nal extraction technique. By far, a number of abrupt signal 
processing methods, such as frequency spectrum (FS) analysis, 
wavelet transform (WT), empirical mode decomposition 
(EMD), and singular value decomposition (SVD), have been 
developed and led to a variety of applications in fault diagno-
sis field. 

FS analysis is one of conventional technologies used in fault 
diagnosis [6]. By this method, a signal can be transformed 
from time domain to frequency domain by using fast Fourier 

transform (FFT). The frequency spectrum obtained from FFT 
contains multiple frequency components. If a signal carries 
abrupt information, a new frequency appears at a wide fre-
quency band [7]. At a high frequency band, the variation of 
frequency and energy caused by abrupt information becomes 
quite obvious because the high frequency related information 
contained in normal signal is very weak. FS analysis can be 
used to identify strong abrupt signals. However, it is a global 
scheme to find the variation law from entire signals and in 
turn not capable of analyzing transitory signals or extracting 
weak abrupt information [8].  

WT, which was developed from Fourier transform (FT), is 
used to extract information from many different kinds of data, 
like signals and images. Different from FT, WT can be used 
for multi-scale analysis of the signal through dilation and 
translation [9]. WT is advanced to FT to extract time-
frequency features of a signal effectively [10-12] and available 
to abrupt signal processing [13]. However, WT still has some 
inevitable deficiencies [14], including interference term, bor-
der distortion and energy leakage. They may generate many 
small undesired spikes all over the frequency scales and make 
the results confusing and difficult to be interpreted. In addition, 
the analytical result of WT highly relies on the selection of the 
mother wavelet and signal decomposition level [15], and its 
extraction results are usually undesirable under strong noise 
disturbance [16, 17]. 
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EMD is an adaptive signal processing method, by which 
any complicated signal can be decomposed into a finite small 
number of components. These components form a complete 
and nearly orthogonal basis for the original signal and de-
scribed as intrinsic mode functions, which can be frequency 
and amplitude modulated [18]. Since the decomposition is 
based on the local characteristic time scale of the data, EMD is 
available to nonlinear and nonstationary processes [19]. In 
general, it can effectively extract signal features of harmonic 
waves since intrinsic mode functions are obtained based on 
the cubic spline curve fitting. But sometimes it fails to extract 
abrupt information because the cubic spline curves are unable 
to fully match the transient characteristics of signals [20]. 

SVD has also been applied effectively to extract abrupt in-
formation of raw test signals [15, 21]. SVD is the factorization 
of a real or complex matrix. Its effectiveness has been vali-
dated and led to many applications in signal processing and 
fault diagnosis in recent years [22-24]. Though SVD based 
technology is regarded as a good filter to suppress the nonlin-
earity of noise distributed in different forms [25], further in-
vestigation is still necessary, such as selection of appropriate 
reconstructed dimensions and the approach to reconstruct the 
singular value of signals. 

This paper proposes an automatic method to extract abrupt 
information of fault signals from raw signals. The abrupt sig-
nal extraction is developed from SVD and promoted by select-
ing order of singular values automatically without highly rely-
ing on experience of operators. Therefore, it is easy to imple-
ment and applicable for practical engineering applications. 
Based on SVD, the signals are decomposed via reconstruction 
of singular value matrix, and then abrupt information contain-
ing fault characteristics is extracted. To verify the proposed 
method, both numerical analysis and experimental work were 
conducted. Their results were compared with wavelet and 
EMD methods to show advantage of the proposed method. 

 
2. Proposed SVD based method 

2.1 The reconstruction attractor trajectory matrix of time 
series 

Assume a signal originating from the mechanical fault of a 
machine is in time series 1 2 3, , , , nx x x xL . Its reconstruction 
attractor trajectory is written by 

 
( ) ( ) ( )1 , 2 , , ,mD X X X té ù= ë ûL   (1) 

 
and 
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where m  is the reconstruction dimension and t  the time 
delay. Based on Takens' theorem, the properties of the dy-
namical system in the reconstructed phase space are preserved 
under the condition that the reconstruction dimension 

2 1m d³ + , where d is the attractor’s dimension of original 
dynamic system. The time delay t  is usually equal to 1. 
Then the reconstruction attractor trajectory is 
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2.2 SVD method 

SVD is the factorization of a real or complex matrix, which 
leads to numerous useful applications in signal processing and 
statistics. Given a matrix D  of order m n´ , it can be de-
composed by 

 
,TD U V= L   (4) 

 
where L  is an m n´  rectangular diagonal matrix with real 
numbers 1 2 3 0pl l l l³ ³ ³ ³ >L  on the diagonal: 
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The m m´  matrix U  and n n´  matrix V  are left-

singular and right-singular matrices of ,D  respectively. The 
column vectors of U  and V  are standard orthogonal basis 
of D  and expressed by { }1 2, , , mU u u u= L  and V =  
{ }1 2, , , ,nv v vL  respectively [26]. 

In signal processing, reconstruction means determination of 
an original continuous signal from a sequence of equally 
spaced samples. A reconstructed signal is usually derived 
from the inverse operation of SVD and expressed by [27]  
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It is obvious the reconstruction based on various singular 

values results in signal components with energy of different 
frequency bands at different directions of a reconstruction 
space. Hence the selection of singular values is critical in ex-
traction of abrupt information.  

 
2.3 Selection of order of singular values 

The fault signal detected from a machine usually consists of 
three components: Impact, harmonic background signal and 
noise [28]. Thus, it is key to separate these three components 
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from the signal and enhance their fault information. However, 
separation of such components is not easy because sometimes 
the frequency of a fault signal is very close to frequency of 
impact signal or noise [29, 30]. The SVD based method is an 
optional solution to identify the types of signal components 
because the decomposed singular values of matrix mD  vary 
with different category of components.  

It has been indicated that the harmonic signal contributes to 
high singular values at first several orders and the impact sig-
nal affects the values at orders of middle phase [25]. Unlike 
these two types of signals, noise is associated with small sin-
gular values, which are almost not changed at different orders. 
Fig. 1 shows an example of the singular values detected from 
a machine and their difference spectrum. It is seen the values 
are changed obviously at different phases. Clearly, the recon-
structed singular values at different orders carry various quan-
tity of energy at different frequency bands. It means the selec-
tion of orders of singular values is of great importance in sig-
nal decomposition and extraction. Large number of singular 
values usually leads to mixture of noise or abrupt information 
with normal signals originating from the source. While, small 
size of singular values may lose useful information of signals. 
Thus, it is necessary to choose a suitable number of singular 
values at proper position in abrupt information extraction. 

If the singular values are capable of dividing into a number 
of sections based on the category of their signal components, 
it is probable to conduct singular value reconstructions, re-
spectively, and decompose the different components of the 
signals. As a result, each resulting component would not be 
disturbed by other decomposed components and in turn accu-
rate abrupt information is observed. One option to implement 
it is arranging the singular values of reconstruction attractor 
trajectory matrix in a descending order and taking the differ-
ence between each two neighboring singular values over a 
threshold as a criterion to identify various energy sections. 
When it happens, these two neighboring singular values are 
reconstructed and the signal decomposition is implemented. 
As mentioned above, SVD is based on the mechanism that 
signals at different frequency bands carry various quantity of 
energy. To denote the percentage of the energy contained in 
an abrupt signal among entire signals, a parameter k , defined 
by the amplitude ratio of abrupt signal to sinusoidal signal, is 

introduced in this paper. 
 

2.4 Abrupt information extraction based on difference spec-
trum of singular values 

To extract the abrupt information effectively, a difference 
spectrum of singular values is introduced to select the appro-
priate order of singular values. Arranging the singular values 
in a descending order and their difference spectrum is defined 
by 

 
1 , 1,2, , 1,n n nc n ql l += - = -L   (7) 

 
where the series 1 2 1, , , qc c c -L  represent the difference be-
tween each neighboring singular values. Obviously, the 
maximum kc  means the difference of neighboring singular 
values between kl  and 1kl +  is the largest, i.e., the singular 
value changes most abruptly at kl . Categorizing the singular 
values from 1l  to kl  into one frequency band of signals, 
the expected components can be extracted accurately after 
reconstructing these singular values. Then the rest of signals 
are reconstructed to extract new components belonging to 
second frequency band of signals. Such process can be re-
peated to extract the abrupt information at different frequency 
bands until a given termination condition is triggered.  

From the viewpoint of energy, no useful abrupt information 
would be extracted from the signals if the energy contained in 
components of those signals is much smaller than the energy 
of initial signals. Thus, the termination condition is established 
by the criterion that the decomposition ends when the sum of 

 
 
Fig. 1. The singular values detected from a machine and their differ-
ence spectrum. 

 

 
 
Fig. 2. The flowchart of abrupt information extraction process based on 
the proposed SVDS. 
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singular values of residual signal components begins to be 
smaller than one-tenth of the average of singular values deriv-
ing from the trajectory matrix of initial signals. This criterion 
is built on the basis of numerous experimental results, aiming 
at the target that the decomposition times are enough to extract 
weak abrupt information without too many redundancy calcu-
lations. The abrupt information extraction of fault signals is 
based on a proposed singular value difference spectrum 
(SVDS) method. Fig. 2 addresses the detailed extraction proc-
ess by a flowchart.  

 
3. Numerical simulation 

Given a signal 
 
( ) 1 2 3x t x x x= + +   (8) 

 
where 1x  is a typical harmonic signal, which may be defined 
by a function of trigonometric sines and cosines, for example 
 

1 3sin(20 5) 0.4cos(30 5)x t t= + + +   (9) 
 
The variable 2x  represents the component containing 

abrupt information of signals and expressed by a pulse se-
quence with amplitude 0.5 and frequency 6p Hz. And 3x  is 
white Gaussian noise whose average is 0 and variance is 0.5. 
Under such conditions, the parameter k  is equal to 1/6. Figs. 
3(a)-(c) show the signals 1 2 3, , ,x x x  respectively, and Fig. 
3(d) shows the composite signal superposed by these three 
signals. 

It is found in Fig. 3 that the amplitudes of either abrupt sig-
nal or noise are smaller than sinusoidal signal; thus the ampli-
tude of their composite signal is not significantly high. It is 

seen that the amplitudes of noise and abrupt signal are not 
quite different, so does their energy. It means the pulse signal 
is usually mixed with noise and not easy to be separated. 
However, the singular values at each order have different con-
tribution to different types of signal components. Such feature 
is utilized by the proposed SVDS method to decompose the 
signals. And a MATLAB program based on the proposed 
method is compiled. Given the order of reconstruction matrix 
40 and k  equals to 1, the signal is decomposed and its result 
is plotted in Fig. 4. The kurtosis of original signal and its 
components are also calculated and listed in Table 1.  

The results show that the first and second decomposition re-
sults can be, respectively, fitted by two harmonic signals, 
3sin(20 5)t +  and 0.4cos(30 5)t + . Table 1 shows that the 
kurtosis of the component after the fourth decomposition is 
the largest and it is more than four-times of the kurtosis of the 
original signal. It presents strong impact characteristic of the 
signal, indicating the abrupt information has been successfully 
extracted. Compared with simulated impact signal, it can ex-
tract the impact period and amplitude of the abrupt signal as 

 
Fig. 3. The component signal and their composite signal: (a) The trigo-
nometric function 1x ; (b) the pulse sequence; (c) the white Gaussian 
noise; (d) composite signal.  

 

Table 1. The kurtosis of original signal and its components. 
 

Signal Kurtosis 

Original signal 1.61 

First decomposition 1.51 

Second decomposition 1.63 

Third decomposition 5.95 

Fourth decomposition 6.77 

Fifth decomposition 6.31 

 

 
Fig. 4. The decomposition results based on SVDS method: (a) First 
decomposition; (b) second decomposition; (c) third decomposition; (d) 
fourth decomposition; (e) fifth decomposition. 
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well, i.e., the relative energy of the abrupt signal. The wave-
form of signal in the fifth decomposition shows the energy 
contained in residual signals is small enough to stop the next 
decomposition, verifying the proposed termination condition 
works well. 

To highlight the advantage of the proposed method, the 
same signals were also extracted by two general methods, WT 
and EMD. In wavelet decomposition, the wavelet is db5. 
Their resulting waveforms are, respectively, shown in Figs. 
5(a) and (b). The final kurtosis of abrupt signals obtained by 
these three methods is listed in Table 2. The kurtosis obtained 
from these three methods is large enough to present strong 
impact features, and the one derived from the proposed SVDS 
method is the largest. 

 
4. Experimental validation 

Fig. 6 shows the experimental setup of the rubbing genera-
tor of an aero-engine. The test signal originating from the 
generator is shown in Fig. 7. The rotation speed of the rotor is 
2340 r/min and rotation frequency is 39 Hz. The sampling 

frequency is 5000 Hz. The clearance between the rotor and 
stator case is adjustable to control the generation and level of 
the rubbing. The clearance adjustment is implemented by 
misaligning the axes of the rotor and stator.  

To validate the proposed method, a slight rubbing test was 
carried out. Based on the proposed method, the rubbing sig-

Table 2. The kurtosis of abrupt signals obtained by SVDS, WT and 
EMD methods. 
 

Method Kurtosis 

Proposed SVDS 6.77 

WT 5.16 

EMD 4.09 

 

 
Fig. 5. The extraction results obtained from: (a) WT; (b) EMD. 

 

 
 
Fig. 6. Experimental setup of the rubbing generator of an aero-engine. 

 
 
Fig. 7. Test signals originated from the rubbing generator of an aero-
engine. 

 
 

 
Fig. 8. Decomposition results: (a)-(i) Signals extracted from first to 
ninth decomposition respectively. 
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nals were analyzed via the MATLAB program with recon-
struction matrix order 40, and the decomposition results are 
shown in Fig. 8. The calculated kurtosis is listed in Table 3. 

It is shown in Fig. 8 that harmonic signals, abrupt signals 
and noise are extracted in sequence based on SVDS method. 
In the fourth extraction, the periodic impact feature of signals 
is clearly observed, as shown in Fig. 8(d). Moreover, the kur-
tosis in this step of decomposition is the largest and its impact 
feature is very significant. It validates that the proposed 
method is effective to decompose signal and extract abrupt 
information in practical applications. 

The same rubbing signals were decomposed by using WT 
and EMD methods, and their extraction results are plotted in 
Figs. 9(a) and (b), respectively. The comparison among them 
reveals that the extracted signals based on the proposed 
method and wavelet possess a significant periodic impact 
feature and their amplitudes and impact time are almost the 
same, while the extracted signals resulting from EMD method 
are not satisfying. The kurtosis is calculated and summarized 
in Table 4. It is found the kurtosis of SVDS is the largest and 
that of WT is the smallest. 

The extracted signals were demodulated and their envelope 
spectrum is plotted in Figs. 10(a)-(c), respectively. The enve-
lope spectrums obtained from WT and EMD methods mix 
multiple components with impact signals; thus the rubbing 

feature is not observed obviously. The envelope spectrums 
obtained from the proposed method also contain some mixed 
components. However, its primary frequencies appear at the 
peak value nearby 39.06, 97.66 and 127.00 Hz and present a 
multiplication frequency relation. Moreover, the rubbing in 
tests is local rub-impact, which happens once in one cycle. 
Hence, the demodulated impact frequency must be the same 
with rotation frequency. The demodulated frequency derived 
from the proposed SVDS method is 39.06 Hz, which accu-
rately reflects the primary frequency and impact feature of 
vibrations. Though the impact frequencies obtained from WT 
and EMD methods present periodic impact feature, the two 
frequencies 34.18 and 29.30 Hz derivate from the rotation 
frequency. It definitely verifies the proposed method is more 
effective than other two methods. 

Table 3. The kurtosis of original signal and its components. 
 

Signal Kurtosis 

Original signal 2.01 

First decomposition 1.65 

Second decomposition 2.27 

Third decomposition 3.05 

Fourth decomposition 4.57 

Fifth decomposition 2.88 

Sixth decomposition 2.61 

Seventh decomposition 2.86 

Eighth decomposition 3.03 

Ninth decomposition 3.08 

 
 

 
 
Fig. 9. Extraction of rubbing signals based on: (a) WT; (b) EMD. 

 

Table 4. The kurtosis of rubbing signals obtained from an aero-engine 
generator by different methods. 
 

Method Kurtosis 

Proposed SVDS 4.57 

WT 3.46 

EMD 3.76 

 
 

 
 
Fig. 10. The envelop demodulation spectrum of extracted signals based 
on (a) proposed SVDS method; (b) WT method; (c) EMD method. 
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5. Conclusions 

This paper proposes a new signal decomposition method 
based on SVD method, in which the singular value difference 
spectrum is introduced to extract abrupt information of de-
tected fault signals. It is self-adaptive with an established ter-
mination condition capable of separating and ending signal 
processing automatically. To better understand the proposed 
method, the extraction procedure of this method is described 
in detail. 

To verify the effectiveness of the proposed method, both 
numerical simulation and experimental work were conducted. 
The simulation result indicates the difference spectrum is quite 
helpful in selecting singular values of reconstructed signals in 
signal decomposition and separate category of multiple com-
ponents in the viewpoint of energy. In addition, rubbing tests 
on a rubbing generator of an aero-engine were performed. The 
results show the extraction of abrupt information from fault 
signals is satisfying. 

To shed light on the advantage of the proposed SVDS 
method, the same fault signals were also analyzed by WT and 
EMD method. Comparison among these three methods indi-
cates that the extracted signal resulting from the proposed 
method possesses more significant periodic impact feature and 
more accurate primary frequency with fewer disturbed com-
ponents than WT and EMD methods in rubbing fault diagno-
sis. It is advanced due to its ability to automatically extract the 
abrupt information of faults from raw signals without highly 
relying on experience of operators. 
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