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Abstract 
 
This study investigated the tooth friction force and transmission error (TE) of spur gears due to sliding friction under quasi-static con-

dition. The sliding velocity and friction force of spur gears and mesh compliance during meshing were calculated. The load–deformation 
relations between the tooth normal load, tooth errors, and mesh compliance, and moment equilibrium equation, including friction force, 
were derived. The friction force, tooth load, and TE of unmodified and linear tip-relief modified spur gears were analyzed by using the 
derived equations. Results indicated that the friction force, tooth load, and TE increased during approach and decreased in recess regard-
less of tooth modification, particularly in the single-mesh region. Friction caused larger peak-to-peak change of TE than that without 
friction. Xu’s friction coefficient generated smooth TE and tooth load transitions near the pitch point, and BK’s friction coefficient re-
mained approximately constant, except for the sharp increase in tooth load and TE near the pitch point.  
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1. Introduction 

Efficiency of gears must be improved to meet the regula-
tions regarding CO2 and fuel economy. Frictional mechanics 
of spur gears as the basic gear should be investigated to im-
prove the efficiency of gears. Tavakoli and Houser [1] devel-
oped a procedure to calculate the static transmission error 
(TE) and tooth load of spur gears without considering the 
friction force. Kar and Mohanty [2, 3] determined the time-
varying contact length and computed the friction force of 
helical gears. Vaishya and Singh [4] estimated the frictional 
force and applied sliding friction to several gear dynamic 
models. He et al. analytically investigated the effect of tooth-
profile modification in spur gears with sliding friction on 
dynamic transmission error (DTE) [5] and predicted the fric-
tion forces by using several sliding friction formulations [6]. 
Park analyzed the tooth load and TE of spur gears with con-
stant friction coefficient [7]. Liu et al. [8] reported the pro-
duction of additional DTE vibration magnitude due to the 
sliding friction of spur gears during meshing without detailed 
TE analysis. Han et al. [9] calculated the mesh stiffness of 
helical gears with consideration of friction. However, the 
comprehensive tooth load and TE analysis of spur gears un-
der real friction coefficient were not investigated. Friction of 
spur gears generates heat, which results in the increase of 

lubricant temperature and decrease of viscosity. The decrease 
in viscosity increases friction due to the increase of metal-to-
metal contact, which reduces efficiency. Therefore, friction is 
related to surface roughness, lubrication, temperature, torque, 
and gear kinematics. The friction force of spur gears at the 
pitch point changes the direction. Frictional force generates 
vibration due to its reverse direction during meshing. The 
bearings and housing load are accurately calculated by fric-
tion forces. Tooth friction is remarkable at a high torque and 
low speed. 

In this study, the kinematic relationship on the sliding ve-
locity of spur gears and compliance is investigated. The load-
deformation relations between the tooth normal load, TE, and 
mesh compliance, and the moment equilibrium, including the 
friction force, are derived. The TE, tooth load, and tooth slid-
ing friction forces are calculated by using the derived equa-
tions. The effects of constant/variable friction coefficient on 
unmodified and linear tip-relief modified spur gears are evalu-
ated. 

 
2. Friction force-related equations 

Sliding friction force of spur gears acts against sliding ve-
locity, which has different directions during approach and 
recess actions. Friction force is associated with gear–mesh 
kinematics, and is derived for approach and recess actions. 
Load-deformation equations and moment equilibrium with 
friction force are derived to obtain the TE. Spur gears are as-
sumed to have a low contact ratio. 
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2.1 Sliding velocity and friction force in approach 

Gear–mesh is composed of approach and recess actions. In 
this section, the sliding velocity and friction force for ap-
proach are derived. The radius of curvature in Fig. 1 when the 
gear approaches from initial meshing to the pitch point is de-
rived as follows [10]:  

 
1 1 1sinp pR Lr j= - ,           (1a) 

2 2 1sinp pR Lr j= + .           (1b) 

 
where 1L  is the distance from the pitch point to the meshing 
point along the line of action and changes from 0 to aL : 

10 aL L< £ , 2 2
2 2 2 sina o b p pL R R R j= - - . 

The rolling velocities of driving and driven gears are ex-
pressed as  

 
1 1 1V r w= ,                 (2a) 

2 2 2V r w= .                (2b) 
 

Sliding velocity is determined as 
 

1 2 1 1 2 2sV V V r w r w= - = - .          (3) 
 
The sliding velocity when the relation of constant pitch ve-

locity and Eq. (1) are applied to Eq. (3) is expressed as fol-
lows: 

 
( )1 1 2SV L w w= - + .              (4) 

 
The friction force in approach is directed toward the gear 

center in the off-line direction of action due to the negative 
sliding velocity of Eq. (4). A normal load and a friction force, 
which is the product of friction coefficient and normal load by 

applying the moment equilibrium about the gear center are 
expressed as [7]: 

 

( )
1

1 1 tann
b

TW
R m q

=
-

,            (5a) 

( )
1

1 1 tanf
b

TW
R

m
m q

=
-

.            (5b) 

 
2.2 Sliding velocity and friction force in recess 

To calculate the friction force in recess, the radius of curva-
ture in recess is derived as follows: 

 
1 1 2sinp pR Lr j= + ,            (6a) 

2 2 2sinp pR Lr j= - .           (6b) 

 
where 2L  is the distance from the pitch point to the meshing 
point along the line of action and varies from 0 to rL : 

20 rL L< £ , 2 2
1 1 1 sinr o b p pL R R R j= - - . 

The positive sliding velocity by using a similar manner to 
approach is obtained as follows: 

 
( )1 2 2 1 2sV V V L w w= = +- .         (7) 

 
Compared with approach, the friction force when the con-

tact is on recess acts on opposite direction from the gear center 
in the off-line direction of action. A normal load and a friction 
force by applying the moment equilibrium about the gear cen-
ter are expressed as [7]: 

 

( )
1

1 1 tann
b

TW
R m q

=
+

,            (8a) 

( )
1

1 1 tanf
b

TW
R

m
m q

=
+

.            (8b) 

 
2.3 Compliance 

Tooth deflection consists of bending and shear, Hertzian-
type contact, and tooth-foundation deflections. A spur gear 
tooth is modeled as a non-uniform cantilever beam with an 
effective length to obtain bending and shear deflections. The 
tooth displacement in the direction of the applied normal load 
is calculated based on cantilever beam theory under the as-
sumption of fixed tooth on a rigid foundation. Bending and 
shear compliance at the jth calculation point are given as fol-
lows [11]: 

 
2 3 2 21 [cos ( 3 ) / 3 cos sinbj k jk k jk k j

k e k

Q L S L S L Y
E I

q q q= + + -∑
 

2 2 2( 2 ) sin ]k jk k j kL S L Y Lq+ + ,                    (9) 
21.2 cosk

sj
k k

LQ
GA

q
=å .            (10) 

 
 
Fig. 1. Meshing kinematics of involute spur gear. 
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A modified version of Palmgren’s equation is used for a 
simple calculation of contact compliance, which is expressed 
as follows [1, 11]: 

 

0.9 0.8 0.1
12

1.37
h

e n

Q
E F W

= ,            (11) 

 
where the combined effective Young’s modulus is 

1 2
12

1 2

2 e e
e

e e

E EE
E E

=
+

. 

Foundation compliance is used to eliminate the previous 
rigid foundation assumption [1, 12]. Considering that a narrow 
tooth is supported by plane stress theory, foundation compli-
ance at the loading position is expressed as  

                                                            
2 2

2cos 16.67[ ( ) 2(1 ) ( ) 1.534(1 )]
2.4(1 )

f f
fj

e f f

L L TanQ
F E H H

q qu
p u

= + - × + +
× +

. 

   (12a)  
 
Considering that plane strain theory prevails for a wide 

tooth, foundation compliance is expressed as  
 

2 2
2 2

2

cos 16.67 1 2(1 )[ ( ) 2( ) ( )
1

f f
fj

e f f

L L
Q

F E H H
q u uu

p u
- -

= - + ×
× -  

    
 

2

1.534(1 )]
2.4(1 )

Tan q
u

+ +
+

.    (12b) 

 
The total tooth compliance at the jth calculation point is ob-

tained based on the sum of bending, shear, contact, and foun-
dation compliance, which is expressed as follows: 

 
12 12 12 12j bj sj fj hQ Q Q Q Q= + + + .    (13) 

 

2.4 Moment equilibrium and load-deformation equation   

Spur gears are assumed to have one or two pairs of teeth 
mesh to derive the TE equations and tooth load of spur gears. 
The normal load and friction forces of driving gear in two 
pairs of meshing teeth are shown in Fig. 2. The load across the 
face width of gears is assumed to be uniformly distributed. 
The load-deformation relations with tooth modification and 
profile errors, tooth compliance, and tooth normal load, and 
the moment equilibrium with input torque, friction forces, and 
normal load yield at the jth calculation point are expressed in 
the three following equations:  

 
1 1 1

j nj j jW Q ED + = ,           (14) 
2 2 2

j nj j jW Q ED + = ,           (15) 
2 1 2 2 2 1 1 1

1 1 1nj b nj b nj j nj jW R W R W W Tm r m r+ - + = .   (16) 

 
The TE and tooth load are determined by solving simulta-

neous equations. In two pairs of meshing teeth, the TE and 

normal load of the first and second meshing teeth at the jth 
calculation point are expressed as follows:  

 
( ) ( )

( ) ( )
1 2 2 2 2 1 1 1 1 2

1 1 1

1 2 1 1 2 2 2 1
1

j j j b j j j b j j
j

b j j j j j j

T Q Q E R Q E R Q

R Q Q Q Q

m r m r

m r m r

+ + +
D =

+ +

-

-
. 

                                       (17) 
( )( )

( ) ( )
2 1 2 2 2

1 11
1 2 1 1 2 2 2 1

1

j j j b j
nj

b j j j j j j

T Q E E R
W

R Q Q Q Q

m r

m r m r

+
=

+ +

- -

-
,   (18) 

( )( )
( ) ( )

1 2 1 1 1
1 12

1 2 1 1 2 2 2 1
1

j j j b j
nj

b j j j j j j

T Q E E R
W

R Q Q Q Q

m r

m r m r

+ +
=

+ +

-

-
.   (19) 

 
The force of tooth 1 is tensile when tooth load 1 of Eq. (18) 

is negative. Tooth 1 loses meshing, and only tooth 2 is in a 
meshing state. Then, the normal load and TE are expressed as 
follows: 

 
1 0njW = ,                     (20) 

( )2 2 2
1 1/nj b jW T R m r= - ,            (21) 
2 2 2

j j nj jE W QD = - .               (22) 

 
By contrast, tooth 2 loses meshing, and only tooth 1 is in a 

meshing state when tooth load 2 of Eq. (19) is negative. In this 
case, the normal load and TE are expressed as follows: 

 
2 0njW = ,                    (23) 

( )1 1 1
1 1/nj b jW T R m r= + ,            (24) 
1 1 1

j j nj jE W QD = - .                (25) 

 
The sliding friction forces are obtained by multiplying the 

friction coefficients and the normal load.  

 
 
Fig. 2. Forces acting in two pairs of meshing teeth. 
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3. Results and discussion 

3.1 Constant friction coefficient  

The TE and tooth load of unmodified and tip relief modi-
fied spur gears with constant friction coefficient are calculated 
based on the spur gear data of Table 1, input torque of 20 N·m, 
and steel material (Young’s modulus = 206 GPa, Poisson’s 
ratio = 0.29). A constant friction coefficient of 0.1 provides 
good results at a low speed in mixed or boundary lubrication 
regimes, and a constant friction coefficient of 0.05 yields satis-
factory results at a high speed in hydrodynamic lubrication 
regimes [13]. The driving and driven teeth are assumed to 
have the same constant friction coefficient ( 1 2m m= )in inves-
tigating the effect of constant friction coefficient. An analysis 
is conducted under 14 / zp  with an angle increment of 

12 / 25zp .  
The unmodified gears are analyzed on three friction coeffi-

cients of 0 (no friction), 0.1 and 0.2. Fig. 3 shows that the 
tangential load on a driving gear tooth changes with the rolling 
of gears. The tooth load increases during approach and de-
creases during recess due to friction. The magnitude is obvi-
ous in the single-mesh region and increases due to high fric-
tion coefficient.  

The sliding friction force of driving gear tooth has a stair 
shape in the single and double-mesh regions, as shown in Fig. 
4. The friction force changes at the pitch point from negative 

to positive, which indicates a change of direction. Fig. 5 
shows the absolute magnitude of TE at roll angle of 24°, 
which starts meshing from the pitch point. The TE increases 
during approach and decreases during recess due to friction, 
which are particularly remarkable in the single-mesh region. 
This condition is similar to the DTE reported by He [5]. Fric-
tion causes larger peak-to-peak change of TE than that without 
friction, which indicates the increase of gear noise. 

Spur gears with linear tip-relief modification are analyzed 
based on three coefficients of friction, namely, 0, 0.1 and 0.2. 

Table 1. Spur gear specification. 
 

 Pinion Gear 

Number of teeth 30 26 

Face width (mm) 16 13 

Outside diameter (mm) 65.7 57.9 

Pitch diameter (mm) 60 52 

Addendum mod. co. 0.57 0.55 

Normal module 2 - 

Normal pressure angle (°) 20° - 

Center distance (mm) 58 - 

Whole depth (mm) 4.26 - 
 

 
 
Fig. 3. Tangential load of unmodified gears. 
 

 

 
 
Fig. 4. Sliding friction force of unmodified gears. 

 

  
 
Fig. 5. TE of unmodified gears. 

 

 
 
Fig. 6. Tangential load of tip-relief modified gears. 
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The amount of linear tip relief uses the maximum TE of un-
modified spur gears, and the extent of modification is from the 
highest-point single-tooth contact to the tip. 

Linear tip relief modification transforms a stair-shaped tan-
gential load into a smooth tangential load in the double mesh 
region, as shown in Fig. 6. The tangential load increases dur-
ing approach and decreases during recess in the single-mesh 
region due to friction.  

Friction force gradually changes in the double-mesh region 
and reverses at the pitch point. The friction force increases in 
the single mesh with the increase of friction coefficient, as 
shown in Fig. 7. 

The absolute magnitude of the TE of tip-relief modified 
gears differs from that of unmodified gears shown in Fig. 5. 
The magnitude of the TE in tip-relief modified gears increases 
during approach and decreases during recess due to friction. 
Friction yields the TE with a different shape and results in less 
fluctuation than that of unmodified gears, as shown in Fig. 8. 
Similar to unmodified gears, friction produces more remark-
able change of TE than that without friction. 

 
3.2 Variable friction coefficient 

A previous analysis assumed that gears have a constant fric-
tion coefficient. However, gears have a variable friction coef-
ficient during meshing due to the sliding velocity and changes 

in lubrication conditions between the meshing teeth. Martin 
reviewed the rolling and sliding friction effects of gears in 
mixed and electrohydrodynamic regimes [14]. Benedict and 
Kelley (BK) [15] suggested an empirical equation for variable 
friction coefficient under mixed lubrication based on the curve 
fitting of friction measurements by using a roller test machine. 
Rebbechi et al. [16] performed dynamic friction force meas-
urements on spur gear teeth and reported that the BK equation 
agrees well with the measurements, except at meshing posi-
tions close to the pitch point. Xu proposed a coefficient of 
friction and predicted the mechanical efficiency of gear pairs 
by using the proposed friction coefficient [17, 18]. Matsumoto 
and Morikawa introduced a friction coefficient for a mixed 
lubrication condition by using the maximum height of surface 
roughness rather than the average surface roughness [19]. 
Representative BK’s [15] and Xu’s coefficients [17] were 
employed among the proposed variable friction coefficients. A 
modified empirical equation of BK in terms of average tooth 
surface roughness ( avgS ) and in accordance with the Interna-
tional System of Units is given as follows [6, 15]: 

 

10 2

0.0127 1.13 29662
log

1.13
n

Bi
avg si eio

w
S V V

m
h
é ù´

= × ê ú- ë û
,     (26) 

 
where 1 1/ ( cos )n p pw T F R j= ×  and 1 20.5( )avgS S S= + . The 

sliding and entraining velocities of the ith meshing tooth pair 
are given by 1 2( ) ( ) ( )si i iV t V t V t= -  and 1 2( ) ( ) ( )ei i iV t V t V t= + , 

respectively, where i = 1, 2… 
Xu et al. [17, 18] proposed a friction formula with zero fric-

tion coefficient at the pitch point. The formula was obtained 
by using the non-Newtonian, thermal elastohydraulic lubrica-
tion formulation as follows:  

 
3 6 7 82( ( ), ( ), , )( ) ( ) ( ) ( )i hi o avg bf SR t P t S b b bb

Xi hi i eim o it e P SR t V t thm h r= , (27a) 

1 4 10( ( ), ( ), , ) ( ) ( ) log ( )i hi o avg i hi of SR t P t S b b SR t P th h= +  
10( ) ( ) log ( )

5 9
avgi hi o SSR t P tb e b eh-+ + .     (27b) 

 
The empirical constant coefficients for the above formula 

are given as follows: 1b = −8.92, 2b = 1.03, 3b = 1.04, 4b = 
−0.35, 5b = 2.81, 6b = −0.10, 7b = 0.75, 8b = −0.39 and 9b = 
0.62. The composite relative radius of curvature ( )i tr  of the 

ith meshing tooth pair is given by ( ) ( )
( ) ( )

1 2

1 2

( ) ,i i
i

i i

t t
t

t t
r r

r
r r

=
+

 

1,2.i =  The maximum Hertzian pressure (GPa) for the ith 

meshing tooth pair is given by ( ) ( )
12 , 1,2.

2
n e

hi

EwP t i
tip r

= =  

Dimensionless slide-to-roll ratio ( )iSR t  and oil entraining 
velocity ( )eimV t  of the ith meshing tooth pair are defined as 
follows: 

2 ( ) ( )( ) , ( ) , 1,2,..
( ) 2

si ei
i eim

ei

V t V tSR t V t i
V t

= = =  

 
 
Fig. 7. Sliding friction force of tip-relief modified gears. 
 

  
 
Fig. 8. TE of tip-relief modified gears. 
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Fig. 9 shows BK’s and Xu’s friction coefficients for un-
modified gears rolling at 3 rpm. For the application of BK’s 
friction coefficient, the tooth surface roughness is 0.4 µm, and 
the lubricant absolute viscosity is 82 mPa·s. BK’s friction 
coefficient is higher than that of Xu’s friction coefficient. 
However, BK’s and Xu’s coefficients are remarkably reduced 
and have an approximate value of 0.1 at 300 rpm, except at 
the pitch point. BK’s coefficient remarkably increases, and 
Xu’s coefficient sharply decreases at the pitch point, whereas 
the two coefficients remain similar at positions far from the 
pitch point. The tooth load, friction force, and TE use the fric-
tion coefficient at 3 rpm to obtain the quasi-static effect. 

Fig. 10 shows the tangential load of unmodified gears when 
BK’s and Xu’s friction coefficients are applied. BK’s friction 
coefficient causes a sharp increase in the tangential load at the 
pitch point and exhibits the same trend with the constant fric-
tion coefficient at positions far from the pitch point. Xu’s co-
efficient produces a smooth transition from approach to recess, 
whereas the constant friction coefficient exhibits a stepped 
decrease from approach to recess. BK’s friction coefficient 
sharply increases the stepped friction force of unmodified 
gears at the pitch point, and Xu’s coefficient yields a smooth 

transition from a negative frictional force to a positive friction 
force, as shown in Fig. 11. 

BK’s friction coefficient is approximately constant, except 
for a sharp increase in the TE at the pitch point between the 
increased TE at approach and decreased TE at recess, and 
Xu’s coefficient yields a smooth transition between the in-
creased TE at approach and decreased TE at recess, as shown 
in Fig. 12.  

Fig. 13 shows BK’s and Xu’s friction coefficients for tip-
relief modified gears operating at 3 rpm. Similar to unmodi-
fied gears, BK’s friction coefficient is higher than that of Xu’s 
friction coefficient. BK’s friction coefficient for tip-relief 
modified gears remarkably increases at the pitch point but has 
a slightly different shape from that for unmodified gears at 
positions far from the pitch point. Xu’s friction coefficient is 
similar between tip-relief modified and unmodified gears. 

For tip-relief modified gears, BK’s friction coefficient 
causes a sharp increase in the tangential load at the pitch point, 
with an increase in the tangential load at approach and a de-
crease in the tangential load at recess. Xu’s friction coefficient 
yields a smooth transition of the tangential load from approach 
to recess, as shown in Fig. 14. 

 
 
Fig. 9. Friction coefficients of unmodified gears obtained based on 
BK’s and Xu’s equations. 
 
 

  
 
Fig. 10. Tangential load of unmodified gears obtained based on BK’s 
and Xu’s equations. 

 

 
 
Fig. 11. Sliding frictional force of unmodified gears obtained based on 
BK’s and Xu’s equations. 
 
 

  
 
Fig. 12. TE of unmodified gears obtained based on BK’s and Xu’s 
equations. 
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BK’s friction coefficient makes the smooth friction force 
with the peak at the pitch point different from the stepped 
frictional force of unmodified gears, and Xu’s coefficient 
yields a smooth transition from a negative friction force to a 
positive frictional force, as shown in Fig. 15. Similarly, BK’s 
coefficient is approximately constant, except for a sharp in-
crease in the TE at the pitch point, and Xu’s yields a smooth 
transition of the TE near the pitch point, as shown in Fig. 16. 
In summary, BK’s friction coefficient is approximately con-
stant, except for the sharp increase in tangential load, friction 
force, and TE near the pitch point. Meanwhile, Xu’s yields a 
smooth transition near the pitch point. Thus, Xu’s friction 
coefficient appears to be acceptable because the pitch point 
has no sliding friction. 

 
4. Conclusions 

In this study, the friction force, tooth load, and TE of spur 
gears due to sliding friction in quasi-static condition were 
investigated. On this basis, the moment equilibrium and load-
deformation equations of spur gears with a low contact ratio 

were derived. The TE, tooth load, and friction force of un-
modified and linear tip-relief modified gears with the con-
stant/variable friction coefficient were analyzed by using the 
derived equations. The conclusions based on the analysis are 
summarized as follows: 

(1) The friction force, tooth load, and TE increased in ap-
proach and decreased in recess due to sliding friction. The 
friction caused larger peak-to-peak change of TE than that 
without friction, which indicates the increase of gear noise.  

(2) For unmodified gears with a constant friction coefficient, 
the friction force changed the magnitude of the stair shape at 
the pitch point from negative to positive. The magnitude of 
friction force is particularly remarkable in the single-mesh 
region and increases due to high friction coefficient. 

(3) The linear tip relief modified gear reduced the fluctua-
tion of TE and unmodified gears, and friction produced more 
remarkable change of TE than that without friction. 

(4) Xu’s variable friction coefficient yielded a smooth tran-
sition of tooth load and TE near the pitch point, and BK’s 
friction coefficient is approximately constant, except for the 
sharp increase in the tooth load and TE near the pitch point.  

 
 
Fig. 13. BK’s and Xu’s friction coefficients for tip-relief modified 
gears. 
 
 

 
 
Fig. 14. Tangential load of tip-relief modified gears based on BK’s and 
Xu’s equations. 

 

  
 
Fig. 15. Sliding frictional force of tip-relief modified gears obtained 
based on BK’s and Xu’s equations. 
 
 

 
 
Fig. 16. TE of tip-relief modified gears obtained based on BK’s and 
Xu’s equations. 
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Nomenclature------------------------------------------------------------------------ 

E : Tooth error  
eE  : Effective Young’s modulus, Pa 

F : Face width, mm 
L  : Distance along the line of action 
Q : Compliance, mm/N 

pR  : Pitch radius, mm 
oR  : Outside radius, mm  
bR  : Base radius, mm 

S  : Average surface roughness, mm  
T : Torque, N·m 
V : Velocity, m/s 
W : Load, force, N 

nw  : Normal load per face width, N/mm 
z : Number of teeth 

pj  : Pressure angle at the pitch point 
oh  : Absolute viscosity, mPa·s 
m  : Friction coefficient 
n  : Poisson’s ratio 
r  : Radius of curvature, mm 
j  : Pressure angle at the contact point 
w  : Angular velocity, rad/s 
D  : TE, mm 

 
Subscripts 

1 : Driving gear 
2 : Driven gear 
a  : Approach 
b : Bending 
f : Friction 
n : Normal 
r : Recess 
s : Shear 
t : Tangential 

 
Superscripts 

1 : Tooth 1 
2 : Tooth 2 
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