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Abstract 
 
This paper proposes a non-iterative implicit integration method for real-time analysis of multibody systems. Although the implicit Eu-

ler integrator is widely used for real-time simulations, we use a HHT-α integrator to improve the accuracy of the solution. For a non-
iterative procedure, the HHT-α integral formula was reformed and applied to the linearized equations of motion for multibody systems. A 
stability analysis of the HHT-α integrator was carried out to determine whether the proposed integrator has absolute stability. Numerical 
simulations with stiff linear systems that represent a highly damped system and a highly oscillatory system were also carried out to eval-
uate the performance of the proposed integrator. For non-linear multibody systems, the performance of the proposed integrator was also 
evaluated with a double pendulum example. Through the double pendulum multibody simulations, we confirmed the accuracy and stabil-
ity characteristics of the proposed integration method by comparison of the conventional HHT-α integrator with the iterative method and 
the implicit Euler integrator, which is widely used in real-time applications.  
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1. Introduction 

Recently, the virtual modeling and simulation of multibody 
systems has gained much attention due to the concept of a 
CPS (cyber physical system) in conjunction with the 4th indus-
trial revolution. It is possible to improve the performance of 
actual multibody systems, such as industrial robots in factory 
automation systems, through simulation-based design using a 
virtual model. Especially, real-time analysis has become an 
important factor in virtual simulations because it can reduce 
the time and cost of the simulation-based design as well as 
rapidly produce important simulation data for machine learn-
ing without actual experiments for a target system. 

For a real-time simulation, a numerical integrator must be 
robust enough to produce a stable solution, and at the same 
time, it must use a constant integration step-size with the same 
amount of computation time per step to guarantee a real-time 
capability. The robustness of the numerical integrator can be 
defined as how large an integration step-size can be taken 
without losing stability. Mostly, robust integrators use an im-
plicit integration formula, which represents the current states 

of a target system as a function of the previous states and the 
derivatives of the current states. Thus, a special algorithm 
based on the iterative method is needed to obtain the current 
state solution by applying an implicit formula to the equations 
of motion. However, as described earlier, because the real-
time simulations require the same amount of computation time 
for each step to guarantee the real-time analysis, it is essential 
to fix the number of iterations at every step. Finding the num-
ber of iterations depends on the characteristics of the equations 
of motion for non-linear multibody systems. Thus, it is diffi-
cult to find the fixed number of iterations for every step before 
we carry out simulations. Therefore, implicit integrators with a 
non-iterative method are needed. 

Many studies have been done applying implicit integrators 
to multibody systems [1-5]. The Newmark integrator [6] was 
applied as an implicit integrator to multibody systems [1], and 
it was verified that a stiff multibody system could be analyzed 
stably with even a larger step-size. However, the Newmark-β 
integrator was not suitable for a constrained multibody system 
because it could be shocked by sudden variations in the stiff-
ness. To improve the stability and accuracy even more, the 
Hilber-Hughes-Taylor (HHT)-α integrator was introduced [7]. 
This integrator maintains the low-frequency components of 
the system, which mainly affect the dynamic behavior of the 
system, whereas it decays unnecessary high-frequency com-
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ponents by the numerical damping effect. In addition, the 
HHT-α integrator was verified to be more stable than the 
Newmark-β integrator in non-linear dynamics systems [1]. 
The HHT-α integrator was also applied to the analysis of the 
Index-3 DAE (differential algebraic equation) of multibody 
dynamics [3]. In the paper, a method for applying the HHT-α 
integrator to the DAE is proposed. The actual implementation, 
especially for the system Jacobian matrix calculation and the 
stable step-size control, is also described in detail. A low-order 
integrator based on the HHT-α algorithm is also suggested [4]. 
It was validated that the accuracy of the solution is similar to 
that of the high-order integrator with an improved computa-
tional efficiency. Therefore, the HHT-α integrator has good 
performance in the analysis of multibody systems. Although 
the HHT-α integrator has excellent properties as a numerical 
integrator for multibody systems, it is not suitable for the real-
time analysis due to its iterative solution procedure. 

A non-iterative implicit integrator has been applied to real-
time dynamics analysis [8-11]. In these papers, the implicit 
Euler integrator was utilized. The implicit Euler integrator has 
a first-order integral formula and excellent stability [8] com-
pared with the explicit form of the Euler integrator. A study 
was also done applying the implicit Euler integrator to the 
DAE of a multibody system [9]. The drift-off error from the 
surface of the constrained manifold in the DAE was corrected 
by one Newton-Raphson iteration to maintain the accuracy of 
the solution. Using the example of real-time vehicle analysis, 
this method proved that the accuracy of the solution was 
maintained even at a larger step-size compared with the ex-
plicit Euler integrator. To improve the efficiency even more, a 
non-iterative projection method was suggested in a con-
strained multibody system [10, 11]. These papers showed that 
the real-time performance was improved for stiff multibody 
systems. However, using the implicit Euler method, which is a 
first-order integrator, causes a problem in the step-size that 
cannot be increased significantly for the high frequency mo-
tion because the accuracy of the solution is drastically de-
creased for the stiff system.  

Methods for increasing the accuracy of the solution without 
iteration have been also proposed based on the Newmark 
method in structural dynamics area [12-14]. The α-operator 
splitting method which numerically integrates without the 
iterative method was proposed by adding the numerical damp-
ing effect [12, 13]. This method obtains the solution non-
iteratively through the numerical damping effect in the predic-
tion step of displacement and velocity. It was mainly applied 
to the pseudo dynamic analysis. However, there was a prob-
lem that amplitude of the solution can be changed due to the 
numerical damping effect. To solve this problem, a method 
was also introduced in which the numerical damping effect 
was applied only to stiffness force and not to damping force 
[14]. This method can suppress spurious high frequency re-
sponses while accurately obtaining low frequency responses 
without iterative method. However, it is not easy to apply 
these methods to multibody systems characterized by highly 

nonlinear equations of motion, since the methods did not ac-
count for the nonlinearity of the inertia matrix. Therefore, we 
need a suitable integrator that can produce stable and accurate 
solutions for multibody system and at the same time, has a 
non-iterative solution procedure. 

In this paper, we proposed a non-iterative implicit integrator 
based on the HHT-α method for the real-time analysis of mul-
tibody systems. As described above, in previous research, the 
HHT-α method has excellent properties of accuracy and sta-
bility and yet, has not been developed as a non-iterative ver-
sion for real-time multibody analysis. Although our work can 
be extended to the DAE system, in this paper, we confined our 
development to open chain multibody systems, which can be 
represented as an ODE (ordinary differential equation). In 
addition, we evaluated the stability and accuracy of the pro-
posed integrator analytically and numerically.  

The remainder of this paper is structured as follows: Sec. 2 
introduces the non-iterative HHT-α integrator. In Sec. 3, sta-
bility analysis of non-iterative HHT-α integrator is described 
and the stability of the proposed integrator is validated through 
numerical simulations of stiff linear systems. In Sec. 4, using 
the double pendulum example, which is the typical non-linear 
multibody system, the performance of the proposed method is 
verified by comparison with those of the implicit Euler inte-
grator and the conventional HHT-α integrator. Finally, con-
clusions are given in Sec. 5.  

 
2. Non-iterative HHT-α implicit integrator 

2.1 Conventional HHT-α integrator 

To compare the proposed method with the conventional 
method, we introduce the conventional HHT-α method [7] 
first. For real-time analysis, a robust and accurate integrator is 
needed. The implicit integrators usually have larger stability 
regions than those of the explicit integrators. The HHT-α inte-
grator can be obtained by adding a numerical damping effect 
to the widely used Newmark formula [6] in the structural dy-
namics area. The integration formula is then as follows: 
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where nq is the position vector of the previous step; 1n+q is the 
position vector of the current step; b  and g are integral 
constant values, and h is the step-size of the integration. 

The integral constant values of Eq. (1) are determined by 
the numerical damping parameter a  of which the range is as 
follows: 
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In order to use the position increment ( )1n n+ -q q in the 

analysis, we can obtain the acceleration of the current step by 
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redefining the position integral formula of Eq. (1) as follows: 
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If the Eq. (3) is substituted into the velocity integral formula 

of Eq. (1), the velocity of the current step can also be obtained 
in terms of the position increment, velocity, and acceleration 
of the previous step shown in Eq. (4). 
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To calculate Eqs. (3) and (4), the position of the current step 

is required because the position increment contains the posi-
tion of the current step. However, the position of the current 
step is an unknown value. Thus, the Newton-Raphson iterative 
method is required. 

If the numerical damping effect is added to the equations of 
motion for the ODE type multibody system, the modified 
equations of motion is as follows [3]: 
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where M is the generalized inertia matrix, Q  is the general-
ized force vector, and 1nt +

%  denotes the fictive time that is 
defined as 1 (1 )n nt t h a+ = + +% . 

To solve the non-linear differential equation of Eq. (5), the 
Newton-Raphson iteration method is used with the linearized 
equation of Eq. (5) as shown in Eq. (6): 

 

1

( )
1

( 1) ( ) ( )
1 1 1

n

k
n

k k k
n n n

+ +

+
+ + +

D = -

= + D
qΨ q Ψ

q q q
,  (6) 

 
where k  is the number of iterations, and 

1 1/
n n+ += ¶ ¶qΨ Ψ q  

is the system Jacobian matrix that is obtained by embedding 
Eqs. (4) and (5) as follows: 
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The acceleration of the current step 1n+q&&  is required when 

calculating the system Jacobian matrix of Eq. (7). However, it 
is an unknown value. Thus, it is estimated with the accelera-
tion of the previous step nq&&  for the first iterative calculation. 

The integration procedure is as follows. First, the system 
Jacobian matrix 

1n+qΨ  and the system equations -Ψ  are 
computed to obtain the position of the current step 1n+q  using 

Eq. (6). Using the calculated position of the current step, the 
velocity 1n+q&  and acceleration 1n+q&&  of the current step can be 
obtained through Eqs. (3) and (4), respectively. Then, check 
whether the information of the current step satisfies the condi-
tion of the maximum norm e<Ψ . If the condition is satis-
fied, proceed to the next step. Otherwise, return to the first 
step where calculating the system Jacobian matrix and system 
equations begin. This procedure is repeated until the condition 
of the maximum norm e<Ψ  is satisfied. Through this 
iterative process, the position, velocity and acceleration of the 
current step can be obtained. 

To apply the HHT-α integrator for real-time analysis, the 
number of iterations must be fixed because the same amount 
of computation time must be guaranteed for every step. How-
ever, for real-time analysis, it is difficult to fix the number of 
iterations because the convergence of the Newton-Raphson is 
only dependent on the system characteristics. Therefore, a 
non-iterative method is required for the real-time analysis. 

 
2.2 Non-iterative HHT-α integrator 

To guarantee the same amount of computation time in each 
step for the real-time analysis, we propose a non-iterative 
HHT-α integrator. The integration formula of Eq. (1) can be 
reformed as Eq. (8) by using the increments of the position 
and velocity. 
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To avoid the iterative procedure, the linearization of Eq. (5) 

is necessary, instead of directly applying Eq. (8) to Eq. (5). 
The acceleration of the current step can be obtained using only 
the information of the previous step through the linearization 
process as follows: 
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where 

nqJ  and 
nqJ &  are the Jacobian matrices associated 

with the position and velocity variables, respectively. These 
Jacobian matrices are defined as Eqs. (10) and (11). 
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The acceleration of the current step can be represented from 

the second equation of Eq. (8) as follows: 
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By substituting Eq. (12) into Eq. (9), the linearized equa-

tions of motion can be obtained as follows: 
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If the acceleration terms of the current step from the first 

and second equations of Eq. (8) are eliminated, then the posi-
tion increments can be obtained in terms of the velocity and 
acceleration of the previous step and the increments of the 
velocity as shown in Eq. (14). 
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The integration procedure of the proposed integrator is as 

follows: First, the Jacobian matrices 
nqJ  and 

nqJ &  of Eqs. 
(10) and (11) are calculated. After that, the increments of the 
position nDq  and the velocity nDq&  are obtained by solving 
Eqs. (13) and (14) simultaneously. Finally, the position and 
the velocity of the current step 1n+q  and 1n+q&  can be calcu-
lated by the relationship of 1n n n+ = + Dq q q  and 

1n n n+ = + Dq q q& & &  in Eq. (8). The acceleration of the current step 
1n+q&&  is also obtained by Eq. (12). As a result, the proposed 

integrator produces the current states without having any itera-
tive procedure. Thus, it is suitable for real-time analysis. 

 
3. Stability analysis of the proposed method 

3.1 Stability analysis 

To evaluate the stability of the proposed non-iterative inte-
grator, we perform a stability analysis. The test equation is a 
first order differential equation with a non-zero initial value as 
shown in Eq. (15): 
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where l  is a complex number. 

The integral formula of the non-iterative HHT-α integrator 
as shown in Eq. (13) can be rewritten as follows: 
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This equation can be rearranged as Eq. (17). 
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Therefore, by induction, we can obtain Eq. (18). 
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The stable condition is that the eigenvalues of Eq. (18) must 

exist in the unit circle in the complex domain [15, 16]. The 

eigenvalue m  of Eq. (18) is as follows: 
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Therefore, for the eigenvalue to exist in a unit circle, the 

condition of Eq. (20) must be satisfied. 
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This condition produces the following in-equality condi-

tions. 
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The condition according to the numerical damping parame-

ter a  is obtained by applying the relationship between g  
and a  as shown in the second equation of Eq. (2).  
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·Case 1: 0a = , the range of Eq. (22) becomes condition 

of 0hl-¥ < < , and the condition of Eq. (22) is satis-
fied only when l  is a negative number. Thus, the pro-
posed integrator has the same stability as the Newmark-β 
integrator [7]. 
·Case 2: 1 / 3 0a- £ < , if l  is a negative number, the 

condition of 0hl <  is always satisfied, and if l  is a 
positive number, we can choose h  that satisfies the 
condition of 2 / (1 (1 2 )(1 ))hl a a> - - - + .  

We can also plot the stability region to visualize the stability 
conditions, shown in Fig. 1, according to the numerical damp-
ing parametera . In Fig. 1, the gray area is the stability region. 
When the numerical damping parameter is zero, it can be seen 
that the proposed integrator has the same stability region as 
the Newmark-β integrator does from the plot. If the numerical 
damping effect is non-zero, the stability region expands wider 
than that of the Newmark-β integrator.  

In addition, Fig. 2 compares the stability region of the con-
ventional HHT- α integrator, the proposed non-iterative HHT- 
α integrator, and the implicit Euler integrator, which is widely 
used for real-time analysis. In the Fig. 2, the blue hatched area 
is the stability region of the implicit Euler integrator, the read 
hatched area is the stability region of the conventional HHT-α 
integrator, and the gray area, which is outside of the circle 
with the black dash line, is the stability region of the proposed 
non-iterative HHT-α integrator.  

The stability region of the implicit Euler integrator and the 
conventional HHT-α integrator are almost the same. On the 
other hand, since the proposed non-iterative HHT-α integrator 
does not use iterative method, the stability region is smaller 
than the conventional HHT-α integrator. However, the pro-
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posed non-iterative HHT-α integrator has the same stability 
region as the other two integrators in the negative real part of 
hl . Therefore, the proposed non-iterative HHT-α integrator 

also has absolute stability with respect to the test equation of 
Eq. (15) like the other two integrators. 

 
3.2 Numerical analysis of highly damped system 

Although the analytic stability analysis shows that the pro-
posed integrator has an absolute stability in the previous Sec. 
3.1, simulations for a linear stiff system were carried out to 
evaluate the robustness of the proposed integrator numerically. 

First, we applied the proposed integrator to a highly 
damped system with the initial condition shown in Eq. (23). 

 
1000 0, (0) 1q q q+ = =& .  (23) 

 
Because the eigenvalue of the Eq. (23) has a large negative 

real value, the system can be said to be stiff. The simulation 
was carried out while changing the step-size from 10-4 sec to 
10-1 sec. Fig. 3 shows the simulation results. The proposed 
integrator can produce similar results as the exact solutions up 
to a step-size of 10-3 sec. The solutions start to be very differ-
ent from the exact solution with an even oscillatory behavior 
from a step-size of 10-2 sec. Moreover, the amplitude of the 
oscillation becomes increased when using a step-size of 10-1 sec. 
However, even if oscillation occurs in the relatively larger 
step-sizes, it gradually decreases. The simulation can be ex-
pected to converge. Therefore, the proposed integrator can 
produce a stable solution for a highly damped system. 

 
3.3 Numerical analysis of highly oscillatory system 

Next, the performance of the proposed integrator was tested 
for a second order differential equation with high stiffness, 
which represents a highly oscillatory system shown in Eq. 
(24). 

 
1000 0, (0) 1q q q+ = =&& & .  (24) 

 
Simulations were carried out while changing the step-size 
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Fig. 1. Absolute stability region for the proposed integrator. 
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Fig. 2. Comparison of the absolute stability regions. 

 

 
 
Fig. 3. Simulation results of the highly damped system. 
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from 10-4 sec to 10-1 sec. Fig. 4 shows the simulation results. 
Fig. 4(a) compares the exact solution with the result using the 
proposed integrator according to the different step-sizes, and 
Fig. 4(b) shows the envelope function of the results using the 
proposed integrator according to the different step-sizes when 
the analysis time is longer. 

The exact solution is a system that oscillates rapidly with a 
period of 0.2 sec and a magnitude of 0.032 m. The results of 
the proposed integrator show that the solution is decayed from 
a step-size of 10-2 sec. In addition, when the step-size is 10-1 

sec, the solution is decayed faster. As shown in the Fig. 4(b) 
with the envelope function, although the step-size is increased, 
the solution is converged to zero. Thus, the proposed integra-
tor can also produce stable solutions in the case of a highly 
oscillatory system. Therefore, the proposed integrator is stable 
for stiff systems (highly damped and highly oscillatory) and 
satisfies the robustness requirement of real-time analysis. 

 
4. Non-linear double pendulum system 

In this section, we investigated the performance of the pro-
posed integrator for a non-linear multibody system. An exam-

ple of a non-linear system is a double pendulum consisting of 
two lumped masses with a rotational spring and damper 
shown in Fig. 5. The performance of the proposed integrator 
was also tested by comparing the conventional HHT-α inte-
grator that uses the iterative method and the non-iterative im-
plicit Euler integrator, which is widely used for real-time 
analysis. 

The equations of motion for the double pendulum system in 
Fig. 5 can be expressed as the ODE type as follows [17, 18]: 

 
( ) ( , ) ( , )RSD= +M q q Q q q Q q q&& & & ,  (25) 

 
where 1 2[ , ]Tq q=q is the angular position vector consisting of 
joint angles; M  is the generalized inertia matrix; Q  is the 
generalized force vector, and RSDQ  denotes the torque vector 
of the rotational spring and damper. These matrices are de-
rived in detail as follows: 
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To apply the conventional HHT-α integrator using the itera-

tive method, the modified equations of motion are as follows: 
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The system Jacobian matrix of Eq. (26) for the conventional 

HHT-α integrator can be calculated as Eq. (27). 

 
(a) Position of a highly oscillatory system 
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(b) Envelope of a highly oscillatory system 

 
Fig. 4. Simulation results of the highly oscillatory system. 

 

 
 
Fig. 5. Configuration of the double pendulum system. 
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On the other hand, when using the proposed integrator, the 

linearized equations of motion of Eq. (26) are defined as fol-
lows: 
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where the Jacobian matrices of Eq. (28) are as follows: 
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The solution procedures described in Sec. 2.1 for the con-

ventional HHT-α method, and in Sec. 2.2 for the proposed 
method were implemented using C language. First, we com-
pared the proposed integrator with the conventional HHT-α 
integrator in the stiff non-linear system. To implement the stiff 
system, we applied the same parameters of stiffness and 
damping used in Ref. [2]. These parameters are summarized 
in Table 1. 

Fig. 6 shows the results of the stiff double pendulum system. 
The black solid line is the reference solution obtained with the 
ODE45 integrator, which is a variable step integration method. 
The blue dash-dot line is the result of the implicit Euler inte-
grator, the red dashed line shows the result of the conventional 
HHT-α integrator using the iterative method, and the green 
dotted line shows the result of the proposed integrator without 

the iterative method. In the stiff double pendulum system, all 
the integrators produce essentially the same solutions as the 
reference solution. 

To investigate the performance of the proposed integrator, 
the position RMS (root mean squire) errors of the three inte-
grators were compared while changing the step-size from 10-4 

sec to 10-1 sec.  
Fig. 7 shows the position RMS error. The blue dash-dot line 

is the position RMS error of the implicit Euler integrator, the 
red dashed line is the position RMS error of the conventional 
HHT-α integrator, and the green dotted line is the position 
RMS error of the proposed integrator.  

Comparing the position RMS error according to the step-
size, the conventional HHT-α integrator and the proposed 
integrator are more accurate than the implicit Euler integrator. 
Thus, the HHT-α integrator is superior in terms of accuracy to 
the implicit Euler integrator as expected. The detailed position 
RMS errors are summarized in Table 2. 

To verify the performance of each integrator further, the 
computation time is also measured and shown in Table 3. 
Since the proposed integrator is higher order than the implicit 
Euler integrator, the amount of computation time is larger, but  

Table 1. Parameters of the stiff double pendulum system. 
 

Mass (kg) m1 = 10, m2 = 1 

Length (m) l1 = 1, l2 = 1.5 

Rotational spring coefficient (Nm/rad) k1 = 400, k2 = 300 

Rotational damping coefficient (Nmžs/rad) c1 = 15, c2 = 10000 

 
 

 
(a) Angular position of joint 1 

 

 
(b) Angular position of joint 2 

 
Fig. 6. Simulation results of the stiff double pendulum system. 
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the difference is not significant. It also has less computation 
time than the conventional HHT-α integrator because it does 
not use iterative method. 

In the results, the proposed integrator has almost the same 
accuracy as the conventional HHT-α integrator, but the 
amount of the computation time is smaller. Therefore, the 
proposed integrator has the same performance as the conven-
tional HHT-α integrator, and is more efficient. 

Next, we tested the performance of the proposed integrator 
in the case of the double pendulum with no rotational spring 
and damper. The double pendulum was released from the 
initial configuration with gravity force. The purpose of the 
simulation is to verify the robustness of the proposed integra-
tor when the motion is large. The simulation parameters are 
summarized in the Table 4, and the simulation results are 

Table 2. Detailed position RMS error of the stiff double pendulum 
system. 
 

 Step-size 
(sec) 

Implicit Euler 
(rad) 

Conventional 
HHT-α (rad) 

Non-iterative 
HHT-α (rad) 

10-4 1.1842e-4 2.8817e-6 2.8817e-6 

10-3 1.1617e-3 3.0621e-6 3.0623e-6 

10-2 9.7997e-3 1.1557e-4 1.1565e-4 
q1 

10-1 3.8964e-2 1.1517e-2 1.1546e-2 

10-4 1.1845e-4 2.8891e-6 2.8891e-6 

10-3 1.1620e-4 3.1147e-6 3.1165e-6 

10-2 9.8024e-3 1.1569e-4 1.1580e-4 
q2 

10-1 3.8974e-2 1.1519e-2 1.1548e-2 

 
Table 3. Computation time of the stiff double pendulum system. 
 

Step-size 
(sec) 

Implicit Euler  
(sec) 

Conventional 
HHT-α (sec) 

Non-iterative 
HHT-α (sec) 

10-4 2.6391  2.8554 2.7509 

10-3 0.2796 0.3034 0.2966 

10-2 0.0336 0.0373 0.0349 

10-1 0.0040 0.0053 0.0043 

 

 
(a) Position RMS error of joint 1 

 

 
(b) Position RMS error of joint 2 

 
Fig. 7. Position RMS error of the stiff double pendulum system. 

 

Table 4. Parameters of the free fall motion. 
 

Mass (kg) m1 = 1, m2 = 1 

Length (m) l1 = 1, l2 = 1.5 

Rotational spring coefficient (Nm/rad) k1 = k2 = 0 

Rotational damping coefficient (Nmžs/rad) c1 = c2 = 0 
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(a) Angular position of joint 1 
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(b) Angular position of joint 2 

 
Fig. 8. Simulation results of the large rotational double pendulum. 
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shown in Fig. 8. In Fig. 8, the same colors and line types are 
used for the different integration methods as those in Fig. 6. In 
this large rotational double pendulum problem, all the integra-
tors generate essentially the same results as the reference solu-
tion, when the step size of 10-4 sec is used. 

In addition, we compared the performance of the proposed 
integrator with the convention HHT-α integrator and the im-
plicit Euler integrator by the position RMS error. Fig. 9 shows 
the position RMS error of each integrator. 

In Fig. 9, the same colors and line types are used for the dif-
ferent integration methods as those used in Fig. 7. In the case 
of the large rotational double pendulum system, the proposed 
method produces the same order of accuracy with the solution 
from the conventional HHT-α integrator up to a step-size of 
10-2 sec. However, with a larger step-size of 10-1 sec, the con-
ventional HHT-α integrator has a better accuracy than that of 
the proposed method because it can correct the solution by the 
iterative method. The detailed position RMS errors are sum-
marized in Table 5. 

Comparing the position RMS error according to the step-
size, the conventional HHT-α integrator and the proposed 
integrator have a similar error up to a step-size of 10-2 sec. 

However, when the step-size is 10-1 sec, the proposed integra-
tor has a 2.18 times larger error in the angular position of q2 
than that of the conventional HHT-α integrator. Although the 
proposed integrator has a larger error than that of the conven-
tional HHT-α at a step-size of 10-1 sec, it is more suitable for a 
real-time simulation due to the non-iterative procedure. When 
a step-size of 10-1 sec is used, the proposed method has a 4.68 
times smaller error in the angular positon of q2 compared with 
that of the implicit Euler method.  

The computation time is also measured and shown in Table 
6. The proposed integrator has similar computation time to the 
implicit Euler integrator and has less error. In addition, it is 
more efficient than the conventional HHT-α integrator be-
cause it does not use iterative method. Therefore, the proposed 
integrator is more advantageous in a real-time simulation. 

 
5. Conclusions 

In this paper, a non-iterative implicit integrator was devel-
oped for real-time analysis of multibody systems. To increase 
the accuracy of the solution, we used the HHT-α method and 
proposed a method of applying it without an iterative method 
to improve the computational efficiency.  

The stability of the proposed integrator was also evaluated 
by an analytic stability analysis. We verified that the proposed 
integrator also has A-stability as the implicit Euler integrator, 
which is widely used for real-time analysis. Furthermore, the 
numerical simulations of stiff linear systems such as a highly 
oscillatory and highly damped system showed that the pro-
posed integrator is stable at the larger step-size. 

The performance of the proposed integrator was also vali-

Position RMS error (q1) 

 
(a) Position RMS error of joint 1 

 
Position RMS error (q2) 

 
(b) Position RMS error of joint 2 

 
Fig. 9. Position RMS error of the large rotational double pendulum. 

 

Table 5. Detailed position RMS error of the large rotational double 
pendulum. 
 

 Step-size 
(sec) 

Implicit Euler 
(rad) 

Conventional 
HHT-α (rad) 

Non-iterative 
HHT-α (rad) 

10-4 5.1564e-3 2.4153e-5 2.4153e-5 

10-3 4.9790e-2 2. 4770e-5 2.5459 e-5 

10-2 3.5351e-1 5. 5328e-4 7.5125 e-4 
q1 

10-1 8.0219e-1 7.0335e-2 1.4275e-1 

10-4 5.3746e-3 2.1765e-5 2.1766e-5 

10-3 5.1106e-2 2. 2632e-5 2.3612 e-5 

10-2 3.4345e-1 7. 1164e-4 8.9347 e-4 
q2 

10-1 8.4097e-1 8.2335e-2 1.7977e-1 

 
Table 6. Computation time of the large rotational double pendulum. 
 

Step-size 
 (sec) 

Implicit Euler  
(sec) 

Conventional 
HHT-α (sec) 

Non-iterative 
HHT-α (sec) 

10-4 2.4692 3.1077 2.7207 

10-3 0.2869 0.3099 0.2963 

10-2 0.0337 0.0408 0.0342 

10-1 0.0041 0.0062 0.0045 
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dated with a double pendulum non-linear system, which is a 
typical example of multibody system, by comparing it with 
the implicit Euler integrator and the conventional HHT-α inte-
grator. The simulation results showed that the proposed inte-
grator could be analyzed more accurately than that of the im-
plicit Euler method by comparing the position RMS error. In 
addition, the proposed integrator has a similar accuracy to the 
conventional HHT-α integrator at the corresponding step-size. 
However, by CPU time analysis, the proposed method is more 
efficient than the conventional HHT-α integrator. Thus, it is 
more advantageous in real-time simulations.  

Based on this investigation, we will apply the proposed 
method to more complicated multibody systems such as a 
passenger vehicle system to verify its real-time performance. 
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