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Abstract 
 
Intelligent selection of a short toolpath is made possible by reducing machining cycle time. Each metal cutting layer in a workpiece is 

composed of several entities, such as lines and arcs, which form the different cutting segments of a cutting plan. During machining, the 
cutter moves at controlled feed rates along various segments at a high speed in a single cutting pass. The end of a segment is bridged to 
the start point of the next segment by the non-cutting movement of the tool. Any two consecutive segments can be connected in eight 
different ways. Finding the shortest tool path at polynomial time is impossible because toolpaths are constructed in millions of ways by 
sequencing the segments. This paper presents an effective method that uses heuristic optimization techniques to solve this NP-hard prob-
lem, which is known as the traveling salesman problem, for segments. The proposed method adopts particle swarm optimization (PSO) 
and the genetic algorithm (GA) because of their capability to generate quality solutions for optimization problems. GA and PSO are im-
plemented in the MATLABR2016b computing environment because of the platform’s flexibility and simple coding method. The optimi-
zation procedure is validated by comparing its results with those of two industry standard CAM systems, namely, Autodesk Inventor 
HSM and Mastercam. Using the proposed optimization method saves up to 40 % of the tool’s airtime during machining.  
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1. Introduction 

Milling is a versatile machining process commonly used to 
manufacture industrial products with various shapes and sizes. 
Rotary cutters remove a material through several small, sepa-
rate cuts from a workpiece by feeding the workpiece to a path. 
The workpiece dimensions are defined using a computer-
aided design program and transformed into machining com-
mands by a computer-aided manufacturing system. When 
metal removal is performed with a typical toolpath, a large 
amount of unproductive time is spent on positioning the 
workpiece between the ends of one segment of the path to the 
starting coordinate of the subsequent segment. The non-
cutting movement of the tool in air follows a straight line in 
many operations. Non-machining time can be minimized 
through efficient toolpath selection. Cycle time is the sum of 
tool engagement time, the time the tool is away from the 
workpiece, and the time required for other activities, such as 
tool changes and inspection. This non-engagement time in-
creases with the number of segments planned and multiplies 
further with the number of passes for a required cutting depth 

to complete metal removal. With an increase in production 
volume, this non-productive time becomes considerable in the 
overall manufacturing time of the product. The standard pro-
cedure of creating toolpaths involves the use of CAM soft-
ware, which has built-in functions to optimize the cycle time 
to a certain extent. Toolpaths must be optimized with intelli-
gent techniques to achieve efficiency and increased productiv-
ity in a large product mix business.   

In contour milling, the tool plunges into the workpiece at 
one end of the arc and leaves for the next segment after per-
forming the cut. Kovacic and Balic [1] developed a method 
for optimized toolpath between cutting trajectories in a laser-
cutting operation. They reported that the tool for a toolpath 
with a single segment could begin from either end. Thus, 
selecting between these two paths is an option. A 10-segment 
cutting plan has 3.71 billion possible routes. The possible 
number of toolpaths for a given number of “n” trajectories is 
2nn! (for bidirectional edges). Table 1 shows the complexity 
of selecting a toolpath. Determining the best solution via 
traditional calculation is difficult, even for a simple toolpath 
program with 10 segments. The best solution obtained after 
exhaustive calculation becomes minimally effective because 
of the considerable time spent, and this necessitates the use of 
heuristic approaches to determine the solution within a short 
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time.   
Many researchers have discussed the optimization of ma-

chining parameters, such as cycle time, surface finish, tool 
wear, production costs, and accuracy. Khan et al. [2] applied 
simulated annealing to path optimization between polygons. 
The polygons were represented as cells with possible entry 
and exit points. Kim [3] presented an optimized two-
dimensional toolpath generation algorithm for roughing and 
finishing stages in direction-parallel milling. The method is 
based on an incomplete two-manifold mesh model, and the 
author claimed that the method maintains a constant material 
removal rate (MRR) for steady cutting forces and avoids chat-
ter vibrations. Toolpath optimization for drilling holes is an 
extensively investigated topic because the number of holes is 
high, and the minimization time achieved is a considerable 
percentage of the cycle time. Qudeiri et al. [4] developed an 
optimization procedure to solve the sequence of operations for 
hole cutting in CNC machines. Kolahan and Liang [5] opti-
mized hole-making operations by using the Tabu-search ap-
proach to minimize the total processing cost, which consists 
tooling, machining, non-productive tool traveling, and tool 
switching costs. 

The sequencing of hole-drilling operations to minimize cut-
ter airtime has been the subject of numerous studies. Kumar 
and Pachauri [6] adopted the genetic algorithm (GA) to opti-
mize the drilling sequence. Lim et al. [7] used combinatorial 
cuckoo search to determine optimized toolpaths for drilling 
printed circuit boards. Al-Sahib and Abdulrazzaq [8] opti-
mized the toolpath with GA, and the results were verified with 
ArtCAM software. Pezer [9] solved traveling salesman prob-
lem (TSP) using GA for a drill hole optimization problem and 
verified the results with the CATIA v5 CAM system. Raja 
Chınna Karuppanan and Saravanan [10] optimized the tool in 
the air path of drilling operations by using GA. Balic et al. 
[11] employed GA for the optimization of toolpath sequences 
in turning operation. 

Xu et al. [12] generalized Euclidean TSP by adopting a giv-
en set of n-separate segments in two-dimensional space and 
finding a tour to traverse all segments, such that the total 
Euclidean distance of the tour is minimized. Castelino et al. 
[13] used a heuristic algorithm to minimize the non-
productive time of a tool by connecting the toolpaths opti-
mally. Qudeiri et al. [14] proposed an optimization method 
using GA to find the shortest toolpath between asymmetrically 
located operations at different levels in a workpiece. Oysu and 
Bingul [15] used GA and simulated annealing in contour par-

allel milling to minimize the tool airtime. Gupta et al. [16] 
used a hybrid GA, in which the initial seed solution is found 
by a special heuristic and combined with a randomly gener-
ated population of the GA algorithm. Kumar et al. [17] 
adopted GA to optimize the non-productive machining time in 
contour parallel machining. Qudeiri [18] optimized the se-
quence of operations in milling by considering tool change 
time and air travel time. Barclay et al. [19] created a simplified 
workpiece model by slicing to create layers, and each layer 
was discretized into a grid of squares. The cutting tool was 
also described as occupying a certain square or number of 
squares at any one time, and the optimized toolpath was found 
by using GA. Abdullah et al. [20] proposed a new optimiza-
tion technique to generate a clear toolpath that removes the 
entire uncut region by contour parallel milling in minimum 
cutting time. 

Most of the previous studies cited focused on methods of 
minimizing the non-cutting time of hole drilling, in which the 
tool enters and leaves from the same location. The use of op-
timization procedures to sequence the cutting of segments has 
not been explicitly addressed. An optimization procedure for 
the toolpath that connects the end coordinates of machining 
trajectories in air is applied in many operations, such as en-
graving, laser cutting, 3D printing, and robotic machining.  

An algorithm was developed in the current study to opti-
mize the toolpath for cutting segments (trajectories). Specifi-
cally, an optimization procedure was developed to sequence 
the cutting segments of a machining operation on a two-
dimensional plane to minimize the overall tool shift time be-
tween segments. The problem was mathematically defined, 
and a heuristic solution was obtained by GA and PSO with 
suitable operators. A procedure for assessing the performance 
of the proposed algorithm was also developed. 

 
2. Problem description 

2.1 Finding the optimum sequence of segments 

The problem in the present study is to connect machining 
segments by efficiently using non-cutting tool movements to 
reduce the machining cycle time. Fig. 1 shows the possible 
ways of connecting two successive segments. The connecting 
path lengths of each of these eight paths are different, and if 
the number of segments is large, then finding the shortest dis-
tance becomes an NP-hard problem, which cannot be solved 
by a deterministic approach.   

The machining plan of a workpiece (Fig. 2) comprises mill-
ing segments to be connected by non-cutting toolpaths. 

The number of bridging paths (green lines) is represented 
as “n” for a closed tour of the tool because the number of 
contours (blue lines) is also denoted as “n”. Among the mil-
lions of possible toolpaths available, the path with the short-
est length should be found. A sufficiently good solution can 
be found for this 10-segment problem by calculating the dis-
tance between each segment pair to determine the tool-in-air 
travel distance. Subsequently, the total length of all connect-

Table 1. Number of possible toolpaths.               
 

Number of trajectories No. of toolpaths 

1 2 

2 8 

3 48 

10 3.71 billion 
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ing segments on a two-dimensional plane can be calculated 
using Eq. (1).  

 

1

Total toolpath length ( , )
n

i

d
=

+=å i i 1c c ,    (1) 

 
where n is the number of connecting paths; ci and ci+1 are the 
start and end points of a tool-in-air path, respectively; and “d” 
is the length of the connecting path. 

Using mathematical algorithms to obtain the best solution 
among millions of possibilities in real time is practically im-
possible. The problem is a special case of TSP and referred to 
as the TSP of segments. An approximative algorithm can be 
used to obtain a solution within reasonable time. However, the 
solution may not be the best.  

GA with the modified cycle crossover technique was used 
because the TSP for segments is a NP-hard problem. The ap-
plication of metaheuristics algorithms was considered because 
of their capability to provide an answer from a very large 
search space, which can be improved further. The segments 
were arranged randomly in a sequence, in which half of them 
were rotated to achieve all possible connections between any 
two segment pairs.  

 
2.2 TSP for segments  

TSP is a classical combinatorial optimization problem with 
an exhaustive search space and is known as NP-hard. It is 
widely applied in robotics, drilling, welding, manufacturing, 
transportation, vehicle routing, and microchip manufacturing 

where the point-to-point control system is applied [21, 22]. If 
Euclidean TSP is for points, then segment TSP is for lines. For 
a given set of “n” segments on two-dimensional planes, find-
ing the shortest tour path that traverses through all these seg-
ments is known as TSP for segments. Each segment must be 
traversed completely for a tour. Multiple trips to a segment are 
allowed when a segment is divided into sub-segments, and the 
entire segment is completely traversed. In a segment TSP, a 
set of n segments, {s1, s2, ・ ・ ・ , sn}, is connected at their 
end points by a set of “n-1” paths {c1,c2,・ ・ ・,cn-1 } for an 
open tour. The total tour distance is computed with Eq. (2).  

Let S = {s1, s2, ··· , sn} be the set of “n” contour segments to 
be machined. Then, total toolpath length (LT) = Sum of the 
segment lengths (LS) + Sum of connecting path lengths (LC). 

 
 LT = LS + LC                          (2) 

,
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Eq. (2) provides the total toolpath length, Eq. (3) determines 

the sum of the lengths of the machining segments, and Eq. (4) 
defines the total tool-in-air path length. The sum of the length 
of the bridging paths (LC) becomes the total toolpath length 
(TL) given by Eq. (5) because the tool engagement length 
(LS) cannot be reduced.  

 
LT = LC.                               (5) 

 
Hence, the solution of the problem is obtained by minimiz-

ing LT, as expressed by Eq. (6). 
 

1

( , )
n
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where d is the distance between segments defined by Eq. (7). 
 

d = ( ) ( )2 2
1 1– –+ ++i i i ix x y y ,     (7) 

 
where xi and yi and xi+1 and yi+1 are the end and start coordi-
nates of successive segments, respectively. Eq. (6) should 
satisfy the following constraints.   

i) The tool moves through all contours.  
ii) Each segment or sub-segment is visited only once by the 

tool in a single pass. 
 

3. Experimental problems 

3.1 Ten-segments problem  

The selected prismatic workpiece is 100 mm × 100 mm × 
16 mm in size and has 10 contour segments to be machined. 

 
 
Fig. 1. Different methods for connecting two segments. 

 
 

 
 
Fig. 2. Connection of segments by different routes. 
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The segments were identified by their numbers in this prob-
lem (Fig. 3). The candidate solutions were genetically repre-
sented as chromosomes.  

 
3.2 Twenty-segments problem  

A rectangular aluminum workpiece of size 140 mm × 
140 mm × 16 mm has to be machined with 20 contour seg-
ments, as shown in Fig. 4.  

 
4. GA 

GA is a population-based metaheuristic optimization algo-
rithm in artificial intelligence. Batish et al. [23] optimized the 
different process parameters for rough and finish machining 
by using GA to determine the optimum combination of input 
parameters. Machined surfaces were subsequently analyzed 
through XRD, followed by an analysis of the grain and crys-
tallite sizes of the machined samples and SEM analysis. Ko 
and Lee [24] applied GA to improve the surface finish of 
work pieces produced by FDM. They minimized the dis-
placements of end effectors due to the cutting forces in the 
finish cutting operation. 

GA uses mechanisms, such as reproduction, mutation, and 
selection, based on nature’s evolution process. In GA, prob-
able solutions in the search space, known as chromosomes, 
play the role of individuals in the population. The quality of 
the solutions is defined by the fitness function and improved 
by the repeated application of GA operators in successive 
generations. The algorithm produces solutions with desired 
qualities that satisfy the conditions laid down in the problem. 
GA, which was introduced by Holland [25], is simple but can 
solve complex problems. GAs differ by the way organisms are 
encoded and by the choice of genetic operators. Permutation 
encoding with modified cyclic crossover was adopted for the 
current problem. Fig. 5 provides the working details of the GA 
algorithm. 

4.1 Cycle crossover                    

The crossover operator produces new chromosomes from 
parent solutions analogous to biological reproduction. Normal 
crossover is unsuitable for this problem because permutation 
encoding is applied to create chromosomes from probable 
solutions. Thus, each segment needs to be visited only once, 
but a normal crossover creates chromosomes with some miss-
ing and duplicated genes (Fig. 6). Kwak and Lee [26] con-
ducted a study that aimed to implement a novel crossover 
operation in a real-coded GA for a number of nonlinear/non-
convex functions and engineering optimization problems. 
Their crossover method was implemented by measuring the 
probabilistic distance between individuals. 

The production of defective offspring is avoided by using 
cycle crossover (Table 2). The procedure is carried out for 
Parents 1 and 2 through the following steps.  

 
Step1: A location in the parent chromosome is 
      randomly selected (Position 5).  
 
Step2: At this position, the genes are swapped 
      (2 →10) and (10 → 2). 
 
Step3: In the first child, 10 is repeated and 2 is 
      missing. In the second child, 2 is repeated  
 and 3 is missing. Genes 10 and 6 are swapped.  
 
The process is repeated until no duplicates and missing 

 
 
Fig. 3. Segments identified by numbers and solutions represented as 
chromosomes in Permutation encoding. 

 

 
 
Fig. 4. Workpiece with twenty machining segments. 

 
 

 
Fig. 5. Flowchart of GA. 

 

 
 
Fig. 6. Single-point crossover that produces defective offsprings. 
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genes are observed in the offspring. 
 

4.2 Mutation 

Mutation is used to introduce diversity in the search space. 
Mutation is essential for the convergence of GA and is applied 
with low probability. The mutation operator randomly selects 
and swaps two genes in a chromosome from the population 
(Fig. 7). 

 
4.3 Implementation of GA 

The proposed optimization procedure has the following 
steps.   

1. Define the geometrical values of the contour segments 
and code them in the format required by MATLAB. 

2. Create a script file for the GA algorithm and an “m” file 
for the objective function invoked from the main program. 

3. Code each segment, represented by its xi ,yi and xi+1,yi+1 
value, using a unique number via permutation encoding. 

4. Create the initial population randomly. 
5. Select GA parameters by several trial runs of the algo-

rithm and by varying the population size and number of itera-
tions.    

6. Determine the total toolpath distance for every solution 
and arrange it in an order based on the fitness value.   

7. Create the next population generation by selection and 
mutation operators.  

8. Run the algorithm until the termination criteria are met.  
9. Print and plot the results for visualization.  
 
The distance between any two successive segments was 

calculated based on the connection method shown by the solid 
arrow in Fig. 8. All eight connection possibilities between two 
successive segments (Fig. 1) were achieved by randomly se-
quencing them, in which half of them were flipped.   

The proposed optimization method was applied to the prob-

lems shown in Figs. 3 and 4. The first problem has 10 seg-
ments, and the second one is similar to the first one in the 
arrangement of segments, except that the number of segments 
is 20. MATLAB R2016b’s scientific environment was used 
for programming, and a PC with Intel® core ™ i-3 2350M 
CPU at 2.30 GHz was used for this purpose. 

 
4.4 Selection of GA parameters  

GA parameters, namely, population size, number of itera-
tions, selection probability, and mutation probability, exert a 
significant influence on the optimization process. A randomly 
arranged set of chromosomes make up the initial population. 
Population size is decided before the execution of the algo-
rithm with trial runs by varying the population size. Popula-
tion size affects the toolpath distance. A population size of 
1000 was selected from the graph because all iteration values 
have the minimum tool travel distance. The number of genera-
tions was achieved, and the toolpath length was plotted 
against iteration values. The iteration values of different popu-
lation sizes showed that the toolpath length decreased with the 
increase in the number of iterations. The value of 8000 was 
selected because no significant improvement and waste of 
computation time were observed beyond this point. The evo-
lution process terminated when the selected number of genera-
tions was reached. The following parameter values were se-
lected for the optimization algorithm: population size = 1000, 
number of iterations = 8000, crossover fraction = 0.5, and 
mutation fraction = 0.08. In the second experiment, 20 seg-
ments were encoded by using a permutation method, and the 
initial population of the solution was created randomly. GA 
was implemented with various population sizes and numbers 
of iterations to arrive at the parameter values of GA. The se-
lected parameters were population size = 1600, number of 
iterations = 14000, crossover fraction = 0.5, and mutation 
fraction = 0.08. 

 
5. Particle swarm optimization (PSO) algorithm 

PSO is a population-based metaheuristic technique used to 
solve optimization problems. PSO is a collaborative search 

Table 2. Cycle crossover technique used in permutation encoding. 
 

 
 

 
 
Fig. 7. Swap mutation interchanges two randomly selected genes in a 
chromosome. 

 

 
(a) (b) 

 
Fig. 8. Dark line shows the connection choice made to connect the
successive segments: (a) Segment 2 follows segment 1; (b) segment 1 
follows segment 2.   
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technique inspired by the social and cognitive behavior of a 
flock of birds or a school of fish. Majumder described the 
application of PSO in optimizing process parameters in elec-
tric discharge machining (EDM) of AISI 316LN stainless steel 
[27]. The author performed experiments under different ma-
chining conditions, and machining performance, such as MRR 
and EWR, was evaluated.  

In PSO, a population of random solutions is initially created, 
and the best fitness value of the population is improved to-
ward a satisfactory result in successive iterations. The feasible 
solutions, which are known as particles, search through the 
problem space for the best solution by adapting to the current 
best values. Unlike in other evolutionary algorithms, the popu-
lation is not subjected to the selection of parents for reproduc-
tion because all particles are updated and moved to a new 
generation. Updating a particle’s value is achieved by using a 
memory system that stores the previously reached best values 
of all particles. PSO adopts a different information-sharing 
method, in which the particles with the best values alone are 
allowed to share the information with the rest of the popula-
tion. Thus, the population converges to the optimum results 
quickly. An illustration of PSO is shown in Fig. 9. The PSO 
algorithm generally has the following steps.    

 
1. Generate an initial population of “n’ particles with ran-

domly assigned positions and velocity values. 
2. Find the fitness of each particle.  
3. Select the best objective fitness value of each particle and 

set it as Pbest . 
4. Identify the particle with the best fitness value among the 

entire swarm and keep it as G. 
5. Evaluate the particle velocity and new position of each 

particle according to Eqs. (8) and (9), respectively.   
 

1
1 1 2 2( ) ( ),i i i i

n n best n best nV w v c r P x c r G x+ = × + × - + × -     (8) 
1 1 ,i i i

n n nX X V+ += +                            (9) 
 
where V is particle velocity, X is the particle, r1 and r2 are 
random numbers with a value between 0 and 1, and C1 and 
C2 are learning factors with values between 1 and 4.  

6. Evaluate the fitness of the particles. 
7. Update the bestP  value of each particle by comparing it 

with its own fitness value. 
8. The bestG  value is updated with the current best fitness 

value of the entire swarm.  
9. Repeat steps 2-8 until the termination condition of the 

loop is met.  

 
5.1 Implementation of PSO 

The machining segments of the component were repre-
sented by numbers as in permutation encoding, and sequences 
were identified as particles. The initial population of particles 
was randomly generated, and the objective function value 
(OFV) of each particle was calculated. The following are the 
present, Pbest, and Gbest sequences of a particle. 

 
1. Y1# Y2    2. X1"X2  3. Y2-$-Y1   
4. X2!X1  5. Y1-#Y2   6. X1"X2  Present 9. L 10.L  7. Y2$Y1     8. X2!X1  

 
3. Y2-$-Y1  2. X1"X2 1. Y1#Y2  
4. X2!X1  5. Y1-#Y2     9. L  10.L Pbest  6. X1"X2   7. Y2$Y1   8. X2!X1  

 
8. X2!X1   5. Y1-#Y2   3. Y2-$-Y1   
4. X2!X1     2. X1"X2  6. X1"X2 Gbest 
9.L  10.L 7. Y2$Y1  1. Y1#Y2.  

 
The difference in the sequences was calculated, and the in-

dividuals of the present sequence were rearranged to obtain 
the Pbest sequence.   

 
1. Y1#Y2   2. X1"X2    3. Y2-$-Y1  4. X2!X1   5. Y1-#Y2      

6. X1"X2   9. L 10.L 7. Y2$Y1    8. X2!X1  

                         
(1,3)

                          
3. Y2-$-Y1  2. X1"X2   1. Y1#Y2   4. X2!X1  5. Y1-#Y2    

6. X1"X2    9.L 10.L  7. Y2$Y1    8. X2!X1  

                       
(6,9)

 
3. Y2-$-Y1  2. X1"X2   1. Y1#Y2  4. X2!X1   5. Y1-#Y2  

9. L         6. X1"X2   10.L   7. Y2$Y1      8. X2!X1 . 

 
 
Fig. 9. Flowchart of the PSO algorithm. 
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Therefore, (Pbest - Present ) = {(1,3) (6,9)}.                                                                                                                
Similarly, individuals were swapped to obtain Gbest from the 

present sequence. 
 
1. Y1#Y2   2. X1"X2     3. Y2-$-Y1   4. X2!X1   5. Y1-#Y2      

6. X1"X2   9.L 10.L  7. Y2$Y1     8. X2!X1                                                              

                       
(1, 8)

 
8. X2!X1   2. X1"X2    3. Y2-$-Y1  4. X2!X1   5. Y1-#Y2    

6. X1"X2 9.L 10.L 7. Y2$Y1  1. Y1#Y2                                                                

                       
(5, 2)

 
8. X2!X1  5. Y1-#Y2    3. Y2-$-Y1  4. X2!X1  2. X1"X2       
6. X1"X2  9.L 10.L  7. Y2$Y1   1. Y1#Y2 .   
 
Therefore, (Gbest - Present ) = {(1,8)  (5,2)}.  
Particle velocity was determined using Eq. (8). Many re-

searchers have used benchmark problems to determine the 
parameters of the algorithm. In this study, the parameters were 
selected after several trial runs of the algorithm.     

Velocity = 1 * 0.70 {(1,3) (6,9)} +1 * 0.30{(1,8)(5,2)}.  
New sequence = Present + ((1,3), (6,9), (1,8)). 
 
1. Y1#Y2   2. X1"X2    3. Y2-$-Y1    4. X2!X1    5. Y1-#Y2    

6. X1"X2   9.L 10.L  7. Y2$Y1      8. X2!X1       

                       
(1, 3)

 
3. Y2-$-Y1  2. X1"X2   1. Y1#Y2      4. X2!X1    5. Y1-#Y2    

6. X1"X2   9.L 10.L  7. Y2$Y1      8. X2!X1   

                       
(6, 9)

  
3. Y2-$-Y1  2. X1"X2   1. Y1#Y2      4. X2!X1   5. Y1-#Y2    

9.L       6. X1"X2   10.L      7. Y2$Y1     8. X2!X1  

                       
(1, 8)

 
3. Y2-$-Y1  2. X1"X2   8. X2!X1   4. X2!X1   5. Y1-#Y2    

9.L       6. X1"X2   10.L      7. Y2$Y1   1. Y1#Y2 .    
 
Through this procedure, all “Present” particles were up-

dated, and OFV was evaluated. The Pbest and Gbest particles 
were identified in every iteration, and the optimal solution was 
determined from the required number of iterations.  

 
6. Computational results  

The optimized toolpath sequence achieved by the proposed 
PSO and the GA method is as follows:  

 
1. Y1#Y2  2. X1"X2  3. Y2-$-Y1  4. X2!X1   5. Y1-#Y2      

6. X1"X2 9.L 10.L  7. Y2$Y1     8. X2!X1 .   
 
The arrow mark points to the direction of tool travel from 

bottom to top, right to left, clockwise, etc. The minimum tool-
path achieved is 163.07 mm, as shown by the MATLAB plot 
in Fig. 10. The optimized toolpath for this problem is shown 
in Fig. 11. 

The optimized sequence of the 20-segment problem is 
given below. The time taken by MATLAB to run GA was 
2059.806867 seconds.  

 
7  " 19 " 18 " 5 " 6 "16 " 13 "15"12" 9 " 
14 "  3 " 8 " 4 " 1 " 10 " 20 " 17 "11 " 2 . 
 

6.1 Discussions about the optimization procedure 

TSP for segments was solved for a closed tour. Figs. 10 and 
11 show the MATLAB plots of the optimized toolpaths with 
closed ends of the selected problems. While creating the NC 
program, one of the links in the closed path chain had to be 
removed to make it open and thus allow the programmer to 
make a choice regarding the tool’s starting position. In addi-
tion, the length of the toolpath was shortened by this removal. 
This method is valid only in the case of a single pass, and the 
toolpath has to be a closed one for a deeper cut depth. The 
savings by the optimization method increased with the number 
of passes. 

The performance of a toolpath optimization algorithm can 
be verified and validated using CAM systems. NC part pro-
gramming is necessary to perform machining in a CNC ma-
chine by using either a manual or CAM-assisted method. Thus, 
the usage of CAM systems is sufficient for validating the op-
timization algorithm. In the present study, Autodesk Inventor 
integrated with HSM and Mastercam were used to generate 
and simulate the toolpaths of the experimental problems. The 
toolpaths found by the optimization technique were simulated 
using Inventor HSM and Mastercam systems. For all simula-
tions, cutting parameters, such as relief and clearance values, 
were kept constant. The following machining information was 

 
 
Fig. 10. Optimized toolpath obtained using MATLAB. 

 

 
       
Fig. 11. Optimized toolpath of the 20-segment problem. The dotted 
lines indicate the segment connection paths. 
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provided by the CAM systems. 
 
1. Cycle time    2. Cutting time      3. Rapid time   
4. Rapid toolpath length   5. Cutting toolpath length. 
 
The Inventor-generated and optimized toolpaths used for 

the experimental 10-segment problem are shown in Fig. 12. A 
comparison of the Inventor-generated and optimized toolpaths 
are given in Tables 3 and 4. 

A similar comparison was made between Mastercam-
generated and optimized toolpaths for the same problem. Fig. 
13 displays the Mastercam-simulated and optimized toolpaths 
(simulated with Mastercam).  

Table 3 compares the two toolpaths created by the two ap-
proaches. Table 4 shows the rapid toolpath lengths and sav-
ings achieved by the optimization procedure.  

Table 4 provides the comparison details of CAM-generated 
and optimized toolpaths. The optimized rapid toolpath length 
was shorter than the rapid toolpath length generated in Inven-
tor by 178.7113 mm, and the savings was 43.44 %. For a ma-
chining plan, having a 10 mm depth cut and completion in 10 
passes saved 1787.113 mm of rapid tool movement. The rapid 
toolpath length generated in Mastercam was 398.433 mm, 
which is 166.251 mm longer than the optimized toolpath. The 
optimization technique saved 41.72 % of rapid tool move-
ments, which would be multiplied by the increase in the num-
ber of passes and segments.  

The results showed that the optimization method using PSO 
was more effective than GA in creating near-optimum solu-

tions for rapid tool movements in machining segments. The 
optimization procedure is applicable to computer-controlled 
milling, laser cutting, welding, and 3D printing operations. 
Actual machining of the experimental problem is not required 
because NC path generation and post processing are only con-
ducted on a computer software.  

 
6.2 Toolpath optimization for sustainable manufacturing 

The ever-increasing cost of energy and the release of green-
house gases by fossil fuel necessitate researchers to minimize 
the use of energy by CNC machines [28]. Reducing energy 
consumption has become a critical issue in manufacturing. 
Industries are confronted with environmental regulations on 
pollution associated with electric energy consumptions.  

Lee et al. [29] evaluated the environmental impacts of 
chemical mechanical polishing. The electric energy consump-
tion associated with the process, greenhouse gas emissions, 

 
                (a)                      (b) 
 
Fig. 12. (a) Toolpath generated by inventor; (b) simulated optimized 
toolpath. 
  

 
                (a)                      (b) 
 
Fig. 13. (a) Toolpath generated by Mastercam; (b) optimized toolpath 
simulated in Mastercam. 
 

 

Table 3. Comparison of CAM toolpaths with GA and PSO toolpaths. 
 

 
 

Table 4. Comparison of rapid toolpath lengths.  
 

Rapid toolpath length in mm Savings in distance 

Generated 411.3304 

GA 258.2429 
Inventor HSM    

toolpath 
PSO 232.6191 

178.7113 mm             
(43.44 % ) 

Generated 398.433 

GA 245.345 
Mastercam  

toolpath 
PSO 232.182 

166.251 mm  
(41.72 %) 
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and their impacts on global warming were evaluated from an 
environmental standpoint.  

Many strategies are practiced to reduce the energy con-
sumption of CNC machines, reduce manufacturing expendi-
tures, and minimize the carbon footprint. Electric power is 
consumed by CNC control with the main spindle and feed 
axis motors as well as by numerous auxiliary components. A 
dominant share of the total power is spent for lighting, ventila-
tion, air conditioning, compressed air generation, pallet 
changer, cooling, hydraulics, automation, and lubricant proc-
essing. The energy requirement of the auxiliary components 
varies very slightly during different conditions of readiness, 
roughing, and finishing. This phenomenon means that the 
machine consumes great energy even during non-cutting tool 
movements because of the fixed energy requirements.  

The travel distance and power consumption of feed axes 
can be reduced by using the optimization method presented in 
this work. The fixed energy required for that the machining 
period is saved because the machining cycle time is reduced. 
Table 4 shows that nearly 40 % of the non-cutting toolpath 
length can be reduced. If the machining is performed in a 
Takisawa Mac-V3 milling machine, then 2 seconds of savings 
can be obtained in tool airtime. This time increases with the 
number of passes and components produced. The energy 
saved in fixed energy alone will be 83.33 watts for machining 
a component for 10 passes with 10 minutes of cycle time in a 
Takisawa Mac-V3 milling machine. Raja Chinna Karuppanan 
and Saravanan [30] presented a method that uses GA to im-
prove the energy efficiency of the drilling process. The au-
thors used the difference in the mass of various feed drives in 
their approach. 

 
7. Conclusion  

A new method to sequence cutting segments efficiently in 
CNC milling was proposed in this work. The application of 
PSO was satisfactory, and the procedure was verified by com-
paring it with popular GA and NC code-generating CAM 
tools. Reasonable time saving of up to 40 % can be achieved, 
and this saving increases with the number of segments. The 
selection of the parameters of PSO is important for achieving 
satisfactory results. All of the different possible connections 
between any two segments were included in the random selec-
tion of the solution. To implement the optimization procedure 
in an NC program, the CNC programmer has to create the 
code manually by using the sequence of operations provided 
by the optimization method. Programs have to be developed to 
include the method as an add-on utility to generate NC codes 
of optimized toolpaths automatically in CAM systems.  
·The presented method has to be enhanced further to cre-

ate optimized toolpaths for components that may have 
obstacles hindering tool movements. 
·An optimization algorithm for three-dimensional tool-

paths may be developed in future work based on the 
scheme provided by the present work.   

References 

[1] M. Kovacic and J. Balic, Evolutionary programming of a 
CNC cutting machine, International Journal of Advanced 
Manufacturing Technology, 22 (2003) 118-124.  

[2] W. A. Khan, D. R. Hayhurst and C. Cannings, Determina-
tion of optimal path under approach and exit constraints, 
Europe an Journal of Operational Research, 117 (2) (1999) 
310-325.  

[3] H.-C. Kim, Optimum toolpath generation for 2.5D direction-
parallel milling with incomplete mesh model, Journal of 
Mechanical Science and Technology, 24 (5) (2010) 1019-
1027. 

[4] J. E. A. Qudeiri, A.-M. Raid, M. A. Jamali and H. Yama-
moto, Optimization hole-cutting operations sequence in 
CNC machine tools using GA, International Conference on 
Service Systems and Service Management, Troyes, France 
(2006) 501-506. 

[5] F. Kolahan and M. Liang, Optimization of hole-making 
operations: A tabu-search approach, International Journal of 
Machine Tools and Manufacture, 40 (12) (2000) 1735-1753.  

[6] A. Kumar and P. Pachauri, Optimization drilling sequence 
by genetic algorithm, International Journal of Scientific and 
Research Publications, 2 (9) (2012) 1-7.  

[7] W. C. E. Lim, G. Kanagaraj and S. G. Ponnambalam, PCB 
drill path optimization by combinatorial cuckoo search algo-
rithm, The Scientific World Journal, Article ID 264518 
(2014) 11. 

[8] N. K. A. Al-Sahib and H. F. Abdulrazzaq, Toolpath optimi-
zation of drilling sequence in CNC machine using genetic 
algorithm, Innovative Systems Design and Engineering, 5 
(2014) 15-26.  

[9] D. Pezer, Efficiency of toolpath optimization using genetic 
algorithm in relation to the optimization achieved with the 
CAM software, Procedia Engineering, 149 (2016) 374-379. 

[10]  B. R. C. Karuppanan and M. Saravanan, Genetic algorithm 
for TSP in optimizing CNC toolpath, International Journal 
of Engineering Technology, Management and Applied Sci-
ence, 5 (2) (2017) 139-146. 

[11]  J. Balic, F. Mirko, S. A. Hajdin and G. Afrim, Optimization 
of cutting toolpath generation using genetic algorithm, An-
nals of DAAAM for 2011 & Proceedings of the 22nd Inter-
national DAAAM Symposium, 22 (1) (2011) 569-570. 

[12]  J. Xu, Y. Yang and Z. Lin, Traveling salesman problem of 
segments, International Computing and Combinatorics Con-
ference, Cocoon, LNCS, 2697 (2003) 40-49. 

[13]  K. Castelino, R. D'Souza and P. K. Wright, Toolpath opti-
mization for minimizing airtime during machining, Journal 
of Manufacturing Systems, 22 (3) (2003) 173-180.  

[14]  J. E. A. Qudeiri, H. Yamamoto and R. Ramli, Optimization 
of operation sequence in CNC machine tools using genetic 
algorithm, Journal of Advanced Mechanical Design, Systems, 
and Manufacturing, 1 (2) (2007) 272-282.  

[15]  C. Oysu and Z. Bingul, Application of heuristic and hybrid- 
GASA algorithms to tool-path optimization problem for 



800 B. R. C. Karuppanan and M. Saravanan / Journal of Mechanical Science and Technology 33 (2) (2019) 791~800 
 

 

minimizing airtime during machining, Engineering Applica-
tions of Artificial Intelligence, 22 (3) (2009) 389-396. 

[16]  A. K. Gupta, P. Chandna and P. Tandon, Hybrid genetic 
algorithm for minimizing non productive machining time 
during 2.5 D milling, International Journal of Engineering, 
Science and Technology, 3 (1) (2011) 183-190. 

[17]  S. Kumar, A. K. Gupta and P. Chandna, Minimization of 
nonproductive time during 2.5D milling, World Academy of 
Science, Engineering and Technology: International Journal 
of Mechanical, Aerospace, Industrial and Mechatronics En-
gineering, 8 (6) (2014) 1147-1152. 

[18]  J. E. A. Qudeiri, Optimization and program generation of a 
toolpath for multi-cutting tool operations in CNC machines, 
International Journal of Emerging Technology and Ad-
vanced Engineering, 4 (Special Issue 5) (2014) 15-23.   

[19]  J. Barclay, V. Dhokia and A. Nassehi, Generating milling 
toolpaths for prismatic parts using genetic programming, 
Procedia CIRP, 33 (2015) 490-495. 

[20]  H. Abdullah, R. Ramli and D. A. Wahab, Toolpath length 
optimisation of contour parallel milling based on modified 
ant colony optimization, International Journal of Advanced 
Manufacturing Technology, 10 March (2017) 1-14. 

[21]  R. Matai, S. P. Singh and M. L. Mittal, Traveling salesman 
problem: An overview of applications, formulations and so-
lution approaches, Traveling Salesman Problem, Theory and 
Applications, D. Davendra (Ed.), InTech (2010) 1-24.  

[22]  G. Gutin and A. P. Punnen, The Travelling Salesman Prob-
lem and its Variations (Combinatorial Optimization), 
Springer, New York, USA, 12 (2007). 

[23]  A. Batish et al., Hard turning: Parametric optimization 
using genetic algorithm for rough/finish machining and 
study of surface morphology, Journal of Mechanical Science 
and Technology, 28 (5) (2014) 1629-1640. 

[24]  S. Ko and D. Lee, Stiffness optimization of 5-axis machine 
tool for improving surface roughness of 3D printed products, 
Journal of Mechanical Science and Technology, 31 (7) 
(2017) 3355-3369. 

[25]  J. H. Holland, Adaptation in Natural and Artificial Systems, 
MIT Press Cambridge, MA, USA (1992). 

[26]  N. S. Kwak and J. Lee, An enhancement of selection and 
crossover operations in real-coded genetic algorithm for  

large-dimensionality optimization, Journal of Mechanical 
Science and Technology, 30 (1) (2016) 237-247. 

[27]  A. Majumder, Process parameter optimization during EDM 
of AISI 316 LN stainless steel by using fuzzy based multi-
objective PSO, Journal of Mechanical Science and Technol-
ogy, 27 (7) (2013) 2143-2151.  

[28]  J. Jeswiet and S. Kara, Carbon emissions and CESTM in 
manufacturing, CIRP Annals - Manufacturing Technology, 
57 (1) (2008) 17-20. 

[29]  H. Lee, S. Park and H. Jeong, Evaluation of environmental 
impacts during chemical mechanical polishing (CMP) for 
sustainable manufacturing Technology, Journal of Mechani-
cal Science and Technology, 27 (2) (2013) 511-518.  

[30]  B. R. C. Karuppanan and M. Saravanan, Toolpath optimi-
zation by genetic algorithm for energy efficient machining, 
Taga Journal of Graphic Technology, 14 (2018) 1670-1679. 

 
 

Raja Chinna Karuppanan B. received 
his M.Tech. degree in mechanical 
engineering from IIT Madras. His 
research interests include CAD/CAM, 
optimization using evolutionary techni-
ques, and robot programming. He has 28 
years of teaching experience. At present, 
he is pursuing his doctoral research 

degree at Chennai Anna University, India. 
 

Saravanan M. is working as the Princi-
pal of SSM Institute of Engineering and 
Technology, Dindigul, India. He has 
more than 26 years of teaching experi-
ence. He received his Ph.D. in scatter 
search algorithm for scheduling various 
manufacturing systems from Anna Uni-
versity, Chennai. His research interests 

include scheduling for manufacturing systems, robotics, pro-
duction planning, composites, optimization techniques, and 
agile manufacturing. He has published more than 100 techni-
cal papers in refereed international journals and more than 140 
papers in national and international conferences. 

 
 


