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Abstract 
 
This paper presents a hybrid algorithm for topology optimization of lightweight cellular materials and structures simultaneously by 

combining solid isotropic material with penalization (SIMP) and bi-directional evolutionary structural optimization (BESO). Microstruc-
ture of the lightweight cellular material is assumed unique in the structure to make the proposed method feasible. A new sensitivity 
analysis formula with respect to the discrete variable is derived by a principal submatrix stiffness matrix, by which the material can be 
effectively removed from or added to cellular. Moreover, the validity of the proposed method is then demonstrated through two numeri-
cal examples (a simple supported beam and a cantilever beam), which can be easily applied in a variety of practical situations.  
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1. Introduction 

Lightweight cellular materials have wide applications in 
aerospace and mechanical engineering for their multi-function, 
such as advanced mechanical properties, thermal isolation, 
anti-impact [1]. From a mechanical point of view, the light-
weight structure composed of cellular materials can carry high 
loading at the minimum weight, as shown in Fig. 1. Therefore, 
we attempt to find a suitable layout of cellular material in the 
structure and its own optimum topology simultaneously, and 
topology optimization methods, such as solid isotropic mate-
rial with penalization (SIMP) and bi-directional evolutionary 
structural optimization (BESO), become the preferred tools 
for this problem. 

In a pioneering work of topology optimization, Bendsøe 
and Kikuchi proposed a homogenization method [2] by intro-
ducing the cellular material with square hole into design do-
main. Then, the solid isotropic material with penalization ap-
proach (SIMP) method [3] based on a power law function has 
been largely used to optimize the structural topology. In their 
work, traditional topology optimization is treated as material 
distribution within the macro design domain. Moreover, de-
sign results based on this continuous model (SIMP) often have 
intermediate values of density variables between 0 and 1, es-
pecially the material topology optimization. In order to obtain 
absolute black-and-white design, Xie and Steven developed 

evolutionary structural optimization (ESO) [4] to avoid “grey” 
elements in the design domain. Recently, some outstanding 
topology optimization papers [5-9] have presented applica-
tions of topology optimization to the sound power flow prob-
lem [10], stress constraints problem [11], concrete pipe mold-
ing machine [12]. 

In summary, traditional single-scale structure or material 
topology optimization problems have attracted much attention. 
However, with the development of cellular material, a more 
challenging work is to optimize topology of the structure and 
material simultaneously. The basic concept of structure-
material integrated optimization can trace back to free material 
optimization (FMO) method [13] by setting the norm or the 
trace of the elasticity matrix of per point as the design variable. 
Based on the idea of multiscale topology optimization, Xia 
[14] develops a design framework for concurrent topology 
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Fig. 1. The application of cellular material in aerospace. 
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optimization of material and structure by using FE2 nonlinear-
ity analysis method. Recently, Coelho [15] extended a multis-
cale topology optimization model to the bi-material composite 
laminate. 

Furthermore, the optimum microstructure of material based 
on FMO method varies from point to point, which will make 
the design results difficult to manufacture in the practical en-
gineering. In order to solve this problem, Cheng [16] presents 
porous anisotropic material with penalization (PAMP) to con-
current topology optimization of structure and material by 
defining only one microstructure of truss-like material in 
design domain. Based on the idea of PAMP [16], Sivapuram 
[17] propose an approach using the level-set method at both 
scales to solve the minimizing compliance and compliant 
mechanism problems; Chen [18] presents the new moving iso-
surface threshold formulation and algorithm to solve checker-
board pattern and grey problem in concurrent design; Long 
[19] develop a ICM (independent, continuous and mapping) 
based model to minimize total mass under multiple constraints. 
Some recent successful applications of concurrent topology 
optimization often focus on the extension to multiple porous 
materials [20, 21]. 

Although some successful examples of concurrent topology 
optimization of structure and material were reported, most of 
the designs were based on the conventional mathematical 
programming method. Unfortunately, there are still some 
problems due to its complexity, such as checkerboard pattern 
and grey problem, as shown in Fig. 2 [16]. In this paper, con-
sidering mechanical performance, we continue concurrent 
design the topology of structure and cellar material by empha-
sizing an identical microstructure in macro-scale. The struc-
tural layout at macro-scale and topology of cellar material at 
micro-scale are optimized simultaneously to achieve mini-
mum compliance. To suppress the checkerboard pattern and 
grey problem in topology optimization (Fig. 2 [16]), the au-
thors of this paper propose a method to solve this problem by 
combining SIMP and BESO. Thus, SIMP model are applied 
on the elements of structure, and the discrete form are applied 
on the elements of cellular material. Because two independent 
volume constraint functions are respectively applied to con-
tinuous and discrete design variables, the optimization model 
with hybrid continuous /discrete design variables is solved by 
combining two methods MMA [22] and BESO [4, 23]. In this 
way, optimum structural topology with optimum microstruc-
ture of lightweight cellular material can be obtained effec-
tively. 

The organization of the present paper is as follows. A con-
tinuous /discrete hybrid optimization model is built in Sec. 2. 
Sec. 3 provides a more accurate sensitivity analysis formula 
with respect to the discrete variable. Sec. 4 describes the com-
bined algorithm for concurrent topological optimization of the 
structure and cellular. Sec. 5 outlines two numerical examples 
in order to validate the presented method. Finally, we con-
clude in Sec. 6 with a discussion. 

 
2. Problem statement and the mechanical model  

In this paper, we are trying to obtain optimum topology in 
two-scale [24] with an identical microstructure of cellular 
material, as shown in Fig. 3. 

This problem can be looked as a two-scale layout design, in 
which the material distribution in two-scale will be optimized 
by topology optimization method. According to the literature, 
clear structural topology based SIMP can be easily obtained 
by using filter technology [25], but optimum microstructure of 
material often encounter checkerboard pattern and grey prob-
lem. Therefore, two types design variables are independently 
defined, the first one is the macro density ( )r W  in structural 
design domain, ranging from 0 to1; the other one is micro 
density ( )h Y  in a unit cell, which can be only taken as two 
values 0 and 1 indicating the void and solid element, and mid-
dle density elements between 0 and 1 will not appear in the 
unit cell. The hybrid continuous /discrete optimization model 
of linearly elastic structures can be written as 
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where the objective function C is the structural compliance. 
W  which is the macro design domain represent the structure, 

 
 
Fig. 2. The checkerboard pattern of lightweight cellular material. 

 
 

 
Fig. 3. Lightweight structure with cellular material. 
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and Y  which is the micro design domain represent the cellu-
lar material. M is the element number in the structure design 
domain W  and N is the element number in the unit cellY . 
F and U is the structural global displacement and force vec-
tor respectively. Two independent volume constraint functions 
are respectively applied to continuous and discrete design 
variables. Constraint I is applied on the total volume of light-
weight cellular material in the macro design domain by an 
upper bound V , similar as single-scaled structural topology 
optimization. Constraint II is applied on the total volume of 
base material in the unit cell by an upper bound x , which 
should be between 0.2 and 0.6 according to practical fabrica-
tion techniques.  

In order to compute the structural compliance, the first step 
is solving the following finite element equation to obtain the 
structural deformation.  

 

.T M d
W

=

= Wò
KU F

K B D B  (2) 

 
Here, K represents the global stiffness matrix of the struc-

ture. U  and F  denote the global displacement and force 
vector, and B  is the strain/displacement matrix. Base on the 
SIMP method, the modulus matrix MD  in macro design 
domain is defined by a power law of the homogenized elastic 
matrix HD  of the lightweight cellular material, as follow 

 
M Har=D D  (3) 

 
where a  denotes the exponent of penalization. The ho-
mogenized elastic matrix HD  can be looked as a crucial 
connection between structure and lightweight cellular material, 
and can be defined by the classical homogenization equation 
 

( )0 01H d
Y

= - Y
Y òD D D BΦ  (4) 

 
where 0D  is the elastic matrix of solid material in the base 
cell Y . The characteristic displacements Φ  are the periodic 
solutions of 
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where HK  denote the globe stiffness matrix of the base cell 
Y . 

 
3. Sensitivity analysis of the discrete variable  

In the collaborative optimization problem (1), the light-
weight cellular material is described by the base cell Y . 
Moreover, the density of each element eh  in the base cell 
will be either 1 or 0, and the optimal topology of the light-
weight cellular material can be obtained by BESO method. 

At present, the sensitivity analysis with respect to discrete 

variables is adopted to determine which element the material 
should be removed from or added in. In order to avoid the 
inaccurate sensitivity analysis, especially when a void element 
is changed to a solid element, a new sensitivity analysis for-
mula is derived based on binary discrete method [4, 23]. 

Thus, the change of the effective elastic matrix HD in Eq. 
(4) can be formulated by using first-order Taylor expansion 

 

( ) ( ) ( )( )0 0 01 .H dd
Y

D = - - Y
Y òD D D BΦ D B Φm m  (6) 

 
Here, the sign “-” represent the material removal, and the 

sign “+” represent the material addition, as following formulas. 
And dΦ  is the increment of the characteristic displacement 
Φ  in Eq. (5), and dΦ  satisfies 
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When material removal or addition is allowed in the base 

cell Y , HDK  which is the change of HK  can be computed 
as following 
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Here, H

eK  is the element stiffness matrix of the base cell.  
Based on the traditional method, the above Eq. (7) can be 

solved approximately by  
 

( ) ( )1
.H Hd

-
» D - DΦ K P K Φ  (9) 

 
In this paper, a principal submatrix stiffness matrix [23] is 

introduced into the sensitivity analysis of the homogenized 
elastic matrix, when the material is removed from or added to 
the unit cell, which can provide good estimation of change of 
the homogenized elastic matrix with respect to the discrete 
variable. Thus, dΦ  can be expressed formally as 

 

( ) ( )1H H H
NLd

-
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where H

NLK  stands for the change of HK  with higher preci-
sion 
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Here, H

subK  is the principal submatrix stiffness matrix of 
HK . H

subK  must include the element e, where material re-
moval or addition will occur , as shown in the Fig. 4. H

vK  is 
a new matrix, and can be written as 
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In the Fig. 4, D present the fixed node in the substructure.  
Substituting Eq. (10) into Eq. (6), the sensitivity Eq. (6) can 

be rewritten formally 
 

( )01H T H T H T H H
NL NL NLD = D - D - D + D

Y
D D P K Φ Φ K P Φ K K Φ  

0 0 .d
Y

D = YòD Dm   (13) 

 
When a solid element is changed to a void element, NL =K I , 

Eq. (13) can be written as 
 

( )01 .H T T T HD = D - D - D + D
Y

D D P Φ Φ P Φ K Φ  (14) 

 
Substituting Eqs. (7) and (8) into Eq. (14), Eq. (14) can be 

furtherly rewrote as 
 

( )0 0 0 01 ( ) ( ) ( )H T T T T d
Y

D = - - - - - + - Y
Y òD D D BΦ Φ B D Φ B D BΦ   

( ) ( )( )01 .T d
Y

= - - - Y
Y ò I BΦ D I BΦ   (15) 

 
Obviously, above Eq. (15) is definitely same to the formula 

in the Refs. [19, 21] (Eq. (14a) in the Ref. [19], Eq. (20) in the 
Ref. [21]), as following 
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Therefore, when the material is removed from a solid ele-

ment, the sensitivity analysis of the homogenized elastic ma-
trix can be calculated by Eq. (15); when the material is add to 
a void element, the sensitivity analysis of the homogenized 
elastic matrix can be calculated by Eq. (13). 

Moreover, the sensitivity of structural compliance with re-
spect to the discrete variable ( )h Y  can be computed as  
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4. Combined solving algorithm 

In this section, we will present a combined algorithm to it-
erative solve the hybrid optimization model, which can be 

easily achieved by using the secondary development in 
ANSYS. Moreover, compared to the previous method (PAMP, 
level set) [16, 17], the clear topology of cellular material based 
on the proposed method can be easier obtained by the sorting 
program. The combined solving algorithm is summarized 
below, as shown in Fig. 5. 

Step 1. Initialization: prescribe the maximum volume of 
material removal g and addition h  in each design iteration, 
which usually are set by 5 % and 3 % of the unit cell; 

Step 2. Finite element analysis: compute the effective stiff-
ness tensor, and obtain the displacement vector of the current 
structure; 

Step 3. Sensitivity analyses: 
① For continuous design variables, obtain the sensitivity of 

the structural compliance by; 
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In order to avoid checkerboard and grey problem, the sensi-

tivity filter method [25] (Eq. (16) in the Ref. [25]) is adopted 
to continuous design variables as following 

 

² ( )

( )
.e

e

i i
i N i

e e i
i N

C
C

w r r
r

r r w r
Î

Î

¶
¶¶

=
¶

å
å

 (19) 

 
 
Fig. 5. Flow chart of combined solving algorithm. 

 

 
 
Fig. 4. Substructure of H
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② For discrete design variables, compute the sensitivity of 
the structural compliance for the solid and void element by 
Eqs. (11)-(15); 

Step 4. Search the optimal topology of structure by MMA: 
Method of moving asymptote is employed to search the opti-
mal topology of structure, and only continuous design vari-
ables are updated in this step. 

Step 5. Search the optimal topology of the lightweight cel-
lular material by BESO: After compute the total material vol-
ume x in the unit cell, give values to g and h  as following 
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① Remove material: Sort all the solid elements in the cell 

based on the sensitivity from small to large. Then, update top 
ranking solid elements to void elements, when their volume is 
equal to the required material removal amount g . 
② Add material: Sort all the void elements in the cell 

based on the sensitivity from small to large (absolute value 
from large to small). Then, update top ranking void elements 
to solid elements, when their volume is equal to the required 
material addition amount h . 

Step 6. Convergence checking: convergence is examined by 
the following criterion 
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where k is the current iteration, and D is a specified small 

value(10-8). If 1k k

k

C C
C

--
£ D  and x x»  are satisfied simul-

taneously, stop; else, go back to step 2. 
 

5. Numerical examples 

5.1 Sensitivity test 

In this example, the validity of sensitivity analysis Eqs. 
(13)-(15) is verified by a hollow square unit cell, as shown in 
Fig. 6. 

The square unit cell is divided into 6×6 rectangular ele-
ments. According to symmetry of the unit cell, only 6 ele-
ments need to be observed, as shown in Fig. 6. The Young's 
modulus of base material is 112 10E = ´ , and Poisson's ratio 
m  is 0.3. For comparison, the sensitivity of homogenized 
elastic matrix with respect to each element (solid and void) is 
calculated by proposed Eqs. (13)-(15) and traditional formula. 
In order to evaluate error of the sensitivity obtained by differ-

ent method, the result generated by difference method is dealt 
as standard. The difference formula can be written as  

 
H e H HD = -D D D%  (22) 

 
where HD is the current homogenized elastic matrix of unit 
cell. e HD%  is the homogenized elastic matrix of next iteration, 
when material is removed from or add to the element e. More-
over, the error estimation formula can be expressed  

 

max , 1,2,3.
H H
ij ij

H
ij

D D
error i j

D

æ öD - D
ç ÷= =
ç ÷Dè ø

 (23) 

 
Based on the traditional formula and proposed formula, 

sensitivity of homogenized elastic matrix and its error are 
listed in Tables 1 and 2. It is clear that results obtained by 
proposed formula are identical with results obtained by tradi-
tional formula, when the material is removed from a solid 
element (1, 2, 3). However, the error by using traditional for-
mula goes to very large even infinity, when the material is 
added to a void element (4, 5, 6). In order to suppress the in-
accuracy of sensitivity with respect to void element, Eq. (13) 
proposed in this paper estimate precisely the change of ho-
mogenized elastic matrix during evolution, and error is less 
than 20 %, as shown in Table 2. 

 
5.2 Numerical example I: A validation of the proposed 

method 

The purpose of the benchmark MBB beam is to prove the 
effectiveness of proposed method. The optimum topologies of 
structure and cellular material generated by PAMP [16] and 
the new proposed method are presented for comparison.  

In this numerical example, a rectangular domain with a 
height-to-length ratio H/L = 25/50 is simply supported at the 
two bottom edges and loaded by a concentrated vertical force, 
as shown in Fig. 7. For simplicity, only the right half part is set 
to be structural design domain due to symmetry. The macro 
design domain is discretized into 50×25 four-node elements, 
and the unit cell is meshed by 25×25 four-node elements. 
The Young's modulus of solid material is 52.1 10E = ´ , and 
Poisson's ratio m is assumed to be 0.3. The total volume of the 
lightweight cellular material in the structure is constrained by 

  
A hollow square unit cell Finite element model 

 
Fig. 6. A hollow square unit cell and its finite element model. 

 



734 H. Qiao et al. / Journal of Mechanical Science and Technology 33 (2) (2019) 729~739 
 

 

0.6V = , and the volume of solid material in the unit cell is 
limited by 0.3x = . The material removal ratio g and addi-
tion ratio h  are chosen to be 5 % and 3 %, respectively dur-
ing the evolution. 

The evolution history is shown in Table 1. The material re-
moval in unit cell started with 1.0x =  and this value was 
reduced to 0.3x = during the process. In order to compare the 
optimum design of SIMP method and the proposed method, 
SIMP method is used in solving the MBB beam problem under 
the volume constraint 0.6 0.3 0.18V V x= ´ = ´ = . This is to 
say, the total volume constraint of solid material in SIMP method 
and the proposed method are the same, as shown in the column 

2 of Table 3. The results in the column 3-4 of Table 3, ob-
tained by the present method, are the final topologies of the 
structure and material. They are also similar with the results 
shown Table 4 obtained by Cheng et al. [16]. Therefore, the 
ability of the proposed method to obtain optimum topologies 
of structure and material simultaneously is verified by this 
example. Compared to the method in the Ref. [16], the con-
vergence can be easier obtained by proposed method due to 
absolute ‘black-and-white’ topology of material, and the pro-
posed method can be easily achieved by traditional topology 
optimization program. The advantage of the proposed method 
is shown as following Table 4. 

 
5.3 Numerical example II: A discussion of parameters x  

In this example, a cantilever beam with geometric parame-
ters L = 60 and h = 30 is fixed on the left edge, and the dis-
tributed constant pressure is loaded at the top edge with q = 
106, as shown in Fig. 8. Solid material is assumed to have 
Young’s modulus E = 2.1×105 and Poisson’s ratio μ = 0.3. 
The macro design domain is mesh by 60×30 four-node ele-
ments, and the unit cell of material is discretized by using 25
×25 four-node elements. To illustrate the influence of the 
perimeters V  and x , the optimization problem is solved 
with fixed the total volume of solid material 0.12V x´ =  
and varying perimeter x , as shown in Tables 5 and 6. 

The cantilever beam problem shown in Fig. 8 is solved for 
11 different x . The optimum topologies of structure and 
material generated by proposed method are listed in the Tables 

Table 2. Error of sensitivity analysis. 
 

No Traditional formula  Proposed formula 

1 26 % 26 % 

2 16 % 16 % 

3 19 % 19 % 

4 440 % 16 % 

5 223900 % 17 % 

6 ∞ 11 % 

 
1000P =

1h =

4L =

Macro design domain

Micro design domain
A unit cell

? ?

 
 
Fig. 7. MBB beam. 

 

Table 1. Sensitivity of homogenized elastic matrix. 
 

No HDD (traditional formula, 109) HDD (proposed formula, 109) HDD (difference, 109) 

1 
7.73 0.62 0.55

0.62 7.73 0.55
0.55 0.55 0.76

-é ù
ê ú-ê ú
ê ú-ë û

 
7.73 0.62 0.55

0.62 7.73 0.55
0.55 0.55 0.76

-é ù
ê ú-ê ú
ê ú-ë û

 
7.15 0.51 0.42
0.51 7.15 0.42
0.42 0.42 0.72

-é ù
ê ú-ê ú
ê ú-ë û

 

2 
4.22

-2.53 -2.18 1.42
4.22 1.42 -1.57

19.66 2.53- -é ù
ê ú
ê ú
ê úë û

 
4.22

-2.53 -2.18 1.42
4.22 1.42 -1.57

19.66 2.53- -é ù
ê ú
ê ú
ê úë û

 
5.00

-2.69 -2.29 1.36
5.0 1.36 -1.79

22.08 2.69- -é ù
ê ú
ê ú
ê úë û

 

3 
21.85 3.83 1.62
3.83 0.57 0.04

1.62 0.04 1.12

é ù
ê ú
ê ú
ê úë

- -
-

- û

- -
-

 
21.85 3.83 1.62
3.83 0.57 0.04

1.62 0.04 1.12

é ù
ê ú
ê ú
ê úë

- -
-

- û

- -
-

 
25.02 3.01 1.77
3.01 0.48 0.05

1.77 0.05 0.97

é ù
ê ú
ê ú
ê úë

- -
-

- û

- -
-

 

4 
14.49 7.38 4.84
7.38 14.49 4.8
-4.84 -4.84 9 15

4
.

é ù
ê

-
- ú

ê ú
ê úë û

 
3.69 1.74 2.85
1.74 3.69 2.85
-2.85 -2.85 2.45

-é ù
ê ú-ê ú
ê úë û

 
3.31 1.83 2.46
1.83 3.31 2.46
-2.46 -2.46 2.61

-é ù
ê ú-ê ú
ê úë û

 

5 
11.59 6.64 1.67
 6.64 15.67 0.42

 1.67 0.42 10.09

é ù
ê ú
ê ú
ê úë - û

-
-

-
 

1.58 0.08 0.21
 0.08 0.00 0.01
 0.21 0.01 0.02

é ù
ê ú
ê ú
ê úë - û

-
-

-
 

1.36 0.09 0.18
 0.09 0.00 0.01

 0.18 0.01 0.02

é ù
ê ú
ê ú
ê úë - û

-
-

-
 

6 
14.27 5.72 0.49
 5.72 14.27 0.49

 0.49 0.49 7.24

é ù
ê ú
ê ú
ê úë - û

-
-

-
 

0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

é ù
ê ú
ê ú
ê úë û

 
0.00 0.00 0.00
0.00 0.00 0.00
0.00 0.00 0.00

é ù
ê ú
ê ú
ê úë û
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5 and 6. When the upper bound x  is set to be 1.0, any mate-
rial can’t be removed from the unit cell. Therefore, the opti-
mum structure topology obtained by the proposed method is 
definitely same as the optimum topology obtained by SIMP 
under 1.0x = , as show in the top row of Table 6. From the 
resulting compliances, we see that lower system compliance 

can be obtained by increasing x in this case, as shown in Fig. 
9. In other words, adding material to the unit cell is better than 
adding material to the structure on this configuration. More-
over, the optimum topology of the cellular material in this 
example is a triangle cell, which is believed a common con-
figuration in the practical engineering, as shown in Fig. 1. 

Table 3. Evolution history. 
 
Iteration Structural topology (SIMP) Structural topology (proposed mehthod) Microstructural topology 

Initial 

   

5 

   

10 

   

15 

   

20 

   

25 

   

30 

   

35 

   

40 

   
 

Table 4. Optimal topologies of the structure and material by using different methods: SIMP; the method by Cheng et al. [16]; the present method. 
 

Method Structural topology Microstructural topology Iterations Structural compliance 

SIMP 

   
40 1268 

PAMP [16] 

 
  

60 2234 

The present 
method    

40 1752 
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6. Conclusions 

The purpose of this research is to optimize the topology of 
structure and lightweight cellular material simultaneously by a 
new concurrent design method. Considering mechanical per-
formance and request of actual engineering (only a material 
microstructure in the structure), the strategy based on the uni- 

 
 
Fig. 8. A cantilever beam subjected to a distributed constant line load. 

 
 

Table 5. Results of the cantilever beam design. 
 

x  V  C(103) HD (104) Microstructural topology 

1.0(SIMP) 0.12 0.481 
23.08 6.923  0
6.923 23.08 0

0 0 8.077

é ù
ê ú
ê ú
ê úë û

 

 

0.6 0.2 0.775 
21.479 3.272  -3.374
3.272 6.097 -3.336
-3.374 -3.336 3.494

é ù
ê ú
ê ú
ê úë û

 

 

0.55 0.218 0.797 
20.302 2.530 -2.537
2.530 2.649 -2.4847
-2.537 -2.485 2.662

é ù
ê ú
ê ú
ê úë û

 

    

0.50 0.24 0.804 
15.872 2.480 -2.547
2.480 4.967 -2.478
-2.547 -2.478 2.658

é ù
ê ú
ê ú
ê úë û

 

    

0.45 0.267 0.806 
11.419 3.439 -3.420
3.439 4.727 -3.409
-3.420 -3.409 3.551

é ù
ê ú
ê ú
ê úë û

 

    

0.4 0.3 0.817 
10.172 3.366 -4.424
3.366 5.575 -4.360
-4.424 -4.360 5.476

é ù
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0.35 0.343 0.846 
8.853 3.318 -3.354
3.318 4.444 -3.308
-3.354 -3.308 4.410
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0.3 0.4 0.883 
12.572 2.294 -2.261
2.294 3.382 -2.238
-2.261 -0.238 3.332

é ù
ê ú
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0.25 0.48 0.974 
8.297 2.215 -2.234
2.215 2.291 -2.209
-2.234 -0.209 2.266

é ù
ê ú
ê ú
ê úë û

 

    

0.2 0.6 1.456 
7.043 1.172 -1.174
1.172 2.214 -1.157
-1.174 -0.157 2.205

é ù
ê ú
ê ú
ê úë û

 

 
 

 

 
 
Fig. 9. The optimal structural compliance with the varying x . 



 H. Qiao et al. / Journal of Mechanical Science and Technology 33 (2) (2019) 729~739 737 
 

  

formity of material microstructure continue to be used in this 
paper. The optimization model with hybrid continuous 
/discrete design variables is formulated for concurrent topol-
ogy optimization of lightweight cellular materials and struc-
tures. A new solving algorithm is proposed by combining 

MMA and BESO. The proposed method is applied to a 
MBB beam and a cantilever beam. From those two common 
cases, it is concluded that different x (the upper bound of 
volume of solid material in the unit cell) settings will result 
different optimum topology of both structure and cellular 

Table 6. Results of the cantilever beam design. 
 

x  Structural topology Microstructural topology 

1.0 (SIMP) 

  

0.6 

   

0.55 

   

0.50 

   

0.45 

   

0.4 

   

0.35 

   

0.3 

   

0.25 

 
  

0.2 
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material, and a triangle cell based material is suitable for the 
simply supported beam and cantilever beam. Furthermore, 
compared to PAMP [16], the proposed method shows a bet-
ter convergence of the optimum topologies of material and 
structure due to absolute ‘black-and-white’ design of the 
cellular material. 
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Nomenclature------------------------------------------------------------------------ 

E     : Young’s modulus    
μ    : Poisson’s ratio 

HD    : Homogenized elastic matrix 
K  : Global stiffness matrix 
U   : Global displacement vector 
F   : Global force vector 
C  : Structural compliance 
I      : Identity matrix  
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