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Abstract 
 
Particle swarm optimization, a widely used metaheuristic algorithm, mimics the cooperation behavior among species. The PSO algo-

rithm has become a new trend owing to its simplicity and strong optimization capacity. However, premature convergence problem is also 
a serious issue for PSO comparable with other evolutionary algorithms. Diversity loss is generally known as one of the major causes. For 
enhancing the diversity of swarms during optimization procedure, an improved PSO algorithm named OLAR-PSO-d is proposed, which 
incorporates design of experiment technique as well as adaptive reset operator into standard PSO. The OLAR-PSO-d algorithm is com-
pared with other 10 heuristic algorithms. The numerical experiments’ results demonstrate the priority of OLAR-PSO-d both in optimiza-
tion ability and algorithm stability. The proposed algorithm is also used in a vehicle lightweight design problem. The auto-body achieves 
20.25 kg weight reduction with meeting all the performance requirements of crashworthiness.  
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1. Introduction 

Particle swarm optimization (PSO), introduced by Kennedy 
and Eberhart [1], is a widely used population-based metaheu-
ristic optimization method. PSO mimics the cooperation be-
havior among species such as blocks of birds, schools of 
fishes, etc. During optimization, the possible solutions are 
treated as particles in the design space. Based on particle’s 
own best position that it has reached (pbest) and the best posi-
tion of the entire swarm at each generation (gbest), position 
and velocity of every particle are updated iteratively [1-3]. 
The PSO algorithm has become a new trend and has been 
highly applied. It's mainly because of its briefness of imple-
mentation and powerful competence to get a fairly favorable 
solution rapidly [4-6]. 

While a fast convergence rate is the consequence the 
movement of particles in PSO algorithm, premature conver-
gence problem also occurs. That’s because the diversity 
among particles quickly loses [7-9]. Diversity is regarded as 
the degree of dispersion of all particles. During the PSO pro-
cedure, the particles’ diversity is high after initialization. After 
the process started, the particles tend to be convergent and the 
diversity is declined. The process, which enhances the local 
search (exploitation) ability while reduces the global search 

(exploration) ability, is beneficial to the efficiency but may 
bring worse poor diversity. In another word, the premature 
convergence may occur. 

The performance of PSO is deeply influenced by the diver-
sity of particles. Consequently, maintaining a high diversity is 
a crucial work for PSO algorithm. Numbers of scholars have 
studied different diversity maintaining mechanisms for im-
prove the optimization ability of PSO. They can be generally 
divided into three categories. First is the mutation operator: 
the mutation operator is a key operator used in some evolu-
tionary algorithms to generate the offspring for further opti-
mizing process. Ratnaweera et al. presented a mutation opera-
tor used for mutating velocity instead of the position of a par-
ticle [10]. And mutations were only generated when the global 
best solution have not changed for several iterations. Diver-
sity-guided strategy is the second category. Diversity meas-
ures are conventionally used for analyzing evolutionary algo-
rithms instead of guiding the optimization procedure. Riget 
proposed the ARPSO algorithm, in which a repulsion phase 
was defined to modify velocity updating equation [11]. This 
phase was used to prevent particles attracting too fast by the 
best positions. Pant et al. defined a middle phase based on 
Riget’s study [12]. The middle phase was called positive con-
flict phase which was between attraction and repulsion phases. 
Every particle was attracted by local best position and repelled 
by the global best position in the middle phase. Sun et al. used 
a mutation operator to increase the swarm diversity when the 
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diversity was below the predefined criterion [13]. Wang et al. 
incorporated a trial particle to enhance the diversity of particle 
swarm which can save the computational cost for the diversity 
calculation [14]. Meng et al. employed the crisscross search 
method into the PSO algorithm and developed a crisscross 
search particle swarm optimization method [15]. This method 
can improve the global searching ability and accelerating the 
global convergence of PSO. The third technique is the 
neighborhood search method. The suboptimal may be near to 
the global optimization solution or the neighborhood individu-
als may contain the global optimal solution occasionally. 
Based on this, the neighborhood search strategies have been 
employed into PSO procedure. Kennedy designed circle, 
wheel, star and random topologies for testing [16]. The results 
showed that fewer connections may perform better on highly 
multimodal problems while highly interconnected populations 
were suitable for unimodal problems. Mendes et al. proposed 
a fully informed PSO (FIPS), which used the neighbors to 
update the velocity instead of the local and global best posi-
tions [17]. Peram used a fitness-distance-ratio to control the 
particles moving toward the best previous positions of its 
neighbors [18]. Li proposed an information sharing mecha-
nism, which allows every particle to share its pbest with others, 
to improve the performance of PSO [19].  

This article proposed an improved PSO algorithm, the 
OLHD sampling and adaptive reset operator enhanced PSO 
with disturbance particles (OLAR-PSO-d), to enhance the di-
versity and strengthen the searching ability of the standard PSO. 
The latin hypercube design (LHD) technique is an efficient 
DOE method to identify sampling locations in design domain 
[20, 21]. Since the initialization of PSO is a sampling process, 
the proposed mothed adopts the optimal LHD (OLHD) tech-
nique to generate the initial swarm with full coverage in design 
domain. After the particles being initialized, a stagnation 
judgment criterion is established to enhance diversity among 
the swarm. When both the stagnation criterion and a predefined 
probability are satisfied, the adoptive reset operator will be 
activated to modify particles’ velocity. Otherwise, the distur-
bance particles are introduced to enhance diversity of the 
swarm. Therefore, the stagnation is broken up and the optimi-
zation process will continue to search the global optimum.  

The remain parts of this article are organized as follows: 
Sec. 2 is the technical base in which the PSO algorithm and 
DOE technique are simply described. In Sec. 3, the proposed 
OLAR-PSO-d method is presented in detail. Sec. 4 presents 
mathematical experiments, results and discussions. Sec. 5 is 
the application of the proposed algorithm in a vehicle light-
weight design problem. Finally, the conclusion is summarized 
in Sec. 6.  

 
2. The technological base 

2.1 The basis of particle swarm optimization 

When the standard deals with a D-dimensions problem, po-
sition of each particle represents the potential solution. Vector 

i
kx  is the position of the ith particle and vector i

kv  is the ve-
locity. i

kp  stands for the pbest of each particle while g
kp  

represent the gbest of all particles. In each iteration, particles 
move toward both pbest and gbest until better solutions are 
found. The velocity and position updating equations are as 
Eqs. (1) and (2). 

 
( ) ( )1 1 1 2 2

i i i i g i
k k k k k kv v c r p x c r p xw+ = + - + -  (1) 

1 1
i i i
k k kx x v+ ++=  (2) 

 
where ω is the inertia factor; c1 is the cognitive scaling pa-
rameter and c2 is the social scaling parameter [22]; r1 and r2 

are two uniformly distributed random numbers within range 
[0,1]. ω is obtained by a linearly varying inertia weight equa-
tion [23], as shown in Eq. (3) 
 

max current
current max min min

max

( )( ) ( )iter iteriter
iter

w w w w-
= × - +  (3) 

 
where itercurrent represents current iteration and itermax is the 
maximum iteration. The inertia factor ω has made the stan-
dard PSO improved significantly. The second and third part of 
Eq. (1) is cognition component and social component respec-
tively. Cognition component encourages particles to move 
toward their own pbest while social component makes use of 
cooperation behavior among particles [24]. Eq. (1) makes 
particles tend to move across the design space as well as to 
balance the exploitation and exploration abilities while opti-
mization proceeding [25]. 

The bounce method is employed in this article to solve the 
boundary of a problem [26]. If a particle exceeds design do-
main, its position is replaced by the nearest boundary and its 
velocity is reversed at each dimension i : 

 

max max

min min

'
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k

k
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x x x
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<ïî

 (4) 

.i i
k kv v= -  (5) 

 
2.2 Enhanced stochastic evolutionary method for OLHD 

In this article, the enhanced stochastic evolutionary (ESE) 
optimized latin hypercube design (LHD) is used [27]. LHD is 
a statistic mothed, which takes only one sample at each level. 
To obtain the optimal LHD (OLHD), ESE consists of double 
loops, i.e., the inner loop and the outer loop. The inner loop 
constructs new designs by element-exchanges randomly and if 
the new designs are better, accept them. Or the new designs 
will be accepted with probability. The outer loop controls the 
entire optimization process by adjusting the acceptance prob-
ability.  

The inner loop compares designs by the pf  optimal crite-
rion, which is firstly proposed by Morris and Mitchell [28]: 
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where di are distinct distance values with d1 < d2 < … < ds, Ji 
is the number of pairs of sites in the design separated by di, s is 
the number of distinct distance values, p is a positive integer. 

 
3. The proposed algorithm 

In this section, the OLAR-PSO-d is described in detail. 
There are three parts, the initialization method in OLAR-PSO-
d are compared with the traditional method at first. Then the 
adaptive reset operator and disturbance particles proposed in 
this article is interpreted. At last, the technological process of 
the OLAR-PSO-d algorithm is presented.  

 
3.1 Initialization by OLHD technique 

To guarantee a complete coverage of the design domain, the 
OLHD, rather than the uniformly random distributed method 
is applied to acquire the first generation of particle swarm. 
Compare the distribution of particles developed by OLHD in 
Fig. 1(b) and this using traditional method in Fig. 1(a), it's can 
be concluded easily that the former is more acceptable. 

 
3.2 Adaptive reset operator acted on velocity 

It is understood that as for the premature convergence prob-
lem, the prevailing factor is the lack of diversification. In the 
most evolutionary optimization, mutation operators are highly 
applied. In this way, lack of diversity can be avoided. Thus, 

one algorithm is able to lookup a larger region of design space. 
Variants are created by mutation operator founded on current 
individuals to add diverseness to population and avert stagna-
tion in local optima.  

Various numerical experiments show that standard PSO 
rapidly gets a comparatively favorable solution. However, it 
may stagnate occasionally in the local optimum without future 
enhancement after considerable times of iterations. To en-
hance the exploration capability of PSO, an adaptive reset 
operator acted on velocity is now developed. The operator is 
similar to the mutation operator abovementioned to some ex-
tent. As PSO in process, if the particles stagnate in the local 
optimum, the proposed strategy will be active at predefined 
probability. Then the operator will reset particles’ velocity and 
force the particles to further search the global optimum. The 
adaptive reset operator works as Eq. (7): 

 
reset randV rw Vm= × ×  (7) 

 
where μ stands for a generation correlation coefficient and it is 
linearly declined during iteration as Eq. (8): 
 

max

1 .currentiter
iter

m = -  (8) 

 
rw is a velocity correlation coefficient with range [rwmin, 

rwmax] as Eq. (9): 
 

( )max min min .rw rw rw rwm= - +  (9) 

 
Vrand represents particles’ velocity matrix, generated ran-

domly with range [-Vmax, Vmax]. 
With the iteration times increased, μ is decreased while the 

amplitude of μ and Vreset is shrunken. Consequently, the distri-
bution of reset particles in consideration of exploitation and 
exploration ability is improved by rw and the convergence 
guaranteed. After the adaptive reset operator activated, the 
particles are dispersed from the previous stagnation position 
by Eq. (10): 

 
.p stagnation resetP P V= +  (10) 

 
3.3 Disturbance particles 

In order to enhance the diversity of the swarm, the distur-
bance particles are introduced to the proposed method. In each 
iteration, current particles would learn from both local distur-
bance particles and global disturbance particles besides pbest 
and gbest. The two types of disturbance particles are generated 
form the pbest and gbest respectively according following 
equations: 

 
0.5

i i
k k kd s r p=   (11) 

0.5
g g
k k kd s r p=  (12) 

 
(a) Rand samples 

 

 
(b) OLHD samples 

 
Fig. 1. Initialization method. 
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where sk is the scale factor with linear decrease from 1 to 0 
during the optimization; r0.5 is randomly created between -0.5 
to 0.5. 

Then the velocity Eq. (1) is rewritten as Eq. (13): 
 

( ) ( )1 1 1 2 2 .i i i i i g i g
k k k k k k k kv v c r p x d c r p x dw+ = + - + + - +  (13) 

 
3.4 Convergence analysis 

In this part, the convergence of the proposed method has 
been proved. Since the Mathematical expectation of the r0.5 
and the finial scale factor s is both 0, disturbance particle 
terms i

kd  and g
kd  in Eqs. (11)-(13) are not taken into fol-

lowing deduction.  
Replaced the velocity updating Eq. (1) to position updating 

Eq. (2) and rearrange the velocity Eq. (1), the general velocity 
and position equations of a particle can be represented as fol-
lows:  

 
1 1 1 2 2 1 1 2 2(1 )i i i i g

k k k k kx x c r c r v c r p c r pw+ = - - + + +  (14) 

1 1 1 2 2 1 1 2 2( + ) .i i i i g
k k k k kv x c r c r v c r p c r pw+ = - + + +  (15) 

 
When the reset operator is activated, the Eq. (14) could be 

represented as: 
 

1 1 1 2 2 1 1 2 2(1 ) + .i i i i g i
k k k k k randx x c r c r v c r p c r p rw vw m+ = - - + + + × ×  

 (16) 
 
Combining Eqs. (15) and (16), written in matrix form as Eq. 

(17): 
 

( )
1 1 2 21 1 1 2 2

1 1 2 2 1 1 2 21

1   
  .

+ 0

i i i i
k k k rand
i i g
k k k

c r c rx x pc r c r rw v
c r c r c r c rv v p

w m
w

+

+

- -éé ù é ù é ù é ùé ù × ×ù
= + +êê ú ê ú ê ú ê úê úú-ê ú ê ú ê úê û ë û ë ûë û ë û ë ûë

 

 (17) 
 
According to Eq. (17), the PSO algorithm can be considered 

as a discrete-dynamic system [29]. 1 1  
Ti i

k kx v+ +é ùë û  is the state 

subject of the input criterion   
Ti g

k kp pé ùë û . If there is no external 

excitation for the dynamic system,   
Ti g

k kp pé ùë û  is constant, 

which means there are no better positions identified by other 
particles, then the convergence can be maintained. In this case, 
when the iterations k ®¥ , then  

 

1

1

lim =
i i
k k
i ik
k k

x x
v v
+

®¥
+

é ù é ù
ê ú ê ú
ë û ë û

 (18) 

 
and 
 

max min min
max max

lim 1- ( ) 1- 0icurrent current
randk

iter iterrw rw rw v
iter iter®¥

æ ö
- + =ç ÷ç ÷

è ø
  (19) 

0
lim .

00

i
rand

k

rw vm
®¥

é ù é ù× ×
=ê ú ê ú
ë ûë û

 (20) 

 
Eq. (17) can be reduced as follows:  
 

( )
( )

1 1 2 2 1 1 2 2

1 1 2 21 1 2 2

0
    

0 1

i i
k k

i g
k k

c r c r x pc r c r
c r c rv pc r c r

w
w

é- + é ù é ùé ùé ù ù
= +ê ê ú ê úê úê ú ú-- +ê ê ú ê úë û û ë ûë û ë ûë

 (21) 

( ) ( )
( ) ( ) ( )

1 1 2 2

1 1 2 2

0
0 1

i i g i i
k k k k k

i i g i i
k k k k k

c r p x c r p x v

c r p x c r p x v

w

w

é ù- + - +é ù ê ú=ê ú ê ú- + - + -ë û ë û
 (22) 

 
which is true only if i i g

k k kx p p= =  and 0i
kv = . The point 

found is not a local minimum or a global solution but an equi-
librium point. Therefore, this point can move forward the op-
timum if there is a better pbest and gbest discovered by the 
optimization process. 

 
3.5 The procedure of OLAR-PSO-d 

The flowchart of proposed OLAR-PSO-d method is shown 
in Fig. 2. Seven steps are used for OLAR-PSO-d: 

(1) To guarantee a through coverage of the design domain, 
the OLHD is used to perform initialization, which is various 
from standard PSO algorithm. 

(2) Calculate fitness values of each particle, find the pbest 

Start

Initialize the swarm

Compute the fitness values

Find  pbest and gbest

Update  velocity

Stagnation
Judgement

Termination 
Conditions

Y

End

Y

Reset velocity

Update position

Boundary bounce method

N

OLHD

Generate
disturbance particlesN

 
 
Fig. 2. The flowchart of OLAR-PSO-d.  
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and gbest.  
(3) Check the predefined stagnation criterion Gstagnation. If the 

requirement met, turn into step (4). In this article, Gstagnation is 
maximum counts that gbest unchanged, which is set to D×3 
via empirical observations. 

(4) As the adaptive reset operator is activated, velocities are 
reset for all the particles if the probability judgment satisfied. 
In each iteration, the judgment would generate a number r 
between 0 and 1 randomly. If r is smaller than the given prob-

ability P, the reset operator based on Eq. (7) would proceed to 
break up stagnation. According to the mathematical experi-
ments, the value of P used is 0.5, rwmin and rwmax are set to 0.1 
and 0.9, respectively. 

(5) If the adaptive reset operator is inactivate, the distur-
bance particles are generated by Eqs. (11) and (12). The veloc-
ity is updated based on Eq. (13). 

(6) Renew particles’ position according to Eq. (2) and pro-
ceed the boundary check process in case that the positions of 

Table 1. Benchmark functions. 
 
No. Name Formula Range Optimum 

f1 Ackley 2

1 1

1 120exp 0.2 exp cos 2 20
D D

i i
i i

f x x e
D D

p
= =

æ ö æ ö
= - - - + +ç ÷ ç ÷ç ÷ è øè ø

å å  [-32,32] 0 

f2 Griewank 
1

2

1 1

1 cos 1
4000

DD
i

i
i i

xf x
i

-

= =

æ ö
= - +ç ÷

è ø
å Õ  [-600,600] 0 

f3 Penalized 
( ) ( ) ( ) ( ) ( )

( )

1 2 22 2
1 1

1 1

10sin 1 1 10sin 1 ,10,100,4

11 1
4

D D

i i n i
i i

i i

f y y y y u x
D

y x

p p p
-

+
= =

ì üé ù= + - + + - +í ýë ûî þ

= + +

å å
 [-50,50] 0 

f4 Penalized 2 

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( )

1 2 22 2 2
1 1

1 1

0.1 sin 3 1 1 sin 3 1 1 sin 2 ,5,100,4

,
, , , 0

,

D D

i i n n i
i i

m

i i

i i
m

i i

f x x x x x u x

k x a x a
u x a k m a x a

k x a x a

p p p
-

+
= =

ì üé ù é ù= + - + + - + +í ýë û ë ûî þ
ì - >ïï= - £ £í
ï
- - - < -ïî

å å

[-50,50] 0 

f5 Quartic Noise ( )4

1

0,1
D

i
i

f ix rand
=

= +å  [-1.28,1.28] 0 

f6 Rastrigin ( )2

1

10cos 2 10
D

i i
i

f x xp
=

é ù= - +ë ûå  [-5.12,5.12] 0 

f7 Rosenbrock ( ) ( )
1 2 2

1
1

100 1
D

i i i
i

f x x x
-

+
=

é ù= - + -ê úë ûå  [-30,30] 0 

f8 Schafferf 7 ( ) ( )( )21 0.25 0.12 2 2 2
1 1

1

sin 50 1
n

i i i i
i

f x x x x
-

+ +
=

é ùæ ö
= + + +ê úç ÷

ê úè øë û
å  [-100,100] 0 

f9 Schwefel 
1

sin( )
n

i i
i

f x x
=

=å  [-500,500] －418.9829×D

f10 Schwefel 1.2 
2

1 1

D i

j
i j

f x
= =

æ ö
= ç ÷
è ø
å å  [-100,100] 0 

f11 Schwefel 2.21 { }max ,1if x i D= £ £  [-100,100] 0 

f12 Schwefel 2.22 
1 1

DD

i i
i i

f x x
= =

= +å Õ  [-100,100] 0 

f13 Sphere 2

1

D

i
i

f x
=

=å  [-100,100] 0 

f14 Step ( )2
1

0.5
D

i
i

f x
=

= +å  [-100,100] 0 

f15 Zakharov 
2 42 2 2

2

1 1 1

0.5 0.5i i i
i i i

f x ix ix
= = =

æ ö æ ö
= + +ç ÷ ç ÷

è ø è ø
å å å  [-100,100] 0 
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updating particles are beyond the boundary of the optimiza-
tion problem. 

(7) Steps (2)-(6) are proceeded repeatedly until meeting the 
termination conditions. In this work, the predefined maximum 
function evaluation is chosen as the termination criterion. 

 
4. Experimental verifications 

In this section, the proposed method is compared with 10 
PSO variants or other efficient heuristic algorithm by 15 
wildly used benchmark functions. The compared algorithms 
are BBPSO [30], CLPSO [31], APSO [32], DMS-PSO [33], 
DE/best/1 [34], ODE [35], ABC [36], GABC [37], IGHS [38] 
and GDHS [39]. 

For fair competition, all the other algorithms are run with 
their recommended hyperparameters. Part of the experimental 
data are come from article [40].  

15 widely used benchmark functions are tested as shown in 
Table 1. Dimension (D) of each function is set to 30, 50 and 
100, respectively. The inertia weight is linearly decreased 
from 0.9 to 0.1 while two cognitive factors c1 and c2 are set to 
1.75 and 1.5. The population size is 40 and the maximum 
function evaluation is D×104. All the benchmark functions are 
tested 50 times for each algorithm.  

The mean final fitness values (M) and standard deviation 
(SD) of all the problems are listed in Tables 2-4, which dem-
onstrates the optimization ability and the ability stability of 
algorithms. 

From the experimental results of Tables 2-4, the proposed 
OLAR-PSO-d method works better than the others in func-
tions Ackley, Griewank, Quartic Noise, Rastrigin, Schafferf 7 
Schwefel 1.2/2.2.1/2.22, and Zakharov, and a litter worse in 
functions Penalized, Rosenbrock, Sphere and Step. In order to 
make a clearly and comprehensive comparison among these 

Table 2. Optimization results with 30 dimensions. 
 

No. Index BBPSO CLPSO APSO DMS-PSO DE/best/1 ODE ABC GABC IGHS GDHS OLAR-PSO-d 

M 20 1.42E-14 0.00757 6.06E-12 6.04E-15 6.04E-15 1.63E-09 1.63E-09 3.44E-06 0.00456 0 
f1 

SD 10.4 7.46E-15 0.000963 3.9E-13 1.67E-15 1.67E-15 1.44E-09 1.44E-09 1.79E-07 0.000394 0 

M 0.0108 0.0032 0.0287 0.00185 0.00283 0.00283 7.48E-10 7.48E-10 0.0108 0.00414 0 
f2 

SD 0.0132 0.00493 0.0258 0.00407 0.0066 0.0066 2.4E-09 2.4E-09 0.00974 0.00451 0 

M 0.228 1.36E-33 2.65E-06 0 0.00518 0.00518 3.66E-21 3.66E-21 2.04E-13 7.43E-07 4.63E-07 
f3 

SD 0.379 2.82E-33 7.17E-06 0 0.0232 0.0232 1.02E-20 1.02E-20 2.44E-14 1.37E-07 1.61E-07 

M 0.00769 1.65E-33 4.48E-06 6.16E-35 1040 1040 1.47E-19 1.47E-19 3.03E-12 0.000012 6.03E-09 
f4 

SD 0.0134 4.03E-33 1.14E-05 2.76E-34 3460 3460 4.04E-19 4.04E-19 4.49E-13 1.66E-06 2.81E-09 

M 0.41 0.00174 0.00286 0.000609 0.00465 0.00465 0.101 0.101 0.00422 0.000732 0.0000727 
f5 

SD 0.981 0.000783 0.000923 0.000418 0.00272 0.00272 0.033 0.033 0.00195 0.00025 0.0000404 

M 99.7 12.7 0.0498 14.9 13.1 13.1 3.2E-11 3.2E-11 4.23E-09 0.000376 0 
f6 

SD 34.4 4.22 0.222 3.62 3.91 3.91 5.28E-11 5.28E-11 4.68E-10 5.53E-05 0 

M 18100 41.8 70 34.9 20.3 20.3 0.483 0.483 24.2 26.5 23.8 
f7 

SD 36900 33.5 125 27.6 17.6 17.6 0.443 0.443 26.8 17.9 0.386 

M 98.2 0.43 3.02 0.0853 0.212 0.212 1.45 1.45 12.1 2.52 0.0068 
f8 

SD 28.6 0.37 2.07 0.0787 0.362 0.362 1.09 1.09 3.49 0.158 0.0417 

M -10042.5 -12569.5 -12569.5 -12569.5 -12123.4 -12569.5 -12569.5 -12569.5 -12569.5 -12234.5 -8290 
f9 

SD 0.0561 0.0035 0.000109 0.0836 0.0286 0.0078 0.0787 0.0298 0.000912 0.000767 514 

M 12000 0.00932 7.7E-08 0.000295 3.59E-06 3.59E-06 7800 7800 1.07E-10 0.00154 9.99E-106 
f10 

SD 7040 0.0193 2.44E-07 0.00058 5.24E-06 5.24E-06 2580 2580 2.73E-11 0.000362 3.36E-105 

M 0.000185 0.0653 3.02E-05 0.00794 17.6 17.6 13.2 13.2 2.04E-06 0.0075 4.15E-104 
f11 

SD 4.22E-04 0.0379 5.85E-05 0.00762 4.86 4.86 4.76 4.76 1.98E-07 0.000767 5.1E-104 

M 440 5.5E-57 0.00538 218 2.73E-32 4.73E-32 5.18E-10 5.18E-10 0.0121 0.0676 1.06E-104 
f12 

SD 223 1.92E-56 0.0101 183 3.54E-32 5.54E-32 7.84E-10 7.84E-10 0.0333 0.00455 1.74E-104 

M 1.3E-216 8.06E-96 2.3E-12 1.5E-113 5.01E-57 5.01E-57 8.01E-19 8.01E-19 2.17E-11 0.000257 8.8E-108 
f13 

SD 0 3.53E-95 1.03E-11 5.1E-113 1.57E-56 1.57E-56 2.36E-18 2.36E-18 2.98E-12 3.67E-05 1.73E-107 

M 1.55 0 0 0 0.05 0.05 0 0 0 0 5.98E-06 
f14 

SD 3.12 0 0 0 0.224 0.224 0 0 0 0 2.29E-06 

M 20000 0.0185 87.8 0.969 0.433 0.433 29300 29300 5.19E-11 0.000732 2.65E-104 
f15 

SD 14200 0.0447 280 2.35 1.38 1.38 19400 19400 7.37E-12 0.000112 7.51E-104 
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listed algorithms, a ranking procedure is conducted. For each 
function, the fitness values from different algorithms are 
sorted from smallest to biggest, and the order is as their scores. 
That means the better performance obtains the higher score. 
For each algorithm, scores of every functions are summed and 
the accumulation column graph are shown in Fig. 3. 

The optimization ability of the proposed method performs 
best among all the algorithms from Fig. 3, which proves the 
effectiveness of our improvements. For function Schwefel, the 
proposed method didn’t acquire satisfied results, which indi-
cate that the OLAR-PSO-d is not applicable for some extreme 
multimodal problems. 

From Tables 2-4 for standard deviation, the proposed 
method performs better in most functions as mentioned before. 
And it is easy to find the proposed OLAR-PSO-d performs the 
best in aspect of the algorithm stability. 

From the mathematical results of this part, it can be con-

cluded that the reset operator cooperating with the stagnation 
judgment criterion and the disturbance particles are effective 
and efficient in improving the performance of standard PSO 
algorithm. The proposed OLAR-PSO-d algorithm outper-
forms several modified PSO method and other heuristic algo-
rithms in both optimization ability and algorithm stability. 

 
5. The lightweight design of an auto-body considering 

crashworthiness using OLAR-PSO-d  

In this section, the advantage of the proposed OLAR-PSO-d 
algorithm is further illustrated with the crashworthiness con-
strained vehicle lightweight design problem. Five crash cases 
are considered in this article. A Kriging surrogates model 
technique is employed to reduce the computational consump-
tion. The proposed mothed is proceeded as following proce-
dure: 

Table 3. Optimization results with 50 dimensions. 
 

No. Index BBPSO CLPSO APSO DMS-PSO DE/best/1 ODE ABC GABC IGHS GDHS OLAR-PSO-d 

M 18 1.01E-14 1.84 7.75E-08 0.385 7.32E-13 1.01E-11 3.24 4.24E-06 0.00687 0 
f1 

SD 4.19 3.32E-15 0.885 2.79E-07 0.564 2.13E-12 1.6E-11 3.05 1.98E-07 0.000335 0 

M 18.1 0.000493 4.56 0.00074 0.00627 0.0174 6.29E-13 3.07 0.00222 0.000806 0 
f2 

SD 47.2 0.0022 20.3 0.00228 0.011 0.0318 1.15E-12 5.24 0.00466 7.48E-05 0 

M 1.28E+07 0.00311 0.306 0.00311 372 5.01E-27 3.67E-25 0.559 2.86E-13 1.6E-06 0.0000591 
f3 

SD 5.72E+07 0.0139 0.37 0.0139 1150 1.61E-26 1.33E-24 1.28 3.57E-14 2.28E-07 0.000413 

M 0.00659 0.000549 0.00439 8.63E-34 29700 0.0022 7.12E-25 0.311 7.64E-12 4.17E-05 3.1E-09 
f4 

SD 0.00552 0.00246 0.00552 2.3E-33 108000 0.00983 1.14E-24 1.39 7.94E-13 7.3E-06 1.3E-09 

M 3.64 0.00331 0.408 0.00115 0.0164 0.00138 0.303 0.861 0.00604 0.00121 0.0000519 
f5 

SD 7.5 0.000905 1.31 0.000392 0.00847 0.00117 0.15 0.581 0.00186 0.000461 0.0000241 

M 308 24.2 179 29.9 32.6 1.11E-12 1.27E-06 19.2 1.16E-08 0.00137 0 
f6 

SD 56.4 6.4 53.2 6.3 6.49 4.39E-12 5.52E-06 9.08 9.64E-10 0.000146 0 

M 22700 69.7 4520 70.3 64.3 7.16E-25 0.292 23900 59.7 50.3 43.7 
f7 

SD 39900 44.5 20100 44.9 38.3 1.56E-24 0.255 77700 32.9 21.3 0.611 

M 285 1.28 157 1.26 6.87 8.18 0.625 9.88 19.2 5.54 0.0000651 
f8 

SD 57.2 0.971 47.8 2.4 3.78 4.67 0.583 4.49 3.23 0.236 0.000133 

M -17765.7 -20949.1 -20949.1 -20949.1 -20685.1 -20949.1 -20949.1 -20949.1 -20949.1 -20049 -12400 
f9 

SD 103 0.0397 0.00129 0.0105 0.655 0.498 0.00998 0.0645 0.00798 0.699 1090 

M 40400 54.3 8830 2.54 0.0676 6.64E-22 23200 19800 1.24E-09 0.0324 3.53E-106 
f10 

SD 19700 31.4 9320 2.79 0.0423 1.13E-21 9000 9770 2.76E-10 0.00771 1.34E-105 

M 62.2 1.49 0.0131 0.995 28.6 0.0612 37 34.7 3.19E-06 0.0145 4.48E-105 
f11 

SD 21.5 0.547 0.015 0.523 5.23 0.0336 20.9 15.8 2.32E-07 0.00169 6.39E-105 

M 980 4.47E-52 2.94E-38 309 2.62E-33 1.03E-42 8.91E-13 48.1 0.149 0.167 7.08E-106 
f12 

SD 177 1.22E-51 1.31E-37 28.7 6.71E-33 3.53E-42 4.85E-13 26.8 0.252 0.0109 8.93E-106 

M 1000 2.28E-85 9.5E-140 8.6E-103 1.39E-53 1E-165 7.97E-25 180 5.96E-11 0.000929 8.17E-109 
f13 

SD 3080 3.87E-85 3.6E-139 2.8E-102 2.2E-53 0 1.25E-24 405 5.63E-12 0.000137 1.32E-108 

M 3010 0 2.5 0 5.65 0 0 592 0 0 0.0000176 
f14 

SD 5710 0 8.24 0 6.43 0 0 723 0 0 5.93E-06 

M 51000 355 517 794 8760 6.97E-15 55900 58900 1.72E-10 0.00453 1.34E-104 
f15 

SD 19600 259 2310 362 3640 2.91E-14 38900 37600 3.14E-11 0.000809 1.7E-104 
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5.1 Definition of the optimization problem 

A full-vehicle finite element model is established with strict 
meshing criteria to guarantee the simulation accuracy. The 
model contains 1038131 elements with 10 mm element size 
averagely, 7793 beam elements, 16476 solid elements, 
1013862 shell elements and 77312 triangular elements in par-
ticular. The complete vehicle mass is 2090.9 kg. The compari-
son of structure deformation of simulation and experiments is 
shown in Fig. 4. It indicates that the model established is valid 
for further study. 

The objective of the optimization is the mass reduction of 
auto-body, and the thickness of each component is defined as 
design variable within the range of 0.6 mm to 1.1 times the 
original thickness value. The constraints are derived from the 
crash cases working conditions. A brief introduction of FEM 
simulations is as follows: 

According to Chinese Standard GB11551-2003, a FM 
model for frontal impact simulation is established as shown in 
Fig. 5(a). Fig. 5(b) illustrates the selected 15 design variables 
which represent the thickness of sheet related to this case. 

A FM model for frontal offset impact simulation based on 
the Chinese Standard GB11551-2003 is established as shown 
in Fig. 6(a). Fig. 6(b) illustrates the selected 21 design vari-
ables which represent the thickness of sheet related to this case. 

Fig. 7(a) is the FE model of lateral impact case according to 
Chinese Standard GB20071-2006. Fig. 7(b) illustrates the 
selected 15 design variables which represent the thickness of 
sheet related to this case. 

Rear impact simulation based on Chinese standard 
GB20072-2006 is established as shown in Fig. 8(a). In this 
work, the hydrogen storage bottles are placed behind the car. 
So the performance indicators are related with hydrogen bottle. 
Fig. 8(b) illustrates the selected 8 design variables which rep- 

Table 4. Optimization results with 100 dimensions. 
 

No. Index BBPSO CLPSO APSO DMS-PSO DE/best/1 ODE ABC GABC IGHS GDHS OLAR-PSO-d 

M 19.7 2.74E-14 6.6 0.991 7.31 0.000172 3.96E-11 7.03 5.91E-06 0.0144 0 
f1 

SD 0.309 5.17E-15 3.72 4.43 7.16 0.000544 3.22E-11 2.47 1.63E-07 0.000671 0 

M 176 3.33E-17 9.05 0.00074 0.0371 0.00074 1.05E-12 21.4 0.00228 0.0045 0 
f2 

SD 129 7.29E-17 27.8 0.00228 0.0731 0.00234 2.05E-12 30 0.00427 0.000518 0 

M 8.96E+07 0.00933 0.298 0.0156 365000 3.49E-25 2.53E-23 0.293 5.26E-13 6.83E-06 0.0159 
f3 

SD 1.50E+08 0.0287 0.41 0.0423 546000 8.66E-25 7.7E-23 0.927 4.25E-14 6.46E-07 0.00602 

M 1.03E+08 0.0011 0.00604 0.00549 210000 1.07E-15 5.35E-24 204000 1.86E-06 0.000333 8.78E-10 
f4 

SD 1.82E+08 0.00338 0.0104 0.0126 327000 2.23E-15 7.5E-24 444000 5.89E-06 4.66E-05 3.77E-10 

M 102 0.007 13.5 0.0064 0.0712 0.00183 0.806 0.857 0.018 0.00287 0.0000219 
f5 

SD 100 0.00153 30 0.00256 0.0197 0.00202 0.681 0.627 0.00217 0.000574 0.0000113 

M 89.3 7.02 50.3 19.5 108 4.52E-08 0.0108 46.4 4.41E-08 0.0116 0 
f6 

SD 28.9 100 26.1 25.9 15.3 1.41E-07 0.0181 16.3 3.47E-09 0.00114 0 

M 3.18E+07 146 4860 120 198 9.69E-12 0.342 607000 132 107 93.9 
f7 

SD 4.72E+07 47.8 20100 36.2 83.9 3.06E-11 0.223 823000 44.9 23.9 1.09 

M 747 3.01 549 11.6 136 12.3 6.94 31.7 40.6 19.4 2.79E-06 
f8 

SD 49.4 1.71 53.6 5.19 31.6 7.7 7.84 5.15 7.7 1.2 4.25E-06 

M -38965.4 -38995 -39087.1 -41898.3 -41675.7 -41709.3 -41898.3 -41898.3 -39898.3 -41875.3 -23000 
f9 

SD 4660 451 2360 0.00207 0.183 0.0435 0.0198 0.0213 0.976 0.0457 1540 

M 127000 7830 33100 1270 95 1.81E-05 88100 89400 2.72E-06 6.17 6.81E-116 
f10 

SD 42900 1680 18900 494 27.7 4.69E-05 34700 35100 9.49E-07 0.77 1.67E-115 

M 95.9 9.02 35.2 13.2 43.5 0.0927 55.1 53.4 3.53 0.0671 7.76E-108 
f11 

SD 1.16 1.7 6.41 2.01 5.54 0.0233 21 19.3 0.267 0.0105 1.41E-107 

M 2300 3.45E-45 15 583 8.38E-24 3.60E-06 2.34E-12 84.7 0.396 0.72 7.6E-109 
f12 

SD 504 1.52E-44 36.6 35.4 2.27E-23 1.13E-05 6.21E-13 30.6 0.307 0.0416 1.66E-108 

M 19500 4.16E-75 2500 4.89E-77 7.68E-37 5.67E-81 1.29E-23 858 2.14E-10 0.00807 7.2E-120 
f13 

SD 15400 1.8E-74 4440 1.4E-76 2.22E-36 9.55E-81 2.91E-23 1520 1.22E-11 0.000887 1.31E-119 

M 18300 0.1 1010 0.35 260 0 0 2350 0 0 0.724 
f14 

SD 16000 0.308 3080 0.745 248 0 0 2900 0 0 0.587 

M 273000 28900 17700 32100 131000 429 211000 218000 31.5 0.133 9.91E-108 
f15 

SD 45400 6680 10400 5690 12800 819 47200 24200 68.3 0.0161 2.82E-107 
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(c) D = 100 

 
Fig. 3. The accumulation column graph of fitness value with different dimensions. 
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resent the thickness of sheet related to this case. 
According to American standard FMVSS216, a FM model 

for roof crush simulation is established as shown in Fig. 9(a). 
Fig. 9(b) is the selected 10 design variables which represent 
the thickness of sheet related to this case. 

The performance indicators of aforementioned 5 cases are 
listed in Table 5. Part of the indicators are derived from the 
previous work [41]. In this problem, the target is to reduce the 

structural mass. And there are totally 58 design variables op-
timized together. 

 
5.2 Construct the surrogate models of each crash case 

Kriging surrogate model technique is chosen in this article. 
Aforementioned OLHD is applied to sample in the design 
domain. In order to achieve accurate surrogate models, the  

  
(a) t = 40 ms 

 

  

(b) t = 60 ms 
 

  
(c) t = 100 ms 

 
Fig. 4. Comparison between experiment and simulation of frontal impact. 

 

 

 
(a) FE model (b) Design variables 

 
Fig. 5. Case of frontal impact. 
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(a) FE model (b) Design variables 

 
Fig. 6. Case of frontal offset impact. 
 

  
(a) FE model (b) Design variables 

 
Fig. 7. Case of lateral impact. 
 

 

 
(a) FE model (b) Design variables 

 
Fig. 8. Case of rear impact. 
 

  
(a) FE model (b) Design variables 

 
Fig. 9. FEM model of roof crush. 
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target oriented sequential sampling technique is used [42]. The 
coefficient of determination (R2) is employed to verify the 
accuracy of surrogate models.  

The result of the built surrogate models is listed in Table 5. 
Since all the R2 is greater than 0.9, the model is valid. 

 
5.3 Optimization process based on OLAR-PSO-d and verifi-

cation 

The lightweight design problem is optimized by the pro-
posed OLAR-PSO-d method. The widely used non-stationary 
penalty function method is applied to transform the constraints 

into a sequence of unconstrained optimization problems [43].  

 
6. Conclusions 

In this article, the OLAR-PSO-d algorithm is proposed, in 
which the optimal LHD technique is used for swarm initializa-
tion and the adaptive reset operator acted on velocity is 
adopted to enhance the diversity of particles and prompt the 
optimization program jumping out from stagnation. From the 
numerical experiments, conclusions are summarized as fol-
lows: 
·Compared with the standard PSO with linearly decreased 

Table 5. Load cases and constraints. 
 

Load cases Design variables Performance indicators Constraints 

Left B-pillar acceleration (g) ≤ 40 

Left toe-board intrusion (mm) ≤ 80 Frontal impact 15 

Right toe-board intrusion (mm) ≤ 80 

Left B-pillar acceleration (g) ≤ 40 

A-pillar deformation (mm) ≤ 80 

Left toe-board intrusion (mm) ≤ 80 
Frontal offset impact 21 

Right toe-board intrusion (mm) ≤ 80 

Low rib deflection (mm) ≤ 32 

B-pillar intrusion velocity (m/s) ≤ 9 

Door deformation velocity (m/s) ≤ 9 

Abdomen acting force (kN) ≤ 1.5 

Lateral impact 15 

Pubic symphysis acting force (kN) ≤ 4 

Left contact force of hydrogen bottle (kN) ≤ 50 

Middle contact force of hydrogen bottle (kN) ≤ 50 Rear impact 8 

Right contact force of hydrogen bottle (kN) ≤ 50 

Roof crush 10 Resistance force (kN) ≥ 50 

 
Table 6. Surrogate model. 
 

Load cases Performance indicators Training points Added points R2 

Left B-pillar acceleration (g) 19 0.9014 

Left toe-board intrusion (mm) 11 0.9120 Frontal impact 

Right toe-board intrusion (mm) 

100 

-- 0.9012 

Left B-pillar acceleration (g) 13 0.9035 

A-pillar deformation (mm) 11 0.9243 

Left toe-board intrusion (mm) 19 0.9007 
Frontal offset impact 

Right toe-board intrusion (mm) 

160 

-- 0.9124 

Low rib deflection (mm) 10 0.9185 

B-pillar intrusion velocity (m/s) 15 0.9374 

Door deformation velocity (m/s) 11 0.9002 

Abdomen acting force (kN) -- 0.9156 

Lateral impact 

Pubic symphysis acting force (kN) 

120 

-- 0.9324 

Left contact force of hydrogen bottle (kN) -- 0.9052 

Middle contact force of hydrogen bottle (kN) -- 0.9346 Rear impact 

Right contact force of hydrogen bottle (kN) 

100 

6 0.9156 

Roof crush Resistance force (kN) 80 -- 0.9211 
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weight factor and with constriction factor versions, the 
proposed OLAR-PSO-d demonstrates its advantage in 
global optimal searching. Due to the scatter distribution 
of the initialized swarm and the proposed reset process, 
the convergence rate of proposed method is a slightly 
lower than the standard versions. However, the outcomes 
of OLAR-PSO-d present the effectiveness and efficiency 
to enhance the performance of the standard PSO. 
·The modified PSO algorithm using the most common 

used single point crossover and single point mutation op-
erators is chosen as comparative case. From the tests re-
sults, the OLAR-PSO-d algorithm outperforms the modi-
fied PSO method in both optimization ability and algo-
rithm stability. 
·Combined with the Kriging surrogate model technique 

and the non-stationary penalty functions method, the 
proposed method is applied to solve a vehicle light-
weight design problem. The weight of the auto-body is 
successfully decreased by 9.56 % with satisfying all the 
crashworthiness requirements. 
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