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Abstract 
 
Aiming at the problem of gear fault feature extraction and fault classification under different load excitation, we present a new fault di-

agnosis method that combines three methods, including empirical mode decomposition (EMD), particle swarm optimization support 
vector machine (PSO-SVM) and fractal box dimension. First, the non-stationary original vibration signal of gear fault is decomposed into 
several intrinsic mode functions (IMF) by EMD method. Then, the time, frequency, energy characteristic parameters and box dimension 
are calculated separately from the time domain, frequency domain, energy domain and fractal domain. And then the gear fault character-
istics under different load excitation are obtained. Finally, the extracted feature parameters are input into the PSO-SVM model for gear 
fault classification. The experimental results show that the proposed method can effectively identify gear failure types under different 
load excitation.  
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1. Introduction 

A gearbox is an important component of rotating machinery. 
Gear fault diagnosis is an effective method to avoid serious 
failures and ensure the normal operation of machinery and 
equipment [1-3]. In recent years, Hong et al. studied gear fault 
detection with small fluctuations of the operating speed by 
employing fast dynamic time warping [4]. The method can 
characterize the local gear fault and identify the corresponding 
faulty gear and its position. Zhang et al. detected gearbox fault 
compound by the energy operator demodulation of optimal 
resonance components, but other types of compound faults are 
needed to prove the effectiveness of the proposed method [5]. 
Li et al. performed fault diagnosis tasks for gearboxes by a 
multimodal deep support vector classification method based 
on deep learning strategy; the results indicate that the pro-
posed separation-fusion based deep learning strategy is effec-
tive for the gearbox fault diagnosis [6]. Xing et al. studied a 
novel hybrid model for gear fault diagnosis under different 
conditions [7]. The proposed approach can accurately diag-
nose and identify different fault types of gear under variable 
conditions. A fault diagnosis method of planetary gear based 
on multi-scale fractal box dimension of complementary en-

semble empirical mode decomposition (CEEMD) and ex-
treme learning machine (ELM) was studied [8]. These meth-
ods are applicable to situations where the load is constant. 

Gear fault signal transmission links are more complex, 
while the gear box working environment is poor. The gear 
vibration signal not only contains background noise, but also 
other noise components. In addition, when the gear has a local 
fault, the vibration signal will produce a modulation phe-
nomenon, the engagement frequency and frequency doubling 
on both sides will appear at intervals for the interval of the 
equal frequency band. Under normal circumstances, the type 
of gear failure and fault level can be found by analyzing the 
intensity and frequency of the modulation information. How-
ever, a different load will cause a complex vibration signal of 
gear fault, which is a non-linear, non-stationary signal [9-13]. 
With the traditional method it is difficult to extract the charac-
teristics of gear failure under different load. The effective 
feature extraction method of gear fault is the key to diagnosing 
the operating state of the gear accurately. Empirical mode 
decomposition (EMD) is a new type of signal processing 
method that is very suitable for non-linear, non-stationary 
signals [14-17]. Non-stationary vibration signals can be de-
composed into a number of smooth intrinsic mode functions 
(IMF) by EMD method. In addition, it is difficult to extract 
gear fault characteristics accurately from time domain and 
frequency domain only. As the gear fault signal has fractal 
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characteristics in a certain range, fractal geometry is used to 
meet the complex fault signal analysis. The fractal dimension 
includes the Hausdorff dimension, similarity dimension and 
box dimension [18]. The fractal box dimension can describe 
the statistical self-similarity feature of the fractal boundary in 
the gear fault signal [19]. Fault classification is important to 
the gear fault diagnosis. There are some classification methods 
such as support vector machine (SVM), ELM, and other neu-
ral networks [20]. SVM is a data classification method that is 
suitable for processing small samples. For improving the clas-
sification effect, some parameter optimization algorithms such 
as particle swarm optimization (PSO) and genetic algorithm 
(GA) are combined with SVM to realize fault classification 
[21-23]. Though some achievements have been used in gear 
fault diagnosis, it is difficult to realize gear fault feature ex-
traction and diagnosis under different load conditions. 

In this study, we used the box dimension as a character-
istic value of the gear running state, and the operating state 
of the gear is described in a simple and direct quantitative 
way. The irregularity and complexity of the gear vibration 
signal are reflected in the box dimension. The irregular and 
the complexity of vibration signal are different, so the box 
dimensions are also different. To realize the fault diagnosis 
of gear fault under different loads, a different load gear 
fault diagnosis method based on EMD and particle swarm 
optimization support vector machine (PSO-SVM) is pro-
posed. In this method, the gear fault characteristic parame-
ters of time domain, frequency domain and fractal box 
dimension are input into PSO-SVM under different load 
excitation. The experimental results show that the algo-
rithm can effectively classify the gear faults under high 
load conditions. 

The rest of this paper is organized as follows: Sec. 2 briefly 
introduces the principle of EMD decomposition algorithm. 
Sec. 3 presents the selection of characteristic parameters in 
time domain, frequency domain, energy domain and fractal 
domain. Sec. 4 proposes a feature extraction algorithm based 
on EMD and fractal box dimension, and a gear vibration data 
of example under different load excitation is analyzed. Sec. 5 
proposes a gear fault diagnosis method based on EMD and 
PSO-SVM under different load excitation and a case is ana-
lyzed. Conclusions are drawn in Sec. 6. 

 
2. The basic principles of feature extraction and di-

agnosis method 

2.1 EMD feature extraction algorithm 

The specific decomposition steps of the EMD method are as 
follows: 

(1) The upper and lower envelope of all the data points are 
obtained. The average of the upper and lower envelopes is 
denoted as 1,m  the following equation can be obtained: 

 
( ) 11 hmtx =- . (1) 

 

Ideally, if 1h  satisfies the IMF condition, then 1h  is the 
first IMF component of ( ).x t   

(2) If 1h  does not meet the IMF condition, regarding 1h  
as the original data, step (1) is repeated. The upper and lower 
envelope of the average 11m  are obtained, and then 

11 1 11h h m= -  is determined whether to meet the IMF condi-
tions or not. If not, the cycle k is repeated to obtain 

1( 1) 1 1k k kh m h- - =  such that 1kh  satisfies the IMF condition. 
Marking 1 1 ,kc h=  then 1c  is the first component of the sig-
nal ( )x t  which satisfies the IMF condition. 

(3) 1c  is separated from ( )x t  to be obtained: 
 

( ) 11 ctxr -= . (2) 
 
Steps (1) and (2) are repeated, where 1r  is as the original 

data, to obtain the second component 2c  which is satisfying 
the IMF condition. The iteration n times are repeated to obtain 
n components which are satisfying the IMF condition. At last, 
there are: 
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When nr  becomes a monotone function, the component 

can no longer be extracted to meet the IMF conditions, the 
loop ends. This is given by Eqs. (2) and (3): 
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Therefore, any signal ( )x t  can be decomposed into the 

sum of the n IMF and a residual component, and the IMF 1 ,c  
2 3, , , nc c cL  represent the components of the signal from 

high to low. The frequency components contained in each 
band are not the same and will vary with the change of the 
vibration signal ( ).x t  The residual function nr  represents 
the average trend of the signal. 

 
2.2 PSO-SVM classification algorithm 

2.2.1 The basic principle of support vector machine 
The SVM is illustrated in Fig. 1. The distance between dif-

ferent support vectors is the margin. Classification line equa-
tion written as 0,x bw× + =  which can be normalized, can 
make the linearly separable sample set ( , ),i ix y  1, ,i = L  

, ,dl x RÎ  { 1, 1},yÎ + -  satisfy 
 
[ ]( ) 1 0, 1,...,i iy x b i lw × + - ³ = . (5) 

 
The classification interval is 2 / w  and we make the 

maximum interval equivalent to the minimum of 2 .w  The 

classification surface meets condition Eq. (5) and minimizing 
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2
w  can be called optimal classification surface. Training 

sample points in 1H  and 2H  are called support vector. 
 

2.2.2 Particle swarm optimization 
The PSO is a population-based global optimization tech-

nique [21]. Due to its easy implementation, the PSO is used to 
realize the parameters selection of SVM. The standard PSO 
can be expressed by: 

 
1 1 2 2( 1) ( ) ( ( )) ( ( ) ( ))ij ij ij ij j ijv t v t c r pbest x t c r gbest t x t+ = w + - + - , (6) 

( 1) ( ) ( 1)ij ij ijx t x t v t+ = + + , (7) 
 

where ( )iv t  is the i th particle’s velocity at the t th iteration; 
ijpbest  is the particle’s best position; ijgbest  is the best posi-

tion. 

 
2.2.3 PSO-SVM 

The process of SVM parameter optimization with PSO is 
presented in Fig. 2. 

3. Selection of characteristic parameter 

3.1 Time domain characteristic parameter 

Time domain characteristic parameter, which is simple to 
calculate and sensitive to the state of the gear, can be used to 
monitor the gear running state. The time domain feature is 
divided into a dimension eigenvalue and a dimensionless ei-
genvalue. Since the time domain feature is related to the state 
of the gears, the load of the gears and the working conditions, 
it is difficult to judge the operating state of the gears. The di-
mensionless time domain characteristic parameters are closely 
related to the gear load and operating conditions, and are par-
ticularly sensitive to the gear operating state. In this paper, we 
studied the gear fault data under different load excitation, so 
the characteristic value of the dimension does not work again. 
Only the dimensionless characteristic parameters can be used 
to extract the fault characteristics of the gear. The dimen-
sionless eigenvalues include kurtosis, waveform index, peak 
index, pulse index, and margin index as shown in Table 1. 

 
3.2 Frequency domain characteristic parameter 

When the gear fails, such as gear wear, tooth root crack, 
broken teeth, the spectrum will change. The distribution of 
frequency bands in spectrum is very beneficial to extract and 
analyze the fault characteristic frequency. Therefore, the fre-
quency domain parameter can be used to describe the gear 
fault condition. The frequency domain characteristic parame-
ters selected in the paper are shown in Table 2. 

 
3.3 Fractal box dimension parameter 

The gear fault signal under different load excitation has 
non-linear and non-stationary characteristics. It is difficult to 

 
 
Fig. 1. Optimal classification line. 

 
 

 
 
Fig. 2. Flow chart of PSO optimized SVM parameters. 

 

Table 1. Dimensionless time domain feature parameters. 
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parameter Dimensionless 
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Description: ix  is the ith  value of the signal. x  and b  are the total 
number of signal data. 
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extract gear fault characteristics accurately only from time 
domain and frequency domain signal. The gear fault signal 
has a fractal characteristic within a certain range, and the frac-
tal geometry can be used to analyze the complex gear fault 
signal. We used the box dimension to analyze the characteris-
tics of gear failure under different load excitation. The irregu-
larity and complexity of gear fault signal are reflected in the 
box dimension. Suppose the time series signal ( ) ,x j XÌ  
X  is the closed set on the n -dimensional E-type space nR . 

nR  is divided into fine grids as much as possible. If ND  is 
the grid count of the set X  on the discrete space of the grid 
D , the box dimension of signal is defined as: 

 
0

lim( lg / lg )Bd NDD®
= - D . (8) 

 
The sampling interval D  is the highest resolution of the 

time series ( ),x j  resulting in the absence of the limit in Eq. 
(5) as determined by definition 0.D ®  In the actual calcula-
tion, usually using the sacrifice method, the grid D  step by 
step to enlarge the grid kD , where k Z +Î . Let kN D  be the 
grid count of the discrete space set X  with the lattice width 
kD , which can also be calculated using the following equa-
tion: 
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where 0 0 01, 2, , / ; 1, 2, , ; ;j N k k K K N N= = <L L is the 
number of sampling points. 

The grid of the signal ( )x j  is counted 
 

( ) / 1kN P k kD = D D + , (12) 
 

where 1.kN D >   
The signal scale area is determined in the lg lg kk N DD -  

graph by using the genetic optimization, the three-fold line 
segment fitting method or the correlation coefficient test algo-
rithm. If the start and end points of the scale-free interval are 

1k  and 2k , then in this interval lg ,kD  lg kN D  should sat-
isfy the linear regression model: 

 
lg lgkN a k bD = D +   ( 1 2k k k£ £ ). (13) 
 
Finally, the slope of the line is calculated by using the least 

squares method: 
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Box dimension Bd  is: 
 

B ˆd a= . (15) 
 

3.4 Energy domain characteristic parameter 

Under different load excitation, the energy band will also 
have significant changes. To extract the fault characteristics 
more accurately, we used the IMF energy value and the total 
energy value ratio (called the IMF's energy band energy value) 
of the gear fault as the gear fault characteristic parameters 
under different load excitation. The IMF energy band energy 
value reflects the ratio of the energy value of the ith IMF 
component to the total energy after the signal is decomposed 
by EMD. The operation of the gear box can be determined 
under the different load excitation by comparing the IMF's 
energy band energy value. IMF power band energy value is 
expressed by: 
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Table 2. Frequency domain characteristic parameters. 
 

Frequency domain characteristic 
parameter Dimensionless 
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Description: ( )s k  is the spectrum of the signal ( ) ,x n  1, 2, , ,k K= L  
where K is the number of lines; kf  is the frequency of the kth  line; 
The spectral mean is the mean of the amplitude of all frequencies, and 
they reflect the size of the spectrum data trend. 
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4. The proposed method of the paper 

4.1 Feature extraction algorithm based on EMD and fractal 
box dimension 

To extract the characteristics of gear fault under different 
load excitation, a feature extraction algorithm of EMD and 
fractal box dimension is proposed. First, the gear fault signal 
under different load excitation is decomposed by EMD. Sec-
ond, the features of gear fault, which consist of the dimen-
sionless time domain, the dimensionless frequency domain, 
the energy domain characteristic parameter and the fractal box 
dimension, are extracted from the modal function. The process 
of this method is shown in Fig. 3. 

 
4.2 Fault diagnosis based on EMD and PSO-SVM under 

different load excitation 

A different load gear fault diagnosis method is proposed 
based on EMD and particle swarm optimization support vec-
tor machine. In this method, the gear vibration signal under 
the different load is processed by EMD, and the gear fault 
feature is extracted. Finally, the extracted gear fault features 
are input into the PSO-SVM for different load excitation. The 
experimental results show that the algorithm can effectively 
classify the gear faults under high load conditions. First, EMD 
is used to decompose the gear vibration data under the differ-
ent load excitation. The time domain, frequency domain, en-
ergy field and fractal box dimension are calculated separately. 
And then, the parameters are input to PSO-SVM for gear fault 
classification. The diagnostic flow is shown in Fig. 4. 

 
5. Example analysis 

5.1 Feature extraction 

We collected the gear vibration data under different load ex-
citation by the experimental platform. Fig. 5 is the gear data 
acquisition platform. In this experiment, the vertical measur-
ing point data of the front axle middle gear of the gearbox are 
used. The gearbox has two parallel gears. The low speed gear 
teeth number is 90, the middle speed shaft gear teeth number 

is 100, the pinion teeth number is 36, and the high speed shaft 
gear teeth number is 29. In the middle of the test bed, the me-
dium speed shaft pinion is faulty gear. The five types states 
include: normal, crack, eccentric, cutting teeth and missing 
teeth. In the test, the generator speed is 45 Hz (at this time, the 
gearbox intermediate speed is 13 Hz). The sampling frequency 
is 12000 Hz. The load ratio is controlled by the magnetic 
powder brake. The load proportions are 0 %, 20 %, 40 %, 60 
%, 80 % and 100 % separately. The gear operating conditions 
of test bench are shown in Table 3.  

By analyzing the vibration of the gear teeth under the 
different load excitation, it is found that the gear fault feature 
becomes more and more obvious as the gear load becomes 
larger. Therefore, a large load is beneficial to gear fault 

 
 
Fig. 3. Flow chart of gear fault feature extraction under different load 
excitation. 

 

Table 3. Gear load conditions. 
 

Generator speed Load Working part number 

45 Hz 0 % A 

45 Hz 20 % B 

45 Hz 40 % C 

45 Hz 60 % D 

45 Hz 80 % E 

45 Hz 100 % F 

 

 
 
Fig. 4. Flow chart of gear fault diagnosis method under different load 
excitation. 

 

 
 
Fig. 5. Experimental platform. 
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diagnosis. From the results of EMD decomposition in Figs. 6 
and 7, the IMF1 is mainly a high-frequency component, which 
is mainly between 2000 Hz and 5000 Hz, and is mainly 
composed of modulating the intermediate speed. IMF2 comes 
from the high-speed shaft gear meshing and its frequency 
belongs to the interference component. IMF3 is the meshing 
frequency of the middle speed gear and its side band. IMF4 to 
IMF7 is a low-frequency component, including generator 
frequency and some other interference frequency. Therefore, 
the fault characteristics of the middle speed pinion are mainly 

concentrated in the two signals of IMF1 and IMF3. 
It can be seen from Tables 4 and 5 that the different states of 

the gears correspond to the characteristic parameters of 
different sizes. IMF1 kurtosis index between about 8-50, the 
eccentricity of the gear eccentricity is the largest, reaching 
50.28. For IMF1 spectrum center of gravity between about 3-
13, the missing teeth of the gear is the largest, which reaches 
12.71. The gear state values of IMF1 fractal box dimension 
and IMF1 power band value show little difference. For IMF1 
margin indicator between about 6-21, the eccentricity of the 
gear eccentricity is the largest, reaching 20.80. For IMF1 
spectral variance between about 1-10, the missing teeth of the 
gear is the largest which reaches 9.21. The IMF3 power band 
value between 0.2-0.4, and the eccentric IMF3 power band 
index is also the same, which reach the maximum. Although 
these characteristic parameters represent the state of the gears, 
it is not possible to determine the state of the gears only from 
these parameters. If these feature parameters are input to the 
classifier for pattern recognition, the order of magnitude of the 
classification of the results has a greater impact, the order of 
magnitude of the small parameters cannot play a role in the 
classification. To make all the parameters to play the same role 
in the classification, normalization of the parameters is needed, 
that is, the characteristics of the parameters are compressed to 
(0,1). 

 
5.2 Case analysis 

Because of the obvious characteristics of gear fault under 
heavy load conditions (impact, modulation edge band), the 

Table 4. The values of kurtosis index, spectrum center of gravity, frac-
tal box dimension and margin indicator on IMF1 under different gear 
state. 
 

Gear state 
IMF1 

kurtosis 
index 

IMF1 spectrum 
center of  
gravity 

IMF1 
fractal box 
dimension 

IMF1 margin 
indicator 

Crack 8.45 4.32 1.66 7.62 

Eccentric 50.28 5.62 1.65 20.80 

Missing teeth 33.07 12.71 1.56 12.64 

Cut teeth 38.11 5.44 1.68 16.93 

Normal 11.26 5.78 1.64 8.79 

 
Table 5. The values of pulse index, spectral variance  and power band 
value on IMF1 and the power band values of IMF3 under different 
gear state. 
 

Gear state 
IMF1 
pulse 
index 

IMF1 
spectral 
variance 

IMF1 
power band 

value 

IMF3 power 
band value 

Crack 6.33 3.30 0.54 0.28 

Eccentric 16.11 3.60 0.52 0.40 

Missing teeth 10.55 9.21 0.55 0.21 

Cut teeth 13.60 3.42 0.64 0.24 

Normal 7.24 1.28 0.59 0.28 

 
 

 
 
Fig. 6. Gear break fault signal EMD decomposition results. 

 

 
 
Fig. 7. Spectrum of IMF components. 
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extracted fault features are representative. The load proportion 
of the experimental data is 60 %, 80 %, 100 %, the total of 
five states (normal, crack, eccentric, 50 sets of data were se-
lected for each state, 50 groups of data were predicted (ran-
dom load selected for each training and prediction data), and 
input to PSO-SVM for identification. Among them, the main 
parameters are set: population number N = 20, the number of 
iterations is set to 100, learning factor c1 = 1.9, c2 = 1.7. 
Through training, PSO-SVM fitness curve is shown in Fig. 8. 
The fitness curve in Fig. 8 is between 94 and 96. Therefore, 
the proposed method has a good effect on gear fault diagnosis 
under high load conditions. 

 
6. Conclusion 

We present a new method to extract gear fault feature under 
different load excitation based on EMD and fractal box di-
mension. The method deals with gear fault signals in the time 
domain, frequency domain, energy domain and fractal domain. 
Gear fault characteristics under different loads can be identi-
fied by integrating multiple parameter indicators that include 
the dimensionless time domain parameters, dimensionless 
frequency domain parameters, energy domain characteristic 
parameters and fractal box dimension. Furthermore, we pro-
pose a method to diagnose gear fault based on EMD and PSO-
SVM under different load excitation. The proposed method 
overcomes the difficulty of traditional methods which cannot 
identify the fault characteristics of gear under different load 
excitation. Through experimental study based on the data of 
gear experiment plat, we proved that the method can classify 
gear faults under different load excitation quickly and accu-
rately. 
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