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Abstract 
 
The numerical analysis of a circular cylinder undergoing oscillations in a two-dimensional laminar flow pattern, is performed in this 

paper. The cylinder is subjected to forced oscillations transverse to the free stream flow. A detailed analysis is presented for prescribed 
frequency ratios which are half, equal and double to that of the vortex shedding frequency. The prescribed motion amplitudes investi-
gated range from 10-100 % of the cylinder diameter, at a fixed Reynolds number of 100. Detailed characteristics and field analysis of 
prescribed motion dynamics is presented in the paper. When the prescribed frequency matches shedding frequency, phase transition be-
tween transverse pressure force and displacement is witnessed along with the existence of a critical amplitude. The pressure distribution 
and evolution of wake contours with respect to the cylinder motion and excitation frequency is critically analysed to develop insight of 
the load development in the cylinder-fluid coupled system.  
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1. Introduction 

The flow dynamics of an oscillating body in a flow has 
been a subject of interest among researchers for many years. 
The practical applications of this subject are primarily in the 
field of structural designing for marine bodies, off-shore ex-
ploration, and wind and power engineering. The coupling of 
motion and the flow-field gives rise to various physical phe-
nomena such as vortex shedding and lock-on, hysteresis and 
bifurcation, etc. Better understanding of the force-dependence 
on transverse displacement is essential for designing robust 
cylindrical structures submerged in a fluid flow.  

The earliest experiments on fluid-structure interaction were 
conducted in 1878 by Strouhal, on Aeolian tones. The prob-
lem of a cylinder oscillating in a crossflow or vice-versa rep-
resenting wave-cylinder interaction has been investigated 
experimentally as well as numerically by many researchers 
around the world, majorly due to its significance in the field of 
ocean engineering. Some of the major contributions were 
done by Bishop and Hassan [1], Koopmann [2], Toebes [3], 
Griffin [4], Bearman and Currie [5], Bearman [6], Ongoren 
and Rockwell [7], Williamson and Roshko [8], Gu et al. [9], 
Meneghini and Bearman [10], Lu and Dalton [11], Blackburn 
and Henderson [12] and Guilmineau and Queutey [13].  

Bishop and Hassan [1] were the first to observe a jump in 
phase angle between the prescribed transverse force and the 
displacement of body. This phenomenon occurred when the 
excitation frequency was comparable to the shedding fre-
quency of the body and was regarded as synchronisation con-
dition. The change in phase angle was attributed to the altera-
tion in the energy transfer across the cylinder-fluid system. 
Furthermore, the effect of forced oscillatory motion on vortex 
shedding pattern was studied in detail by Koopmann [2]. His 
studies were focussed on the determination of lock-in bounda-
ries. He reported that a threshold oscillatory amplitude is 
needed to attain lock-in and its range is dependent on the mo-
tion amplitude. The flow dynamics and vortex shedding pat-
tern around oscillating cylinder was studied by several re-
searchers such as Toebes [3], Griffin [4] and Bearman [6]. 
Bearman and Curie [5] also investigated the pressure fields 
and fluctuations arising due to the coupling of fluid and oscil-
lating cylinder. In study reported by Griffin and Ramberg [14], 
the Lock-on region was found to be about twice the Strouhal 
frequency. Zdravkovich [15] analysed the hike in phase angle 
between the displacement of body and vortex shedding at 
frequencies close to Strouhal frequency. He concluded that the 
exchange of energy in the fluid-body system is affected by 
phase change. Ongoren and Rockwell [7, 16] contributed 
greatly by validating the existing results as well as discovering 
the stable regions of vortex Lock-on. Apart from the Strouhal 
frequency, vortex shedding was demonstrated to be stable and 
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synchronized at half the Strouhal frequency. The effect of 
motion amplitude on the flow dynamics was studied in detail 
by Williamson and Roshko [8]. No difference was noted in 
the shedding pattern at low amplitudes while at higher values, 
the vortex street comprised of a vortex-pair on one side and a 
single vortex on the other. Gu et al. [9] performed experimen-
tal investigations into the flow dynamics of a cylinder under-
going oscillatory motion subjected to a range of excitation 
frequencies varying from 80 % to 120 % of the shedding fre-
quency at Re = 185 and 5000. They observed vortex switching 
phenomenon occurring in the range of 112 % to 120 % of the 
shedding frequency. The experimental results of Gu et al. [9] 
were numerically reproduced at Re = 185 by Lu and Dalton 
[11] and Guilmineau and Queutey [13]. Blackburn and Hen-
derson [12] studied the 2D flow dynamics of an oscillating 
cylinder in a cross flow. Hysteresis and bifurcation near 
Strouhal frequency as well as 2S to P + S vortex shedding 
transition, was validated by them. They concluded that the 
shift in phase and transition in shedding of vortices were due 
to the simultaneous acting of two separate vorticity generation 
mechanisms- oscillation and gradient of pressure around the 
body, respectively. A comprehensive review of the fluid struc-
ture interaction around a transversely oscillating cylinder has 
been published by Anagnostopoulos [17, 18]. Further, Sar-
pakaya et al. [19] studied the effects of the fluid-structure cou-
pling on marine structures. Bearman et al. [20] studied the 
fluid forces acting around oscillating cylinder in a viscous 
flow, while Williamson [21] investigated sinusoidal flows. 
Obasaju et al. [22] studied fluid-structure interaction of a cyl-
inder subjected to oscillating flow. The authors in Ref. [23] 
have studied in detail the variation of forces on transversely 
vibrating cylinder subjected to transverse flow. The computa-
tional complexities associated with the 3D flow-field around 
transversely oscillating cylinder has been addressed recently 
by Jiang et al. [24].  

The previous studies reported in the literature discuss pre-
scribed motion at low amplitudes and the lock-in of prescribed 
frequencies with the shedding frequency. Large variations of 
oscillatory amplitude at the shedding frequency needs to be 
studied to critically analyse the phase relation between forces 
and motion of the cylinder. Investigation of forces acting on 
the transversely moving cylinder and its effect on the phase 
relation it maintains with the displacement of the cylinder has 
not been studied in detail in the literature. The objective of this 
paper is to closely observe the fluid-structure interaction and 
the corresponding fluid dynamics generated due to the pre-
scribed transverse motion of the cylinder for large domain of 
amplitude variation. Three different prescribed cylinder mo-
tion frequencies are considered for the study. First prescribed 
frequency is half of the shedding frequency, second one is 
equal to the shedding frequency and the third is twice of the 
shedding frequency. The interrelation between cylinder mo-
tion, flow dynamics and the generated forces, is critically ana-
lysed with respect to the phase relation. Based on the forces 
and flow contours, detailed explanation is provided for the 

phase behaviour variation with respect to amplitude of motion. 
This paper deals with the numerical analysis of a circular cyl-
inder undergoing forced transverse oscillations in a laminar 
environment at Re = 100, over a wide range of forced-motion 
amplitude varying from (10 - 100) % of the cylinder diameter. 
The openFOAM based pimpleFoam is used for the numerical 
experiments.  

The paper starts with introduction to the research topic and 
motivation for the work. It is followed by details of physical 
model and the numerical solver used in the study. The con-
vergence tests and comparison studies are also included in this 
section. The next section is dedicated to the discussion and 
analysis of the obtained results. Eventually, the observations 
are concluded at the end of the paper.  

 
2. Numerical methods 

The cylinder is assumed to move in transverse direction to 
the fluid flow as shown in Fig. 1. The fluid force f(t) which is 
a function of time t is calculated from the numerical solution 
of the incompressible fluid flow. The governing equations for 
the incompressible fluid flow are: 

 
. 0Ñ =u  (1) 

( )( ) 21.
t

n
r

¶
+ Ñ - = - Ñ + Ñ

¶
u u w u p u  (2) 

 
where u  the flow velocity vector, w  is the velocity of mov-
ing mesh and p is the scalar pressure, ρ is the density and ν is 
the kinematic viscosity. The flow equations are solved only in 
x-y direction. PIMPLE algorithm in OpenFOAM is used to 
solve above equations on a deforming grid. The PIMPLE algo-
rithm combines semi- implicit method for pressure-linked 
equations and pressure implicit splitting of operators. For solv-
ing pressure, geometric algebraic multi-grid solver is used and 
for solving velocity, preconditioned bi-conjugate gradient 
solver is used. The diagonal incomplete LU decomposition is 
used as preconditioner. The convergence criteria set for the 
solvers is 10−6. The mesh motion equation which is a Laplacian 
equation of velocity is solved by preserving the mesh quality. 
The flow regime at Reynolds number of 100. 

 
 
Fig. 1. Schematic diagram of computational domain and coordinate 
system along with boundary conditions. 
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The computational domain schematic representing the in-
compressible two-dimensional flow on Cartesian axis is 
shown in Fig. 1. A structured domain of mesh size 0 ≤ x ≤ 80 
and 0 ≤ y ≤ 40 is generated using GMSH software. A rigid 
cylinder of diameter D, is placed horizontally with its centre at 
(20, 20) on the Cartesian x-y domain. The longitudinal axis of 
the cylinder is aligned along the z-axis. A uniform crossflow 
of free stream velocity U∞, enters the domain at x = 0 and 
flows in the positive x-direction. The domain boundaries on 
either side are symmetric.  

The diameter of the cylinder D and free stream velocity U∞, 
are used to non-dimensionalize variables. Likewise, Reynolds 
number is defined as Re = U∞D/v. The study is done at the 
fixed Reynolds number of Re = 100. The equation for the 
forced motion trajectory of the cylinder can be defined as: 

 
( ) sin(2 )e eY t A f tp=    (3) 

 
where Y(t) denotes the position of cylinder as a function of 
time as described in the works of Guilmineau and Queutey 
[13]. The amplitude ratio, Ar is obtained by the normalization 
of the oscillatory motion amplitude, Ae with the diameter of 
the rigid cylinder, D such that, Ar = Ae/D. The frequency ratio, 
fr = fe/fSt, where fSt is the Strouhal frequency. The simulations 
have been run for three frequency ratio cases of 0.5, 1.0 and 
2.0. Further, the oscillatory motion amplitude ratio, Ar is var-
ied from 0.1 to 1.0.  

The force coefficients are characterized with respect to am-
plitude ratio and frequency ratio. The lift coefficient CL and 
the drag coefficient CD are: 
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The unit vector î  is in the direction of flow and ĵ  is in 

the transverse direction to the flow. The normal vector n̂  and 
tangential vector t̂  are with respect to the surface S, where 

ˆ ˆ, ntu u  are the velocities along the normal and tangent of the 
surface S. The density of the fluid is denoted by ρ and dy-
namic viscous coefficient is μ. The transverse lift force is im-
portant in oscillating cylinders where it varies non-linearly 
with the motion of the cylinder. The lift coefficient can further 
be decomposed into pressure and viscous components: 

 

2

1 ˆˆ( )1
2

Lp Sf
C pn jdS

U Dr
= ×ò  (6) 

ˆ ˆ

2

1 ˆˆ .ˆ1 ˆ
2

t n
L Sf

u uC t jdS
n tU D

m m
r

æ ö¶æ ö¶
= + ×ç ÷ç ÷ç ÷¶ ¶è øè ø

ò  (7) 

Further, CD,avg denotes the time-averaged values of drag co-
efficient, while the root-mean squared values of lift coefficient 
are presented as CL,rms. 

 
2.1 Convergence and comparative studies 

Grid independence was established by running the solution 
on grids of 120000 and 340000 grid points. The simulation 
results converged at 150000 with the convergence residual 
smaller than 10-3, as shown in Table 1. The calculations for 
non-dimensional time-step were done using Courant-
Friedrichs-Lewy condition of value CFL < 1. 

The simulations were run for large time steps to ensure a 
statistically stable state for the computation of lift and drag 
coefficients. Various initial conditions were used to examine 
the effect of calculation time on the final stable flow-state 
achieved from the computation. In most of the cases, it was 
observed that the fully developed and stable/periodic state was 
attained upon reaching time step of t ≥ 100. However, the 
computations were run for 1200 time units in all cases to en-
sure accuracy and minimal effect of calculation time on the 
ultimate flow-state. 

The dependence of the temporal variations of aerodynamic 
coefficients upon excitation frequency and prescribed ampli-
tude are consistent with Placzek et al. [25]. The lock-in zone 
exists between two symmetrical limits around the axis of fr = 
1.0 such that for Ar = 0.25 it ranges between 0.75 ≤ fr ≤ 1.25, 
according to the frontiers established by Koopmann [2]. A 
comparative study has been done at Ar = 0.25 for various fre-
quency ratios such that the lock-in region is crossed. Maxima 
of CD,avg is attained within the lock-in zone at fr = 1.1, as 
shown in Fig. 2(a). On the contrary, magnitude of CL,max is 
observed to drop initially before entering the lock-in zone, 
beyond which it shows continuous increment. However, am-
plification of lift force is less pronounced outside the lock-in 
region as can be seen in Fig. 2(b).  

Table 1. Grid independence test for stationary case at Re = 100. 
 

Mesh Grid points CD,avg CL,rms 

A 120000 1.3398 0.3177 

B 150000 1.3393 0.3176 

C 340000 1.3386 0.3174 

 

                (a)                          (b) 
 
Fig. 2. Aerodynamic coefficients for Ar = 0.25 over a range of fr: (a) 
CD,avg; (b) CL,max. 
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The comparative plots presented in Fig. 2 have similar 
trends globally with minor variation in the values obtained 
from Placzek et al. [25]. These differences can be traced back 
to the discrepancy in the values obtained for the fixed cylinder 
case where Placzek et al. [25] obtained the values of CD,avg and 
CL,max to be 1.37 and 0.33, respectively. While, in the present 
study these values are 1.339 and 0.317, respectively. There-
fore, aspect ratio of the cylinder used in simulation could pos-
sibly result in variation in aerodynamic coefficients obtained. 

 
3. Results and discussion 

The oscillations in vortex-induced vibrations is known to be 
non-linear, where the forces vary complexly with respect to 
non-dimensional parameter reduced velocity [23, 26]. In the 
present set-up the cylinder motion frequency and amplitude 
are prescribed. The understanding of the force dependence on 
the prescribed motion parameters will help in linking the 
physics to the vortex-induced vibrations phenomenon. The 
frequency ratios considered for the numerical simulations are 
0.5, 1.0 and 2.0, with amplitude ratio varying from 0.1 to 1. 

 
3.1 Response characteristics 

Fig. 3 shows the variation of lift coefficients with respect to 
amplitude ratio for frequency ratios of 0.5, 1.0 and 2.0. It 
should be noted that the values of CL,rms and CLP,rms corre-
sponding to the fr = 2.0 are scaled down by a factor of 2, to 
facilitate graphical observation. At lower frequency ratio of 
0.5, as the amplitude ratio increases there is a gradual increase 
in the transverse load as shown in Fig. 3(a). At frequency ratio 
of unity, there is a non-linear variation in the transverse load 
with increase in amplitude ratio. There exists a critical ampli-
tude ratio for fr = 1.0, below which the transverse load de-
creases with increase in amplitude ratio. For amplitude ratio 
greater than 0.6, the transverse load increases with increase in 
amplitude ratio. The maximum amplitude for vortex-induced 
vibrations at Re = 100 in the lock-in region is near to 0.6 [23], 
which is the critical amplitude in the present prescribed mo-
tion dynamics. The flow physics for various amplitude ratios 
at the defined frequency ratios have to be critically analysed in 
order to understand the connection between the prescribed 
motion and vortex-induced vibrations. For frequency ratio of 
2.0, there is increasing trend in transverse load with increase 
in amplitude ratio except for a dip at Ar = 0.8. For the cases of 
larger amplitude ratios Ar > 0.6, dependence of CL,rms on the 
magnitude of fr becomes significant. Large transverse force is 
observed at frequency ratio of 2.0 compared to other two fre-
quencies. The transverse force for Ar < 0.6, fr = 1 is near to the 
values corresponding to fr = 0.5. 

The pressure and viscous contribution of CLP,rms and CLµ,rms 
to the transverse force are plotted in Figs. 3(b) and (c), respec-
tively. There is an increasing trend in viscous transverse force 
with respect to amplitude ratio. There is a non-linear trend in 
the pressure transverse variation with respect to amplitude 
ratio. The ratio  is plotted to in Fig. 3(d) to compare 

the contribution of each to the transverse force. As the ratio is 
less than one, the pressure forces dominate over the viscous 
forces. For frequency ratio of 1, the ratio linearly increases 
upto critical amplitude of 0.6. The ratio suddenly increases at 
Ar = 0.8 and the value falls down after that. A critical exami-
nation of the phase difference between the forces and dis-
placement of the cylinder and the vorticity contours is re-
quired to further investigate complex variation of transverse 
force with respect to amplitude ratio and frequency ratio. 

 
3.2 Prescribed motion characteristics 

The temporal response of transverse force and its phase re-
lation with the prescribed motion is detailed in this section.  

Fig. 4 shows the temporal variation of transverse force and 
its corresponding frequency content for amplitude ratio Ar = 
0.1 to 1.0 and frequency ratio fr = 0.5, 1.0 and 2.0. The fre-
quency participation in the transverse force for different pre-
scribed frequencies is plotted in the Fig. 5. Apart from the 
Strohaul frequency, there exists other frequencies in transverse 
force. 

For fr = 0.5, there exists three dominant frequencies for all 
the amplitude ratios considered. Upto Ar = 0.6, the primary 
frequency is the shedding frequency and secondary frequency 
is the prescribed frequency. For Ar > 0.6 the prescribed fre-
quency becomes the primary frequency which shows the am-
plitude of motion has direct effect on the force amplitude. The 
third dominant frequency is thrice that of the prescribed fre-
quency and remains the same throughout the range of oscilla-
tory amplitudes considered. For fr = 1.0, there exists two 
dominant frequencies in contrast to the previous case. Here, 
the prescribed and shedding frequencies are mapped together 
as the primary frequency, while the secondary frequency is 
thrice that of the shedding frequency. This phenomenon has 
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Fig. 3. Coupled response characteristics: Dependence of (a) CL,rms; (b) 
CLP,rms; (c) CLµ,rms on Ar and fr, at Re = 100; (d) ratio: CLμ,rms/CLp,rms. 
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previously been observed by Ref. [23] with respect to vortex-
induced vibrations in lock-in region. For fr = 2.0 as shown in 
Fig. 5(c), the primary frequency content is always the pre-

scribed frequency. The secondary frequency is the shedding 
frequency upto Ar = 0.6. Beyond Ar = 0.6, the secondary fre-
quency is the one which is four times that of shedding fre-
quency.  

To understand the load generation in cylinder-fluid coupled 
system, the phase relation between the transverse force and 
prescribed motion is plotted in Figs. 6(c) and (d). The tempo-
ral variation of transverse pressure forces and viscous forces 
along with cylinder displacement are plotted in Figs. 6(a) and 
(b), respectively for the case of fr = 1.0. Transition in phase 
difference (φ) between coefficient of lift due to pressure, CLP 
and displacement response, Y(t) is evident in case of forced 
oscillatory motion of the cylinder. The transition occurs due to 
the transfer of energy to/from the cylinder-fluid system. The 
plot depicting difference in phase between CLP and Y(t), is 
shown in Fig. 6(c). A transition is noticed, when the cylinder 
is subjected to excitation frequency equal to that of the Stro-
haul frequency, i.e. fr = 1.0. It is observed that for the ampli-
tude ratio, Ar ≤ 0.4, CLP leads Y(t) by π. The lift coefficient due 
to pressure is in phase with the cylinder velocity and therefore, 
energy is transferred to the system. While, for the case of Ar = 
0.6, CLP is almost in-phase with Y(t) and lags velocity by a 
phase difference of π. Further, for Ar ≥ 0.8, CLP lags Y(t) by a 
phase of π and is out of phase with the cylinder velocity. 
Eventually in these cases, the pressure forces dissipate energy 
and limit the coupled response of the system. The plot depict-
ing difference in phase between CLμ and Y(t), is shown in Fig. 
6(d). The lift coefficient due to viscosity is out of phase with 
the cylinder velocity. The phase differences between cylinder 
displacement Y(t) and CLμ for fr = 0.5 and 2.0 are nearly con-
stant at -π/3 and -π/4, respectively. The phase transition is 
observed in case of fr = 1.0, such that the phase difference 
between CLμ and Y(t) decreases continuously with the incre-
ment in Ar. Thus, it can be concluded that the viscous forces 
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Fig. 4. Temporal variations of Lift coefficient (left) and frequency 
spectrum (right) at Ar =0.8, for: (a) and (b) fr = 0.5; (c) and (d) fr = 1;
(e) and (f) fr = 2. 
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Fig. 5. Plots denoting frequency signals subject to 0.1 ≤ Ar ≤ 1.0 ob-
tained for: (a) fr = 0.5; (b) fr = 1.0; (c) fr = 2.0. 
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Fig. 6. Temporal variation of displacement Y(t): (a) CLP; (b) CLμ, for fr

= 1.0. Phase difference between displacement Y(t): (c) CLP; (d) CLμ. 

 



294 M. Z. Akhter and R. C. Mysa / Journal of Mechanical Science and Technology 33 (1) (2019) 289~297 
 

 

extract energy from the cylinder-fluid system and limits the 
overall coupled response. 

Progressively, the effects of vortex-body interactions on the 
pressure distribution around cylinder and the analysis of resul-
tant wake contours, over the predefined range of force ampli-
tudes and excitation frequencies is performed in the upcoming 
section. 

 
3.3 Pressure distribution and wake contours 

Pressure coefficient provides insight of the fluid forces act-
ing around the cylinder. The phase difference between the 
transverse pressure force and displacement of the cylinder is 
almost constant for fr = 0.5. However, for the cases of fr = 1.0 
and 2.0, the phase difference is not constant and varies with 
amplitude ratio. Therefore, a detailed discussion of the pres-
sure and corresponding wake contours are done.  

The pressure distribution on the cylinder for fr = 1 and Ar = 
0.4, 0.6 and 1.0 are shown in Figs. 7(a), (c) and (e), respec-
tively, whereas the corresponding temporal variation of trans-
verse load due to pressure and the displacement of the cylinder 
are plotted in Figs. 7(b), (d) and (f), respectively. The pressure 

contours are plotted at specific instants of Ymax, Yzero and 
Ymin which are marked as points A, B and C in the temporal 
variation of displacement Y(t). At Ar = 0.4, the transverse 
force due to pressure CLP leads the displacement by π/2 as 
shown in Fig. 7(b), whereas CLP lags the displacement by π/2 
as seen in Fig. 7(f). The transition of phase difference between 
the transverse force due to pressure and motion of the cylinder 
from π/2 to −π/2 is approximately around Ar = 0.6, which is 
represented as the critical amplitude. The critical amplitude Ar 
may represent the maximum amplitude of the cylinder in the 
lock-in region of the vortex induced vibrations. Also, the 
maximum amplitude of cylinder in the lock-in region is 0.6, 
with a phase difference of zero value [23]. The stagnation 
pressure as well as the suction pressure increases with the 
increase in amplitude of motion Ar and they are maximum at 
mean position where the velocity is maximum. The contribu-
tion of force in the transverse direction due to the stagnation 
pressure is opposite in direction to the contribution of suction 
pressure. For Ar < 0.6, the transverse force due to suction pres-
sure dominates over the stagnation pressure where by the 
transverse force leads the motion of the cylinder. As the trans-
verse force due to pressure is in phase with the cylinder veloc-
ity, there is a supply of energy from the fluid forces due to 
pressure, to sustain the motion of the cylinder. As the ampli-
tude of motion Ar increases the stagnation point shifts farther 
away from the θ = π towards the larger suction pressure side 
as shown in pressure distribution of Figs. 7(a), (c), (e) and the 
vorticity contours Figs. 8(b), 8(e) and 8(h). For Ar > 0.6, the 
stagnation pressure contribution to the transverse direction 
dominates over the contribution from the suction pressure 
which leads to transverse pressure force to lag behind the mo-
tion of the cylinder by π/2. This is majorly due to the shifting 
of stagnation pressure more towards the larger suction pres-
sure side. The transverse pressure force is out of phase with 
the velocity of the cylinder and acts against the motion of the 
cylinder for Ar > 0.6. Thus, this motion of the cylinder above 
the critical amplitude is not sustained as the forces due to pres-
sure act against the motion of the cylinder. From this it is clear 
that the maximum displacement of a cylinder in vortex-
induced vibration cannot be larger than the critical amplitude 
of the prescribed motion cylinder because the motion is not 
sustained as the fluid forces acts against it. 

The vorticity contours for fr = 1, Ar = 0.4 at positions Ymax, 
Yzero and Ymin are shown in Figs. 8(a)-(c), respectively. At 
maximum displacement of the cylinder the clockwise vortex 
has been already formed on the upper region of the cylinder. 
As the cylinder moves from the maximum position towards 
the mean position, the vortex on the lower region of the cylin-
der starts rolling and is fully formed as the cylinder moves to 
the minimum position. A similar trend is found for the ampli-
tudes Ar = 0.6 and 1.0 as shown in Figs. 8(d)-(i). The vorticity 
is spread larger in transverse direction with increase in ampli-
tude of motion. 

At fr = 2.0 the phase difference between the transverse force 
due to pressure and the displacement of the cylinder is ap-

 
 
Fig. 7. (a), (c), (e) Distribution of CP over the cylinder circumference at 
Ymax, Yzero and Ymin displacements; (b), (d), (f) temporal variation of 
CLP and Y(t) with points A, B and C highlighting Ymax, Yzero and Ymin

positions of the cylinder, respectively. The cylinder is subjected to fr = 
1.0: (a) and (b) Ar = 0.4; (c) and (d) Ar = 0.6; (e) and (f) Ar = 1.0. 

 



 M. Z. Akhter and R. C. Mysa / Journal of Mechanical Science and Technology 33 (1) (2019) 289~297 295 
 

  

proximately zero for lower amplitudes of motion Ar ≤ 0.6. The 
phase difference decreases with increase in amplitude and 
reaches −π/4 at Ar = 1.0. Two representative cases of Ar = 0.4 
and 1.0 are chosen for further analysis to represent phase dif-
ferences of φ = 0 and −π/4, respectively. The temporal varia-

tion of the transverse pressure force and displacement at Ar = 
0.4, are shown in Fig. 9(b), where both the signals are in-
phase. At point A, large suction pressure is found on the upper 
region of the cylinder. Due to separation on the lower region 
of the cylinder as shown in Fig. 10(a), the pressure on the 
lower region is almost equivalent to the stagnation pressure 
which leads to very large transverse load. At point C, the sepa-
ration is on the upper region of the cylinder, where the cylin-
der is at minimum position. Increase in the forced motion 
amplitude results in phase transition such that displacement 
Y(t) lags behind the transverse force due to pressure (CLP), as 
can be observed from Figs. 9(c) and (d) for the case of Ar = 
1.0. At Ar = 0.4, 2S vortices are shed as seen through the Figs. 
10(a)-(c). Further, Figs. 10(d)-(f) show the vorticity contours 
for the cylinder at Ar = 1.0, where the vortex shedding pattern 
is characterised by 1P+1S. This leads to the change in phase 
difference between transverse pressure force and transverse 
motion of the cylinder from approximately zero at Ar = 0.4 to 
−π/4 at Ar = 1.0. Asymmetry in the vortex shedding is ob-
served for Ar ³  0.6 and leads to 1P+1S for Ar ³  0.8 as 
shown in Fig. 11. The clockwise vortex strength in 1P vortex 
is comparatively lesser than the anti-clockwise one. The 
clockwise vortex strength in 1P shedding is minimal in case of 
Ar = 0.8, and gradually becomes stronger as witnessed in case 
of Ar = 1.0. This asymmetric shedding is the reason for the 
phase difference deviation. The vortex switching phenomenon 
with increment in forced amplitude from typical 2S to 1P+1S 
in case of fr = 2.0, can be attributed to a pair of vortex generat-
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Fig. 8. Plots showing wake contours at cylinder positions of Ymax (Left), Yzero (Centre) and Ymin (Right); subjected to (a)-(c) fr = 1.0 and Ar = 0.4; 
(d)-(f) fr = 1.0 and Ar = 0.6; (g)-(i) fr= 1.0 and Ar =1.0. 

 

 
Fig. 9. (a), (c) Distribution of CP over the cylinder circumference at 
Ymax, Yzero and Ymin displacements; (b), (d) temporal variation of CLP

and Y(t) with points A, B and C highlighting Ymax, Yzero and Ymin posi-
tions of the cylinder, respectively. The cylinder is subjected to fr = 2.0: 
(a) and (b) Ar = 0.4; (c) and (d) Ar = 1.0. 

 



296 M. Z. Akhter and R. C. Mysa / Journal of Mechanical Science and Technology 33 (1) (2019) 289~297 
 

 

ing mechanisms which are oscillatory motion and the pressure 
gradient, acting simultaneously upon the cylinder-fluid system 
[12]. Effect of the excitation frequency on the flow dynamics 
and vorticity is in agreement with the experimental results. It 
was demonstrated by Ongoren and Rockwell [7] and Gu et al. 
[9], that with the decrease in the excitation frequency, the 
vorticity in the wake region appear to be more spaced along 
the longitudinal direction and vice-versa, as can be compared 
in Figs. 8 and 10. 

 
4. Conclusions 

In this paper, numerical investigation of the prescribed mo-
tion flow dynamics of a circular cylinder in a two-dimensional 
laminar flow is done. The computations were done for three 
excitation frequencies having six different oscillatory ampli-
tudes. The simulations were run for Re = 100, 0.1 ≤ Ar ≤ 1.0 
and fr = 0.5, 1.0 and 2.0.  

The temporal variation of lift coefficient showed dependence 
on the excitation frequency as well as the oscillatory amplitude. 
The root-mean-squared values of lift coefficient CL,rms increases 
with fr for low amplitude ratios, having sharp rise in cases of fr 
= 2.0. The behaviour of CL,rms in cases of fr = 0.5 and oscillatory 
amplitudes of 0.2 < Ar ≤ 1.0 was non-linear, such that a minima 
was attained at Ar = 0.6. The plots for CLP and CLμ showed the 
same pattern as of the primary CL curve, with the magnitude of 

CLP being greater than CLμ in all the cases.  
Load response generated for the case of fr = 0.5 recorded a 

transition in primary frequency from fSt to fe, as the oscillatory 
amplitude increased beyond 60 % of the cylinder diameter. 
Likewise, a transition in the secondary frequency between 0.6 
< Ar ≤ 0.8 was noticed for the case of fr = 2.0. Tertiary fre-
quency signals were also traced in this case for Ar ≥ 0.8, fr = 2.0.  

Phase difference between CLP and displacement response 
Y(t) was mapped to investigate the load generation in the sys-
tem. A transition in the phase from π/2 to −π/2 was noticed in 
case of fr = 1.0 as the oscillatory amplitude increased beyond 
60 % of cylinder diameter. This amplitude is regarded as the 
critical amplitude Ar of the cylinder. This critical amplitude is 
equal to the maximum amplitude in the lock-in region of vor-
tex-induced vibrations.  

For fr = 1.0 and Ar ≤ 0.6, the transverse force due to suction 
pressure dominated over the stagnation pressure. The shift in 
stagnation point with the increment in Ar towards the larger 
suction pressure side i.e. θ > π, was visualised in the respec-
tive wake contours. As the amplitude ratio Ar increased be-
yond 0.6, the shift in stagnation pressure as well as increase in 
its magnitude resulted in phase transition such that transverse 
pressure force lagged behind the cylinder motion by π/2. Thus, 
the transverse pressure force acted against the motion of the 
cylinder. For fr = 2.0 and Ar ≤ 0.6, the transverse force due to 
pressure and the displacement of the cylinder are in-phase. 
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Fig. 10. Plots showing wake contours at cylinder positions of Ymax (Left), Yzero (Centre) and Ymin (Right); subjected to (a)-(c) fr = 2.0 and Ar = 0.4; 
(d)-(f) fr = 2.0 and Ar = 1.0. 
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Fig. 11. Vortex switching phenomenon as observed in the wake contours of fr = 2.0 subjected to: (a) Ar =0.6; (b) Ar = 0.8; (c) Ar =1.0. 
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However, further increment in the motion amplitude resulted 
in the reduction of phase difference, attributed to the switching 
of wake structure from 2S to 1P+1S for 0.8rA ³ . 
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