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Abstract 
 
Compound fault features of the rolling bearing are difficult to separate and extract. To address this problem, the present paper proposed 

a diagnosis algorithm, namely FERgram, on the base of maximal overlap discrete wavelet packet transform (MODWPT) and fault en-
ergy ratio (FER). First, a group of frequency band signals are gained after MODWPT processing the initial vibration signal. Second, FER 
is chosen as the evaluation index, and then the FER values of each frequency band signal are calculated and used to generate FERgram. 
The frequency band signal with the maximum FER value containing plentiful fault information is chosen for envelope analysis. Finally, 
the fault type is determined by contrasting the prominent frequency component of the envelope spectrum with the fault feature frequency. 
The feasibility and superiority of the FERgram method are verified by four signals and four comparison methods. The results show that 
the FERgram method can effectively extract and accurately diagnose the compound fault of rolling bearing.  
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1. Introduction 

Rolling bearing is commonly used in rotating machinery, 
and its working status influences the safe and reliable opera-
tion of equipment [1-3]. At present, most rolling bearing fault 
diagnosis methods only pay attention to the single fault. How-
ever, the compound fault often occurs due to the bad working 
conditions in actual operation. Under the compound fault of 
rolling bearing, different fault characteristics intermingle and 
interfere with each other [4]. Consequently, the effective diag-
nosis of bearing fault became increasingly complicated. 

Blind source separation (BSS) [5] can separate the single fault 
characteristic from the compound fault signal of rolling bearing. 
However, due to the limitation of installation position and work-
ing conditions, it is not realistic to place multiple sensors in 
mechanical devices to collect multi-channel signals, and thus 
BSS cannot be widely used. In order to address the underdeter-
mined problem of BSS, Wang et al. [6] presented a method that 
integrated ensemble empirical mode decomposition with inde-
pendent component analysis (EEMD-ICA), which broke 
through the application limitation of blind signal processing 
technology under underdetermined condition. As a result, the 
compound fault characteristics of rolling bearings under differ-
ent rotational speeds were successfully separated. Cui et al. [7] 

proposed a method that the single channel signal is decomposed 
into a group of narrow band signals by null-space pursuit algo-
rithm, and those narrow band components are combined with 
the original signal into a new set of observation signals. Conse-
quently, the underdetermined problem is overcame, and the 
single fault source signal is finally obtained by the blind source 
separation. Ming et al. [8] first performed orthogonal wavelet 
transform that the single channel signal is decomposed into 
various sub-band signal components, and then the feature in-
formation of the inner and outer ring contained in the sub-band 
component is strengthened by the spectrum autocorrelation 
method. Therefore, this method successfully separated the com-
pound fault characteristics. Li [9] adopted morphological com-
ponent analysis algorithm, where the single channel compound 
fault signal is segmented into various sparse signals, and the 
separation of different fault features is successfully realized. 
However, constructing an overcomplete representation diction-
ary is complex in this method. 

Compared with above methods, envelope demodulation is a 
fast and simple method, where the pivotal step is to precisely 
identify the frequency band that contains plentiful fault infor-
mation. For purpose of selecting the frequency band adap-
tively, Antoni creatively proposed spectral kurtosis theory [10, 
11] and fast kurtogram method [12], both of which attracted 
many scholars' attention for their effectiveness and superiority 
in bearing fault diagnosis. After that, many improvements are 
proposed to enhance the diagnostic ability of the original Fast 
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Kurtogram method. The improved methods are mainly di-
vided into two categories, one is to change the frequency band 
decomposition process [13-16], the other is to alter the evalu-
ating indicator to identify the frequency band that containing 
the most fault information [17-23]. The above methods are all 
aimed at the single fault, and the results for diagnosing the 
compound fault are not good. 

According to the spectral kurtosis theory, the present paper 
put forward a compound fault diagnosis method of the rolling 
bearing established on MODWPT and FER, namely FERgram. 
Distinct from the fast kurtogram method, the FERgram meth-
od used MODWPT rather than finite impulse response filters 
or the short time Fourier transform to generate more precise 
filters. The FER calculated based on the Teager energy spec-
trum is chosen as a new evaluation index substituting the kur-
tosis index. The present method can effectively separate and 
accurately identify the compound fault of rolling bearing, 
thanks to the excellent frequency band decomposition per-
formance of MODWPT and the frequency tracking character-
istic of the FER. 

 
2. Proposed method 

2.1 Maximal overlap discrete wavelet packet transform 

Wavelet packet transform (WPT) possess favorable time-
frequency localization characteristic, and is used as an efficient 
filter to segment the initial signal into a group of frequency 
band signals. However, there are two shortcomings of WPT 
that cannot be ignored. One is the signals extracted from the 
wavelet packet nodes are not ranked from low to high in fre-
quency. The other is that the number of signal data halves at 
each decomposition level. MODWPT algorithm can overcome 
the above two shortcomings, and the detailed information can 
be seen in the Refs. [24]. In addition, the decomposition per-
formance of MODWPT is superior to that of WPT.  

The principle of discrete wavelet transform (DWT) is as 
follows: {Xt, t = 0, ..., N-1} is a real valued time series, N is an 
integer multiple of 2. {gl, l = 0, 1, ..., L-1} and {hl, l = 0, 1, ..., 
L-1} are low pass and high pass filters respectively, L is the 
length of the filter. gl and hl meet the following equations. 
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{Vj-1,t, t = 0, …, Nj-1-1} is the jth level scale transformation 

coefficients, where Nj = N /2j and V0,t = Xt. Based on Mallat 
algorithm, the jth level scaling transform coefficients ,j tV  
and wavelet transform coefficients '

,j tW  of DWT are calcu-
lated respectively. 
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where mod represents remainder after division. 
MODWT is a modified version of DWT, which is a highly 

redundant non-orthogonal wavelet transform and does not 
require sample size N. MODWT redefine the filters. 
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g  and h  meet the following equations. 
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MODWT contains the weighted average of all observation 

starting points in the sequence, which can suppress the devia-
tion caused by cyclic displacement. In order to avoid the prob-
lem that the number of signal data halves at each decomposi-
tion level, MODWPT rebuilds suitable filters at different jth 
level by inserting 2j-1 zeros in {gl} and {hl}. 
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Based on Mallat algorithm, the jth level scaling transform 

coefficients '
,j tV  and wavelet transform coefficients '

,j tW  of 
MODWT are as follows 
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The transformation coefficient of MODWT has good per-

formances, such as translation invariance, fixed time resolu-
tion under each decomposition level and phase not distorted, 
et al. MODWPT is put forward on the basis of MODWT, 
keeps the good performance of MODWT and can decompose 
the high frequency part of the signal very well. MODWPT 
coefficient Wj,n can be calculated as: 
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where j is the transform levels, n is frequency band number 
under each transform level. Fig. 1 shows MODWPT decom-
position tree, where the transform levels is 3 and Fs represents 
the sampling frequency. The real part of each Wj,n represents 
the sub-band component of the original signal in different 
frequency range. 
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A three-component AM-FM signal is used to prove the 
above conclusion and is defined as: 
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where sampling point N = 3000, sampling frequency Fs = 
3000 Hz, simulation time t = 1 s. 

Fig. 2 shows the AM-FM signal waveform. The transform 
level of MODWPT and WPT is 4. The time-frequency dia-
gram obtained by MODWPT and WPT is presented in Figs. 
3(a) and (b), respectively. The waveform in Fig. 3(a) is clearer 
than that in Fig. 3(b), indicating that MODWPT has better 
decomposition accuracy than WPT. Correspondingly, the 
vibration signal of rolling bearing in compound fault condition, 
which is also a multi-component AM-FM signal, can be de-
composed more efficiently by MODWPT.  

 
2.2 Fault energy ratio 

Fault energy ratio (FER) was first reported in Ref. [25], 
which is calculated based on the envelope spectrum and can 
distinguish and evaluate the periodic impact caused by differ-
ent bearing fault type. Under strong noise interference, Teager 
energy spectrum can extract the frequency characteristics of 
weak impact better than envelope spectrum does [26]. Built on 

this superiority, the Teager energy spectrum instead of enve-
lope spectrum is used to calculate the FER value in the present 
paper. The FER values of different fault type can be obtained 
by the following steps: 

Step 1: According to the definition of Teager energy opera-
tor, the instantaneous energy signal is obtained after the fol-
lowing operation, which is displayed in Eq. (9). 
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where x'(t) and x''(t) is the first and two order derivatives of the 
signal x(t), respectively. 

Step 2: Teager energy spectrum is obtained by FFT trans-
formation of the instantaneous energy signal.  

Step 3: The FER value of different fault type is calculated 
by the follow equation: 
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where FE and SE denotes fault energy and signal total energy 

 
 
Fig. 1. The decomposition process of MODWPT. 

 

 
 
Fig. 2. Waveform of x(t) in time domain. 
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Fig. 3. Time-frequency diagram: (a) MODWPT; (b)WPT. 
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respectively. A(f) is the amplitude of each frequency in Teager 
energy spectrum. A(nf') is the amplitude of the fault feature 
frequency and its frequency doubling in Teager energy spec-
trum. f' represents the feature frequency of the different fault 
type. fi represents the fault frequency of the inner ring (IRFF), 
fo represents the fault frequency of the outer ring (ORFF), fe 
represents the fault frequency of the rolling element (REFF), fc 
represents the fault frequency of the cage (CFF). The feature 
frequency of different fault type is calculated by the mathe-
matical formulas listed below [27]. 
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where d and D represents the diameter of the balls and the 
pitch respectively; α represents the contact angle between the 
ball and the raceway; Z represents the number of rolling ele-
ment; N represent the rotating speed. 

 
2.3 Diagnosis method based on MODWPT and FER 

Thanks to the excellent frequency band decomposition per-
formance of MODWPT and the frequency tracking character-
istic of FER, the present paper put forward a compound fault 
diagnosis method of the rolling bearing established on 
MODWPT and FER, namely FERgram. Fig. 4 describes the 
diagnosis process. 

Step 1: A group of distinct frequency band signals are 
gained after MODWPT algorithm processing the initial vibra-
tion signal.  

Step 2: The FER values of different frequency band signals 
are calculated and then presented in the FERgram, where the 
lateral and vertical axis represents the frequency and the de-
composition level of MODWPT respectively. Fig. 5 shows the 
schematic diagram of FERgram. Each node of FERgram 
represents the narrowband signal obtained by MODWPT de-
composition, and these narrowband signals are in the different 
frequency bands. For example, node (2, 2) represents the nar-
rowband signal with a bandwidth of Fs/8 Hz and a central 
frequency of 3Fs/16 Hz. The color depth of FERgram repre-
sents the FER values of each frequency band signal. A higher 
FER value shows that the signal contains more fault informa-
tion. 

Step 3: The frequency band signal with the maximum FER 
value among different FERgram is selected for the envelope 
analysis. 

Step 4: The fault type is identified by contrasting the fre-
quency components corresponding to the prominent spectral 
lines in the envelope spectrum with the fault feature frequency. 

 
3. Validations for the proposed method 

In the following content, a simulation signal, a synthetic 

signal and two experimental signals are processed by five 
methods: the EEMD-ICA method [6], the spectral kurtosis 
improved by WPT (WPT-SK) [13], the enhanced Kurtogram 
(E-Kurtogram) method [14], the TEERgram method [23], and 
the FERgram method. 

 
3.1 Simulation signal analysis 

The vibration signal of the rolling bearing compound fault 
can be simulated by two periodic impulse signal overlaying 
gauss noise signal [27]. Table 1 is the basic parameters of the 
simulation signal. 

Figs. 6(a)-(d) displays the simulation signal waveform of 
the outer ring fault, inner ring fault, gauss noise (SNR =      

Table 1. Simulation parameters. 
 

 Outer ring fault Inner ring fault 

Fault amplitude 1 1 

Fault frequency 50 Hz 130 Hz 

Natural frequency 1500 Hz 2800 Hz 

Shaft frequency 20 Hz 

Sampling frequency 8192 Hz 

Sampling points 8192 

 

 
 
Fig. 4. The diagnosis process of the proposed method. 

 

 
 
Fig. 5. The schematic diagram of FERgram. 
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-8 dB) and compound fault, respectively. As shown in Fig. 
6(d), the periodic transient impulse characteristics caused by 
fault are submerged by gauss noise. Fig. 7 displays the enve-
lope spectrum (ES) of the compound fault simulation signal. 
As seen, the ORFF fo and its frequency doubling 2fo are identi-
fied whereas the IRFF fi cannot be extracted. 

The compound fault simulation signal is processed by 
EEMD-ICA method. According to the diagnostic process in 

Ref. [6], a series of intrinsic mode functions (IMF) compo-
nents are firstly obtained after the initial vibration signal proc-
essing by EEMD algorithm, and th correlation coefficient of 
each IMF component of initial signal are calculated and 
shown in Table 2. The IMF1 - IMF5 component are used as 
the input parameter for ICA algorithm, for the values of those 
components are larger. The time waveforms and the ES of the 
independent component (IC) signals obtained by ICA algo-
rithm are plotted in Fig. 8. As seen, the ORFF fo and its fre-
quency doubling 2fo are identified whereas the IRFF fi cannot 
be extracted.  

The compound fault simulation signal is processed by 
WPT-SK method. According to the diagnostic process in Ref. 
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Fig. 6. Simulation signal waveform: (a) Outer ring fault; (b) inner ring
fault; (c) gauss noise; (d) compound fault mixed by (a)-(c).  

 

 
 
Fig. 7. Envelope spectrum (ES) of Fig. 3(d). 

 

Table 2. Correlation coefficient of IMFs. 
 

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 

1 0.7771 0.4629 0.3013 0.2293 0.1611 0.1236 

IMF8 IMF9 IMF10 IMF11 IMF12 IMF13 IMF14 

0.0802 0.0530 0.0310 0.0309 0.0126 0.0044 0.0042 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 8. Diagnosis results of the simulation signal: (a) IC1 signal wave-
form; (b) ES of IC1; (c) IC2 signal waveform; (d) ES of IC2. 
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[13], a number of distinct frequency band signals are obtained 
after the initial vibration signal is processed by WPT algo-
rithm. The kurtosis value of different frequency band signals 
are calculated and then presented in the kurtgram, where the 
lateral and vertical axis represents the frequency and the de-
composition level of WPT respectively. Each node of kurt-
gram represents the narrowband signal obtained by WPT de-
composition, and these narrowband signals are in the different 
frequency bands. The signal corresponding to the node with 
the maximum kurtosis is selected for envelope analysis. Fig. 
9(a) presents that node (4, 5) has the maximum kurtosis value. 
Fig. 9(b) displays the ES of the frequency band signal corre-
sponding to node (4, 5). As seen, the ORFF fo and its fre-
quency doubling 2fo are identified whereas the IRFF fi cannot 
be detected. 

The compound fault simulation signal is analyzed by E-
Kurtogram method. According to the diagnostic process in 
Ref. [14], the initial vibration signal is firstly pre-whitened. 
Then, a group of distinct frequency band signals are obtained 
after the whitened signal is processed by WPT algorithm. The 
kurtosis values of the power spectrum of the envelope of dif-
ferent frequency band signals are calculated and then pre-
sented in the E-kurtgram, where the lateral and vertical axis 
represents the frequency and the decomposition level of WPT 
respectively. Each node of kurtgram represents the narrow-
band signal obtained by WPT decomposition, and these nar-
rowband signals are in the different frequency bands. The 

signal corresponding to the node with the maximum kurtosis 
is selected for envelope analysis. Fig. 10(a) displays that the 
node (3, 3) has the maximum kurtosis value. Fig. 10(b) illus-
trates the ES of the frequency band signal corresponding to 
node (3, 3). As seen, the ORFF fo and its doubling frequency 
2fo - 3fo are identified productively whereas the IRFF fi cannot 
be extracted. 

The compound fault simulation signal is analyzed by 
TEERgram method. According to the diagnostic process in 
Ref. [23], a number of distinct frequency band signals are 
obtained after the initial vibration signal is processed by WPT 
algorithm. The teager energy entropy ratio (TEER) value of 
different frequency band signals are calculated and then pre-
sented in the TEERgram, where the lateral and vertical axis 
represents the frequency and the decomposition level of WPT 
respectively. Each node of TEERgram represents the narrow-
band signal obtained by WPT decomposition, and these nar-
rowband signals are in the different frequency bands. The 
signal corresponding to the node with the maximum TEER is 
selected for envelope analysis. Fig. 11(a) displays that the 
node (4, 6) has the maximum TEER value. Fig. 11(b) illus-
trates the ES of the frequency band signal corresponding to 
node (4, 6). As seen, the ORFF fo and its doubling frequency 
2fo - 3fo are identified productively whereas the IRFF fi cannot 
be extracted. 

The compound fault simulation signal is processed by 
FERgram method. Fig. 12(a) displays the FERgram of inner 

 
                            (a)                          (b) 
 
Fig. 9. Diagnosis results of the simulation signal: (a) Kurtgram; (b) ES of the signal corresponding to node (4, 5) in (a). 

                   

 
                 (a)                         (b) 
 
Fig. 10. Diagnosis results of the simulation signal: (a) E-kurtgram; (b) ES of the signal corresponding to node (3, 3) in (a). 
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ring fault. The maximum FER value is marked by the red 
rectangle and is at node (3, 6). That is to say, the frequency 
band signal corresponding to node (3, 6) contained the most 
inner ring fault information and its ES is diaplayed in Fig. 
12(b). As seen, the IRFF fi and its frequency doubling 2fi are 
extracted effectively. Fig. 12(c) displays the FERgram of the 
outer ring fault. As shown, the maximum FER value is 
marked by the red rectangle and is at node (3, 3). Thus, the 
frequency band signal corresponding to node (3, 3) is selected, 
as it contained the most outer ring fault information, and its 
ES is presented in Fig. 12(d). As seen, the ORFF fo and its 
frequency doubling 2fo - 5fo are extracted productively.  

In this case, the FERgram method can efficiently separate 

the fault information and accurately determine that the rolling 
bearing is under compound fault composed by inner and outer 
ring defective, while the EEMD-ICA method, WPT-SK 
method, E-Kurtogram method and TEERgram method cannot 
realize such functionality. 

 
3.2 Synthetic signal analysis 

This paper adopts the synthetic method used in Ref. [28], in 
which the compound fault signal is synthesized by superposi-
tion of two single fault signals. The single bearing vibration 
signal of Case Western Reserve University is often used by 
researchers [29]. Fig. 13 shows the test platform. The test 

 
              (a)                        (b) 
 
Fig. 11. Diagnosis results of the simulation signal: (a) TEERgram; (b) ES of the signal corresponding to node (4, 6) in (a). 

                   

 
             (a)                         (b) 
 

 
             (c)                         (d) 
 
Fig. 12. Diagnosis results of the simulation signal: (a) FERgram of inner ring fault; (b) ES of the signal corresponding to node (3, 6) in (a); (c) FER-
gram of outer ring fault; (d) ES of the signal corresponding to node (3, 3) in (c). 
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bearing is SKF6023-2RS deep grove ball bearing and its basic 
parameters are listed in Table 3. For simulating the weak fault, 
a pit (0.07 mm in diameter and 0.011 mm thick) is machined 

on the bearing inner ring and rolling element respectively 
through wire-cutting technology. The shaft rotary speed n = 
1478 r/min, the signals are collected by acceleration sensors 
and the sampling frequency Fs = 12000 Hz. The parameters 
shown in Table 3 are introduced into the Eq. (11), where the 
IRFF fi = 148 Hz, and the REFF fe = 118 Hz can be obtained.  

Figs. 14(a) and (b) show the single signal waveform of in-
ner ring fault and that of rolling element fault, respectively. 
Figs. 14(c) and (d) display the waveform and ES of the com-
pound fault signal synthesized by the above two single fault 
signal, respectively. As shown in Fig. 11(d), the IRFF fi and its 
frequency doubling 2fi - 3fi are extracted effectively. The 
REFF fe can also be identified, but the amplitude of fe is small-

Table 3. SKF6023-2RS bearing parameters. 
 

Outside 
diameter 

Inside 
diameter 

Ball 
diameter 

Pitch 
diameter 

Balls 
number 

Contact 
angle 

40 mm 17 mm 6.7 mm 28.5 mm 8 0° 

 

 
 
Fig. 13. Test platform of Case Western Reserve University. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 14. Signal waveform of case: (a) Inner ring fault; (b) rolling ele-
ment fault (c) compound fault synthesized by (a) and (b); (d) ES of (c). 

Table 4. Correlation coefficient of IMFs. 
 

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 

1 0.7499 0.6187 0.1992 0.1012 0.0515 0.0231 

IMF8 IMF9 IMF10 IMF11 IMF12 IMF13 IMF14 

0.0048 0.0046 0.0011 0.0011 0.0009 0.00008 0.0012 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 15. Diagnosis results of the synthetic signal: (a) IC1 signal wave-
form; (b) ES of IC1; (c) IC2 signal waveform; (d) ES of IC2. 
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er than that of fi and the noise frequency, and thus is usually 
ignored.  

The compound fault synthetic signal is processed by the 
EEMD-ICA method. Table 4 presents the correlation 
coefficient of each IMF component of initial signal. The 
IMF1–IMF6 components are used as the input parameter for 
ICA algorithm. Fig. 15 displays the diagnosis results. As seen, 
the REFF fe can be identified, but is very weak compared with 
the IRFF fi and the noise frequency. That is to say, the REFF fe 

is usually ignored. 
The compound fault synthetic signal is processed by WPT-

SK method. Fig. 16(a) displays that the node (4, 8) has the 
maximum kurtosis value. Fig. 16(b) presents the ES of the 

frequency band signal corresponding to node (4, 8). As seen, 
the INFF fi are identified productively whereas the REFF fe 
cannot be extracted.  

The compound fault synthetic signal is processed by E-
Kurtogram method. Fig. 17(a) displays that the node (3, 6) has 
the maximum kurtosis value. Fig. 17(b) illustrates the ES of 
the frequency band signal corresponding to node (3, 6). As 
seen, the INFF fi and its doubling frequency 2fi are identified 
productively whereas the REFF fe cannot be extracted. 

The compound fault synthetic signal is processed by 
TEERgram method. Fig. 18(a) displays that the node (4, 9) 
has the maximum kurtosis value. Fig. 18(b) illustrates the 
envelope spectrum of the frequency band signal correspond-

 
                           (a)                           (b) 
 
Fig. 16. Diagnosis results of the synthetic signal: (a) Kurtgram; (b) ES of the signal corresponding to node (4, 8) in (a). 

                   

 
                          (a)                           (b) 
 
Fig. 17. Diagnosis results of the synthetic signal: (a) E-kurtgram; (b) ES of the signal corresponding to node (3, 6) in (a). 

                   

 
                  (a)                           (b) 
 
Fig. 18. Diagnosis results of the synthetic signal: (a) TEERgram; (b) ES of the signal corresponding to node (4, 9) in (a). 
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ing to node (4, 9). As seen, the INFF fi is identified produc-
tively whereas the REFF fe cannot be extracted. 

The compound fault synthetic signal is processed by FER-
gram method. Fig. 19(a) displays the FERgram of inner ring 
fault. As shown, the maximum FER value is marked by the 
red rectangle and is at node (3, 5). That is to say, the fre-
quency band signal corresponding to node (3, 5) contained the 
most inner ring fault information and its ES is presented in Fig. 
19(b). As seen, the IRFF fi and its frequency doubling 2fi - 3fi 
are extracted effectively. Fig. 19(c) displays the FERgram of 
rolling element fault. As shown, the maximum FER value is 
marked by the red rectangle and is at node (4, 12). Thus, the 
frequency band signal corresponding to node (4, 12) is chosen, 
as it contained the most rolling element fault information, and 
its ES is displayed in Fig. 19(d). As seen, the REFF fe and its 
frequency doubling 2fe are identified productively.  

In this case, the FERgram method can efficiently separate 
the fault information and accurately determine that the rolling 
bearing is under compound fault composed by inner ring and 
rolling element defective, while the EEMD-ICA method, 
WPT-SK method, E-Kurtogram method and TEERgram 

method cannot realize such functionality.  

 
3.3 Experiment signal 1 analysis 

The experimental signal of the rolling bearing under inner 
and outer ring fault is obtained from QPZZ test platform. Fig. 
20(a) displays the QPZZ test platform. The experiment bear-
ing is SKF6205 deep grove ball bearing and its basic parame-
ters are shown in Table 5. Fig. 20(b) displays the groove 
(1.5 mm in diameter and 0.2 mm thick) is machined on the 
bearing inner and outer ring respectively through wire-cutting 
technology. Fig. 20(c) describes that the bearing vibration 
signals are obtained from an acceleration sensor fixed on the 
pedestal of the defective bearing. The driver motor rotary 
speed n = 1466 r/min, and the sampling frequency Fs = 
12800 Hz. The bearing parameters shown in Table 5 are in-
troduced into the Eq. (11), where the IRFF fi = 132.2 Hz, and 
the ORFF fo = 87.7 Hz can be obtained. 

Figs. 21(a) and (b) present the experiment signal waveform 
and its ES, respectively. As seen, the ORFF fo and its fre-
quency doubling 2fo - 5fo are extracted effectively. The IRFF 

Table 5. SKF6205 bearing parameters. 
 

Outside diameter Inside diameter Ball diameter Pitch diameter Balls number Contact angle 

52 mm 25 mm 7.9 mm 39 mm 9 0° 

                   
 

 
              (a)                          (b) 
 

                  
           (c)                          (d) 
 
Fig. 19. Diagnosis results of the synthetic signal: (a) FERgram of inner ring fault; (b) ES of the signal corresponding to node (3, 5) in (a); (c) FER-
gram of rolling element fault; (d) ES of the signal corresponding to node (4, 12) in (c).  
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fi can also be identified, but the amplitude of fi is smaller than 
that of fo and noise frequency, and thus is usually ignored.  

The experiment fault signal is processed by EEMD-ICA 
method. Table 6 presents the correlation coefficient of each 
IMF component of initial signal. The IMF1–IMF6 compo-
nents are used as the input parameter for ICA algorithm. Fig. 
22 displays the diagnosis results. The ES of IC1 and IC2 
shows that the ORFF fo and its doubling frequency 2fo- 4fo is 
more obvious, and the IRFF fi is relatively weak. That is to say, 
the IRFF fi is usually ignored. 

The experiment fault signal is processed by WPT-SK 
method. Fig. 23(a) displays that the node (2, 2) has the maxi-
mum kurtosis value. Fig. 23(b) illustrates the ES of the fre-

quency band signal corresponding to node (2, 2). As seen, the 
ORFF fo and its doubling frequency 2fo - 4fo are identified 
productively whereas the IRFF fi cannot be extracted. 

The experiment fault signal is processed by E-Kurtogram 
method. Fig. 24(a) displays that the node (3, 3) has the maxi-
mum kurtosis value. Fig. 24(b) illustrates the ES of the fre-
quency band signal corresponding to node (3, 3). As seen, the 
ORFF fo and its doubling frequency 2fo - 4fo are identified 
productively whereas the IRFF fi cannot be extracted. 

The experiment fault signal is processed by the TEERgram 
method. Fig. 25(a) displays that the node (4, 4) has the maxi-
mum kurtosis value. Fig. 25(b) illustrates the ES of the fre-
quency band signal corresponding to node (4, 4). As seen, the 

 
(a) 

  

 
              (b)                         (c) 
 
Fig. 20. (a) QPZZ test platform; (b) bearing with inner and outer ring 
fault; (c) acceleration sensor location. 

 

 
(a) 

 

 
(b) 

 
Fig. 21. (a) Experimental signal waveform; (b) ES of (a). 

 

Table 6. Correlation coefficient of IMFs. 
 

IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6 IMF 7 

1 0.7010 0.6510 0.3789 0.2884 0.1919 0.0883 

IMF 8 IMF 9 IMF 10 IMF 11 IMF 12 IMF 13 IMF1 4 

0.0547 0.0443 0.0336 0.0209 0.0153 0.0092 0.0014 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 
Fig. 22. Diagnosis results of the experiment signal 1: (a) IC 1 signal 
waveform; (b) ES of IC 1; (c) IC 2 signal waveform; (d) ES of IC 2.  
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ORFF fo and its doubling frequency 2fo - 3fo are identified 
productively whereas the IRFF fi cannot be extracted. 

The experiment fault signal is processed by FERgram 
method. Fig. 26(a) displays the FERgram of outer ring fault. 
As shown, the maximum FER value is marked by the red 
rectangle and is at node (3, 2). That is to say, the frequency 
band signal corresponding to node (3, 2) contained the most 
outer ring fault information and its ES is presented in Fig. 
26(b). As seen, the ORFF fo and its frequency doubling 2fo - 
5fo are extracted effectively. Fig. 26(c) displays the FERgram 
of the inner ring fault. As shown, the maximum FER value is 
marked by the red rectangle and is at node (3, 7). Thus the 
frequency band signal exacted from node (3, 7) is selected, as 

it contained the most inner ring fault information, and its ES is 
displayed in Fig. 26(d). As seen, the IRFF fi and its frequency 
doubling 2fi - 3fi are identified productively. 

In this case, the FERgram method can efficiently separate 
the fault information and accurately determine that the rolling 
bearing is under compound fault composed by inner and outer 
ring defective, while the EEMD-ICA method, WPT-SK 
method, E-Kurtogram method and TEERgram method cannot 
realize such functionality. 

 
3.4 Experiment signal 2 analysis  

The experimental signal of the rolling bearing under rolling 

                  
                 (a)                         (b) 
 
Fig. 23. Diagnosis results of the experiment signal 1: (a) Kurtgram; (b) ES of the signal corresponding to node (2, 2) in (a). 

 

 
                 (a)                             (b) 
 
Fig. 24. Diagnosis results of the experiment signal 1: (a) E-kurtgram; (b) ES of the signal corresponding to node (3, 3) in (a). 

                   

 
           (a)                         (b) 
 
Fig. 25. Diagnosis results of the experiment signal 1: (a) TEERgram; (b) ES of the signal corresponding to node (4, 4) in (a). 
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element fault and outer ring fault is obtained from references 
[6]. The driver motor rotating speed n = 1300 r/min, and the 
sampling frequency Fs = 100000 Hz. The REFF fe = 102.3 Hz, 
and the ORFF fo = 86.3 Hz. 

Figs. 27(a) and (b) present the experiment signal waveform 
and its ES, respectively. As seen, the ORFF fo and its fre-
quency doubling 2fo - 5fo are extracted effectively. The REFF 
fe can not be identified. 

The experiment fault signal is processed by EEMD-ICA 
method. Table 7 presents the correlation coefficient of each 
IMF component of initial signal. The IMF1–IMF6 compo-
nents are used as the input parameter for ICA algorithm. Fig. 
28 displays the diagnosis results. The ES of IC1 shows that 
the ORFF fo and its doubling frequency 2fo - 5fo are more 
obvious, and the REFF fe is not identified. The diagnosis result 
is consistent with reference [6]. 

The experiment fault signal is processed by WPT-SK 

method. Fig. 29(a) displays that the node (4, 9) has the maxi-
mum kurtosis value. Fig. 29(b) illustrates the ES of the fre-
quency band signal corresponding to node (4, 9). As seen, the 
ORFF fo and its doubling frequency 2fo - 5fo are identified 
productively whereas the REFF fe cannot be extracted. 

The experiment fault signal is processed by E-Kurtogram 
method. Fig. 30(a) displays that the node (4, 10) has the 
maximum kurtosis value. Fig. 30(b) illustrates the ES of the 
frequency band signal corresponding to node (4, 10). As seen, 

 

 
             (a)                            (b) 
                   

 
           (c)                         (d) 
 
Fig. 26. Diagnosis results of the experiment signal using FERgram: (a) FERgram of outer ring fault; (b) ES of the signal corresponding to node (3, 
2) in (a); (c) FERgram of inner ring fault; (d) ES of the signal corresponding to node (3, 7) in (c). 

 

      
                                   (a)                                                   (b) 
 
Fig. 27. (a) Experimental signal waveform; (b) ES of (a). 

 
Table 7. Correlation coefficient of IMFs. 
 

IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6 IMF 7 

1 0.5834 0.5088 0.4505 0.3326 0.2125 0.0714 

IMF 8 IMF 9 IMF 10 IMF 11 IMF 12 IMF 13 IMF1 4 

0.0237 0.0175 0.0083 0.0069 0.0032 0.0009 0.0007 
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the ORFF fo and its doubling frequency 2fo - 5fo are identified 
productively whereas the REFF fe cannot be extracted. 

The experiment fault signal is processed by FERgram 
method. Fig. 31(a) displays the FERgram of outer ring fault. 
As shown, the maximum FER value is marked by the red 
rectangle and is at node (4, 10). That is to say, the frequency 
band signal corresponding to node (4, 10) contained the most 
outer ring fault information and its ES is presented in Fig. 
31(b). As seen, the ORFF fo and its frequency doubling 2fo - 
5fo are extracted effectively. Fig. 31(c) displays the FERgram 

of the rolling element fault. As shown, the maximum FER 
value is marked by the red rectangle and is at node (4, 2). 
Thus the frequency band signal exacted from node (4, 2) is 
selected, as it contained the most rolling element fault infor-
mation, and its ES is displayed in Fig. 31(d). As seen, al-
though the IRFF fe can be identified, the noise frequency inter-
ference is huge. The reason for this phenomenon may be that 
the rolling element fault is very weak, and thus the fault fea-
ture frequency is not very obvious.                   

TEERgram method needs data of the rolling bear under 
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                                    (c)                                                 (d) 
 
Fig. 28. Diagnosis results of the experiment signal 2: (a) IC 1 signal waveform; (b) ES of IC 1; (c) IC 2 signal waveform; (d) ES of IC 2. 

 

 
                    (a)                           (b) 
 
Fig. 29. Diagnosis results of the experiment signal 2: (a) Kurtgram; (b) ES of the signal corresponding to node (4, 9) in (a). 

                    

 
           (a)                           (b) 
 
Fig. 30. Diagnosis results of the experiment signal 2: (a) E-kurtgram; (b) ES of the signal corresponding to node (4, 10) in (a). 
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both normal condition and fault condition. However, Ref. [6] 
didn’t provide the data of the rolling bearing under normal 
condition, thus the TEERgram method is not used in this sec-
tion as comparison. 

In this case, the FERgram method can separate the fault in-
formation and accurately determine that the rolling bearing is 
under compound fault composed by outer ring and rolling 
element defective, while the EEMD-ICA method, WPT-SK 
method and E-Kurtogram method cannot realize such func-
tionality. 

 
4. Conclusions 

Aiming to efficiently extract fault feature frequency and ac-
curately diagnose the fault type of the rolling bearing, the pre-
sent paper put forward a diagnosis method named FERgram. 
Comparing with the existing methods, the FERgram method 
has three improvements. (1) FER is applied replacing the tra-
ditional evaluation index, i.e. kurtosis index. (2) The FER 
value is calculated through Teager energy spectrum rather 
than envelope spectrum. (3) MODWOT rather than WPT is 
used to decompose signal. The feasibility and superiority of 
the FERgram method is demonstrated by four signals and four 
comparison method. The diagnosis results suggest that the 
FERgram method can effectively separate fault feature infor-
mation and accurately determine the fault type of the rolling 
bearing. 
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