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Abstract 
 
Fractional derivative and WLF equation are effective in describing the dynamic behavior and time-temperature effect of viscoelastic 

damping materials, respectively. These approaches have essentially evolved from the viscoelastic constitutive behavior. Based on such 
intrinsic relation, a fractional time-temperature superposition principle model (FTTSPM) that integrates the fractional constitutive rela-
tion and WLF equation was proposed. The parameters of this model were determined by performing tensile and DMA tests, and the mas-
ter curves at 5 °C constructed by FTTSPM and WLF equation were compared. The theoretical prediction over the extended frequency 
span as the master curves was made by using the fractional standard linear solid model (FSLSM) to validate FTTSPM. The numerical 
results show that FTTSPM conforms to the time-temperature superposition principle. The parameters α and B¢ in this model denote the 
impact of the material and environment on the shifted factor, respectively. For the storage and loss modulus, the extended frequency 
obtained by FTTSPM is broader than that obtained by the WLF equation. Moreover, the evaluation of the storage and loss modulus by 
FTTSPM is much closer to the theoretical prediction compared with that by the WLF equation. Therefore, FTTSPM is a concise and 
experiment-based approach with a higher precision and greater frequency-extended capacity compared with the WLF equation. However, 
FTTSPM inevitably faces a vertical shift when non-thermo-rheologically simple materials are considered. The physical mechanism and 
practical application of FTTSPM will be examined in further research.  
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1. Introduction 

Viscoelastic damping materials have been used in many 
fields, such as automobile, building, and military equipment 
manufacturing, to passively control noise and vibration [1-4]. 
These materials convert noise and vibration energy into ther-
mal energy, which is subsequently dissipated as a result of the 
hysteretic effect of the viscoelastic damping material. 

The mechanical characteristics of viscoelastic damping ma-
terials are highly dependent on ambient temperature and fre-
quency. The constants for these two factors are applied in the 
traditional analysis and design of viscoelastic damping struc-
tures, thereby producing results with poor accuracy [5]. To 
overcome this problem, the time-temperature superposition 
principle (TTSP) was developed, according to which the fre-
quency spectra at various temperatures can be collapsed onto a 
master curve at the reference temperature by multiplying the 
shifted factors [6]. The master curve covers a wide reduced 

frequency range up to many orders of magnitudes. The shifted 
factor is an important variable for TTSP, and researchers [7] 
have accordingly developed many models for this factor. The 
Arrhenius and WLF equations are popular models that differ-
entiate from applicable temperature ranges. In common noise 
and vibration control engineering, the viscoelastic structure is 
always used within the applicable temperature scope of the 
WLF equation, thereby making this equation the most widely 
used model for TTSP. Recent studies that employ the WLF 
equation have focused on parameter identification, model 
application, and extension [8]. Meanwhile, some studies have 
begun to examine the use of this equation in predicting the 
properties of newly developed materials [9]. Paulo et al. [10] 
employed TTSP to study the rheological behavior of rubber 
tires at a constant shear rate and obtained coherent experimen-
tal results. Lin et al. [11] established the relationship between 
the viscosity of the reversible phase and the temperature for 
segmented polyurethanes by using the WLF equation. Jacek et 
al. [12] discussed the dependence of WLF parameters on the 
strength of cohesive molecular interactions and the degree of 
chain stiffness at the microscopic molecular level. Schaffner et 
al. [13] extended the application of the WLF equation to pre-
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dict lag time with temperature dependence for three psychro-
trophic bacteria. Deng et al. [14] investigated the viscoelastic 
damage characteristics of asphalt by using the WLF equation 
to expand the experimental frequency range up to several or-
ders of magnitudes. Zhu et al. [15] predicted the rheological 
behavior of wheat gluten dough by using the WLF equation 
and provided a theoretical reference for manufacturing this 
dough. Liu et al. [16] experimentally investigated several 
automobile-used PVB films and obtained their WLF parame-
ters by fitting the experimental data. Zhang et al. [5] estab-
lished a mirror-image relation between the frequency and 
temperature spectra of viscoelastic materials based on TTSP 
and derived a six-parameter fractional model for the tempera-
ture spectrum. 

Over the past few years, fractional derivative has been ex-
tensively incorporated into rheological models of viscoelastic 
materials because of its global correlation [17]. Fractional 
models are more capable of fitting the experimental data com-
pared with integer models. Tang et al. [18] proposed a five-
parameter fractional constitutive model for a rubber vibration 
absorber and deduced a parameter determination technique by 
transferring this model to the frequency domain. Li et al. [19] 
established a factional viscoelastic oscillator while considering 
the geometric factor and then applied this oscillator in the dy-
namic analysis of the viscoelastic suspension of a crawler vehi-
cle. Hu et al. [20] studied the derivations of a fractional Max-
well model to fit the experimental data from Jimenez et al. [21] 
and achieved a high consistency for the amended parameters. 
Wharmby et al. [22] proposed a modified Maxwell model 
based on the fractional derivative theorem and derived its fre-
quency response function via the inverse Laplace transform. 
Cao et al. [23] performed a time domain analysis of the frac-
tional-order-weighted distributed parameter Maxwell model. 
Hwang et al. [24] developed a fractional derivative Kelvin 
model that considers the ambient temperature effect on HDR 
bearings. Zhu et al. [25] implemented a nonlinear fractional 
viscoelastic model for rail pads by treating the vehicle as a 10-
DOF system and the slab track as a 3-layer Bernoulli-Euler 
beam. 

As can be seen in the above literature review, both the WLF 
equation and fractional derivative are effective in characteriz-
ing TTSP and the rheological behavior of viscoelastic materials, 
respectively. These approaches are uniform at the constitutive 
level. However, to the best of the authors’ knowledge, very few 
models have merged these two methods. This paper aims to fill 
such gap by deriving the fractional TTSP model (FTTSPM) 
based on the fractional viscoelastic constitutive relation and the 
WLF equation and by contrastively analyzing the characteris-
tics of its parameters. The fractional standard linear solid model 
(FSLSM) is then employed to validate the FTTSPM. 

 
2. Theoretical model 

2.1 Brief summary of TTSP 

The TTSP reveals the interrelation between the time-

dependence and temperature-dependence of the rheological 
behavior of viscoelastic damping materials. The frequency 
spectra at different temperatures can be superposed by using 
the frequency-shifted factors according to this model (see Fig. 
1), which allows the construction of a master curve that covers 
a wide frequency range at a reference temperature. A nomo-
gram that denotes the total dynamic viscoelastic behaviors in a 
single plot can also be constructed by using TTSP. This no-
mogram is often used along with the master curve to predict 
broadband viscoelastic behaviors and to overcome the restric-
tions of current rheometers, which result from the limitations 
of newly developed vibration exciters adopting piezoelectric 
actuators that can only reach up to 3.5 kHz, which is far below 
several orders of magnitudes [26]. The transition relation of 
the frequency spectra at temperature T to reference tempera-
ture Tr is expressed as 

 
( , ) ( / , )r T rE f T E f Ta= , (1) 

 
where E represents the dynamic behaviors, such as storage 
modulus E¢ , loss modulus E¢¢ , and loss factor (or loss tangent) 
h , f is the excitation frequency, rf is the reduced frequency, 
and αT is the frequency shifted factor. From Eq. (1), determin-
ing αT plays an important role in the transition. Many TTSP 
models have been developed to address this problem, includ-
ing the WLF equation, which was named after its proposers, 
William, Landel, and Ferry [27]. The original form of this 
equation is 
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where C1 and C2 are constants depending on the material and 
the reference temperature. The logarithmic αT directly indi-
cates the horizontal shift of the isothermal at T when superpos-
ing into the isothermal at Tr. 

 
2.2 Fractional TTSP model 

Viscoelastic damping materials demonstrate both elastic 
and viscous behaviors and do not follow either Hooker’s law 
or Newton’s liquid rule. The fact that stress is proportional to 
the zero-order derivative of the strain in Hooker’s law for pure 
elasticity and to the first-order derivative of the strain in New-
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Fig. 1. Schematic graph of TTSP. 
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ton’s liquid rule for pure viscosity inspires the fractional con-
stitutive relationship for viscoelasticity, which takes the fol-
lowing form: 

 
( ) ( )t D tas g e= ,  (3) 

 
where σ and ε denote stress and strain, respectively, g is the 
viscous coefficient, (0 1)a a< <  is the derivative order, and 

( )Da ×  denotes the fractional derivative operator, whose Rie-
mann–Liouville definition takes the following form: 

 

( ) ( )
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. (4) 

 
Executing the Laplace transform on Eq. (3) generates the 

following: 
 

( )i as g w e= , (5) 

 
where s  and e  are the Laplace transforms of s  and e , 
respectively, 2 fw p=  is the angle frequency, and 1 i- = . 
The complex modulus E* , which is defined as the ratio of s  
to e , is given by 

 

( )iE as g w
e

* = =   (6) 

 
and can be written as 

 
E agw* = .  (7) 

 
Meanwhile, the viscous coefficient holds 
 

E
ah
w

*

= .  (8) 

 
To interpret the viscosity η as a temperature-dependent 

equilibrium, the following Vogel–Fulcher–Tammann equation 
in the free-volume system is employed:  
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where κ is the correction factor, B is the material factor, and T0 
is the critical temperature. 

Given its dependence on temperature and frequency, 
E* can be written as the function of T and ω, that is, 

( , )E Tw* . Equilibrating Eqs. (8) and (9) for ( , )Tw  and 
( , )r rTw  leads to 
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Taking the logarithm operation on both ends of Eqs. (10a) 

and (10b) and then subtracting the second one from the first 
one will yield 
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By taking into account TTSP, we have ( ),E Tw* =  
( , )r rE Tw* . Therefore, Eq. (11) is rewritten as 
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Eq. (12) is the primary form of FTTSPM that reveals the 

mathematical relationship of dynamic viscoelastic behaviors 
at ( ,Tw ） and ( , )r rTw . 

A variant of the WLF equation is 1log /T C Ta = - D  
2( )C T+ D , where rT T TD = - . The shifted factor αT is only 

dependent on ∆T within the temperature scope of the WLF 
equation. Therefore, we assume that the shifted factor from 
FTTSPM merely responds to DT as the WLF equation, that is, 
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The term 0 0( )( )rT T T T- -  on the righthand side of Eq. (13) 

is constant due to the single-variable hypothesis for αT of 
FTTSPM, that is, 0 0( )( ) .r consT T T T T- - =  Therefore, Eq. (13) 
can be shortened as 
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, (14) 

 
where consB B T¢ =  is constant. Here, the frequency shifted 
factor by FTTSPM takes the form 

 
1

eT B T
aa ¢D
= . (15) 

 
The αT determined by Eq. (15) contains two parameters, 

namely, α and B¢, which reflect the material and environment 
influences on TTSP, respectively. Therefore, these parameters 
are designated as the material parameter and environment 
parameter, respectively. The parameters of FTTSPM are de-
termined as follows. 

Step 1. The value of material parameter α is obtained by fit-
ting Eq. (3) against the strain–stress curve obtained by the 
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tensile test on the standard sample. 
Step 2. The temperature spectra of the dynamic viscoelastic 

behavior at n frequencies are obtained by performing the 
DMA test. For the temperature spectra of a certain dynamic 
behavior, a horizontal line that intersects the ωi-spectrum at 
(ωi, Ti) i = 1, 2, … n is drawn. At this time, the environment 
parameter B¢ is obtained by fitting Eq. (14) against (ωi, Ti) i = 
1, 2, … n. 

 
2.3 Parameter analysis 

To understand the parameter influence on the αT of 
FTTSPM, the variations in αT along with ∆T are numerically 
studied across different magnitudes of α and B¢ . Typical re-
sults with parameters of α = 0.2, 0.4, 0.6, 0.8, 1 and B¢ = 0, 0.4, 
0.6, 0.8, 1 are shown in Figs. 2(a) and (b). 

Figs. 2(a) and (b) reveal that αT is a monotonically decreas-
ing function of ∆T. lgαT is positive when T < Tr, thereby sug-
gesting that the isothermal at T is horizontally superposed 
right onto the higher frequency region of the master curve at 
Tr. However, lgαT is negative when T > Tr, thereby indicating 
that the isothermal at T is horizontally superposed left onto the 
lower frequency region of the master curve at Tr. 

Fig. 2(a) also shows that αT decreases when 0TD < °C and 
0TD > °C increase along with α for a specific temperature. 

These trends indicate that the horizontal superposition of the 
unit temperature variation is smaller for a greater viscosity 
(larger magnitude of fractional order α). It is calculably found 

that Ta ®¥ for α = 0 because Eq. (3) degenerates into a com-
plete Hooker’s unit that does not follow the TTSP. Another 
extreme curve is observed when α = 1 as indicated by the 
arrow in Fig. 2(a), thereby suggesting a purely viscous state. 

For the environment parameter, Fig. 2(b) shows that αT de-
creases when 0TD >  °C and 0TD <  °C increase along with 
B¢ for a specific temperature. The curve of αT for B¢ = 0 is 
horizontal and equal to 1 as indicated by the arrow in Fig. 2(b). 
No horizontal shift occurs under this condition because the 
molecular of the viscoelastic damping material remains in a 
frozen state. 

 
3. Experiment 

The viscoelastic damping material used in controlling the 
vibration of engineering vehicles is selected as the study case. 
This viscoelastic damping material is made from sulphur-
cured natural rubber with a specific ratio of some agents (ac-
celerator, antiager, filler, etc.) by a special process. Given its 
excellent damping performance for low-frequency and heavy 
alternating loads, this material has been successfully applied in 
the viscoelastic suspension of crawler vehicles, roadheaders, 
and others. 

 
3.1 Tensile test 

Tensile test is conducted following ISO 37:2011 on the I-
dumbbell sample by using an M350-10 kN-type precise elon-
gation apparatus (Testometric, Britain) as shown in Figs. 3(a) 
and (b). 

 
 
Fig. 2. Parameter dependence of αT: (a) α = 0.2, 0.4, 0.6, 0.8, 1.0 and B¢
= 0.2; (b) B¢ = 0, 0.2, 0.4, 0.6, 0.8, 1.0 and α = 0.8. 

 

 
 

 
 
Fig. 3. Tensile test: (a) Apparatus; (b) elongation sample. 
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3.2 DMA test 

The DMA (dynamic thermal analytical method) test is 
widely used for measuring the dynamic mechanical response 
of viscoelastic damping materials subjected to a specific tem-
perature-frequency program [28]. The DMA test in this study 
is performed according to ISO 6721-1 on DMA 242C (Ne-
tzsch, Germany, Fig. 4). The three-point bending mode is 
selected, in which the sample is supported on two supporting 
edges, while the probe edge applies the load to the sample as 
shown in Fig. 5. The sample is excited by loads of 0.5, 1, 2, 
3.33, 5 and 10 Hz over a temperature range of –120 °C to 
120 °C at intervals of 2 °C/min. A static force larger than the 
dynamic force must be applied on the sample to prevent it 
from jumping off the holder. The atmosphere in the sample 
chamber is maintained by nitrogen. The temperature is sensed 
by the thermocouple placed close to the sample (approxi-
mately 1 mm) and adjusted automatically by the controller. 
The complex modulus of the sample can be derived by 

 
3

*
3=

4
l FE
bh d

,                    (16) 

 
where l, h and b denote the depth, width, and height of the 
sample, respectively, F denotes the exciting force, and d de-
notes the displacement. After obtaining the complex modulus, 
the other dynamic behaviors, including the storage modulus E¢, 
loss modulus E¢¢ , and loss factor h , can be obtained by the 
corresponding transformation. The computation processes are 
automatically completed by the DMA software based on 
logged data. The temperature spectra obtained from the DMA 
test are presented in Fig. 6. 

The DMA test reveals that the dynamic behaviors of the 
viscoelastic material are dependent on temperature and fre-
quency. The storage modulus E', loss modulus E'', and loss 
factor η monotonically decrease within the considered tem-
perature and tend to be flat over 60 °C due to the thermal sof-
tening effect. Therefore, effective heat-dissipating measures 
must be adopted in engineering practice to ensure a sufficient 
modulus and to avoid thermally induced defects. A positive 
correlation can also be observed between the spectra and the 
frequency for a specific temperature. This correlation weakens 
as the temperature increases. As will be discussed in the next 
section, the master curve can help reveal the comprehensive 
dependence of dynamic behaviors on temperature and fre-
quency. 

 
4. Comparison and validation 

For comparison and validation purposes, the master curves 
of the dynamic behaviors of the viscoelastic material are con-
structed by using the WLF equation and FTTSPM and are 
validated by using FSLSM. 

 
4.1 Parameter determination 

Following Step 1 of the parameter determination procedure 
of FTTSPM, the material parameter α is determined as 0.7410 
by fitting Eq. (3) against the strain–stress data derived from 

 
 
Fig. 4. DMA 242C set up. 

 

 
 
Fig. 5. Three-point bending mode: 1—Push rod; 2—Sample; 3—
Sample holder. 

 

 
 
Fig. 6. (a) Temperature spectra of storage modulus E'; (b) loss modulus 
E''; (c) loss factor η. 
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the tensile test. 
For environment parameter B¢, the data are fitted against ωi, 

Ti following step 2 of the parameter determination procedure. 
The fitting data groups are listed in Table 1. By taking the data 
in the third column of Table 1 as reference (ωr, Tr) and by 
fitting Eq. (14), E¢, E¢¢  and η obtain B¢ magnitudes of 0.2103, 
0.177 and 0.0900, respectively.  

The parameters for the WLF equation are extracted by us-
ing the DMA software Proteus Analysis. The results are listed 
in Table 2. 

 
4.2 Theoretical prediction 

FSLSM is a five-parameter constitutive model of viscoelas-
tic damping materials that is reasonably capable of describing 
real viscoelastic behavior at a broad frequency range [29]. 
This model can be mathematically expressed as 

 
1 2

0 1bD E E Db bs s e e+ = + , (17) 
 

where 1b and 2b are fractional orders, b, while 0E and 1E are 
material constants. 

The complex modulus is derived by transforming Eq. (17) 
into the frequency domain 
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where *E denotes the complex modulus. 

Applying mathematical manipulations on the real and 
imaginary parts of Eq. (18) yields the following components 
of the complex modulus:  
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where 2 2
0 1 cos

2
x E E b bw p= +  and 1 11 cos

2
y b b bw p= + . 

We obtain the FSLSM parameters b = 0.45, β1 = 0.15, β2 = 
0.7, E0 = 1.95e6 and E1 = 2.07e6 by fitting the frequency spec-
tra of viscoelastic dynamic behaviors at 5 °C.  

 
4.3 Results and discussion 

The magnitudes of αT of WLF and FTTSPM for different 
temperatures with respect to Tr = 5 °C are derived by using 
Eqs. (2) and (15) and are shown in Table 3. Given that a data 
fitting technology is adopted to deal with the test data, the 
magnitudes of αT differ across the considered dynamic behav-
iors at the reference temperature. The master curves of storage 
modulus, loss modulus, and loss factor as obtained by 
FTTSPM and WLF are constructed. For comparison and vali-
dation purposes, the dynamic behaviors are predicted as mas-
ter curves by FSLSM over the similar frequency ranges. The 
comparison curves are shown in Fig. 7. 

Table 3 shows that the frequency ranges of the dynamic be-
haviors are broadly extended by TTSP and cover approxi-
mately 10 orders of magnitude. For the storage and loss 
modulus, the extended frequencies obtained by FTTSPM are 
broader than those obtained by WLF, especially at very low 
frequencies. However, the opposite effect is observed for the 
loss factor. lgαT is positive for temperatures below Tr and 
negative for temperatures above Tr, thereby indicating that 
FTTSPM conforms to the hypothesis of TTSP. 

Table 3 also shows that different shifted factors correspond 
to different dynamic parameters at a given reference tempera-
ture. Such differences can be attributed to two reasons. On the 
one hand, the storage modulus and loss modulus are the real 
and imaginary parts of the complex modulus, respectively. 
The DMA test measures the exciting force and displacement 
of the sample, while the complex modulus is obtained by us-
ing Eq. (16). Afterward, the components of the complex mod-
ulus are obtained by applying some mathematical manipula-
tions, which can introduce some errors and yield different 
“average relaxation times” for the storage modulus and loss 
modulus. On the other hand, the loss factor demonstrates an 
error accumulation effect because this factor is obtained via 
(loss modulus)/(storage modulus). The fitting process also 
contributes to the differences in the shifted factor because the 
fitting model itself is a phenomenological model. 

Figs. 7(a) and (b) reveal that the storage modulus and loss 
modulus increase along with the reduced frequency at Tr = 5 °C. 

Table 1. Fitting data groups for B¢ in FTTSPM. 
 

Frequency/Hz 0.5 1 2 

for E¢  -76.0 -73.7 -71.2 

for E¢¢  -70.4 -67.0 -64.4 Temperature/°C 

forh  -56.9 -47.3 -43.9 

Frequency/Hz 3.33 5 10 

for E¢  -69.4 -68 -65.9 

for E¢¢  -62.4 -61.0 -57.8 Temperature/°C 

forh  -40.7 -38.2 -33.4 

 
Table 2. Parameters of the WLF equation. 
 

Parameter For storage 
modulus For loss modulus For loss factor 

C1 90.5 90.5 58.3 

C2/K 788.5 1024.5 899.0 
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The master curves obtained by FTTSPM and WLF are consis-
tent with the predictions of FSLSM. Compared with WLF, the 
data obtained by FTTSPM are much closer to the FSLSM 
curve. The subplot in Fig. 7(a) shows that the E¢master curve 
at lower frequency is scattered, thereby suggesting that the 

isothermals at higher temperatures are poorly superposed onto 
the lower reduced frequency range. To interpret this result 
further, the Wicket-plot, where the loss factor is plotted versus 
the storage modulus, is presented in Fig. 8. The figure shows 
that the curves are dependent on temperature, thereby proving 

Table 3. Shifted factors for different temperatures at Tr = 5 °C. 
 

lgαT for storage modulus  lgαT for loss modulus lgαT for loss factor 
Temperature/°C 

WLF FTTSPM WLF FTTSPM WLF FTTSPM 

-75 10.2175 10.1430 7.6654 8.2648 5.7651 4.1716 

-65 8.8169 8.8756 6.6370 7.2324 4.9829 3.6502 

-55 7.4537 7.6078 5.6299 6.1992 4.2195 3.1287 

-45 6.1273 6.3399 4.6434 5.1660 3.4744 2.6073 

-35 4.8363 5.0719 3.6770 4.1328 2.7468 2.0858 

-25 3.5794 3.8039 2.7300 3.0996 2.0361 1.5644 

-15 2.3552 2.5360 1.8019 2.0664 1.3418 1.0429 

-5 1.1625 1.2680 0.8921 1.0332 0.6633 0.5215 

5 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

15 -1.1334 -1.2680 -0.8748 -1.0332 -0.6485 -0.5214 

25 -2.2387 -2.5360 -1.7329 -2.0664 -1.2827 -1.0429 

35 -3.3170 -3.8041 -2.5746 -3.0996 -1.9032 -1.5644 

45 -4.3696 -5.0721 -3.4001 -4.1325 -2.5102 -2.0857 

55 -5.3969 -6.3401 -4.2111 -5.1662 -3.1046 -2.6073 

65 -6.3990 -7.6073 -5.0070 -6.1993 -3.6861 -3.1290 

75 -7.3788 -8.8761 -5.7878 -7.2321 -4.2557 -3.6498 

 

      
 

 
 
Fig. 7. Master curves for (a) storage modulus; (b) loss modulus; (c) loss factor as predicted by FTTSPM, WLF and FSLSM, respectively. 
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that the tested material is not thermo-rheologically simple. In 
this case, a vertical shift is inevitable when constructing a 
smooth master curve. 

Fig. 7(c) shows that the h  master curves are not well con-
structed by both FTTSPM and WLF and greatly deviate from 
the curve predicted by FSLSM, except in the experiment fre-
quency range of 0 Hz to 10 Hz. This result can be explained 
further by the Wicket-plot in Fig. 8, which shows that the 
horizontal shift is not enough for this case. The actual errors 
also accumulate when evaluating the ratio of the loss modulus 
to the storage modulus in order to derive the loss factor. These 
errors also significantly contribute to the poor master curves of 
the loss factor. 

 
5. Conclusions 

The FTTSPM was developed by integrating the WLF equa-
tion into fractional viscoelasticity to describe the time-
temperature dependence of viscoelastic behaviors. The pa-
rameter characteristics of FTTSPM were analyzed and com-
pared with those of the WLF equation. The master curves of 
the viscoelastic modulus were constructed by using FTTSPM 
and were validated by using FSLSM. The following conclu-
sions can be drawn from the findings of this work: 

(1) FTTSPM conforms to the time-temperature superposi-
tion principle for 0 < α < 1. The shifted factor approaches 
infinity when α = 0 because the fractional viscoelastic model 
degenerates into a complete Hooker’s unit. Moreover, the 
situation in α = 1 suggests a purely viscous state. 

(2) The parameters α and B¢ of FTTSPM denote the impact 
of the material and environment on the shifted factor αT, re-
spectively, and can be experimentally determined. For the 
storage and loss modulus, the extended frequency obtained by 
FTTSPM is broader than that obtained by the WLF equation, 
especially at very low frequencies. This result highlights the 
high frequency-extended capacity of FTTSPM. 

(3) Compared with those of the WLF equation, the results 
of FTTSPM for the evaluation of storage and loss modulus are 
much closer to those of FSLSM. However, the master curves 
for the loss factor are scattered and poorly fitted by FSLSM 
because of the serious temperature dependence of the material 
properties and the actual error accumulation from the storage 
and loss modulus. 

(4) Future studies must examine the incorporation of the 

vertical shift into FTTSPM. The physical mechanism and 
application of FTTSPM for controlling noise and vibration in 
engineering practice must also be investigated. 
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Nomenclature------------------------------------------------------------------------ 

T  : Temperature 
rT  : Reference temperature 

E  : Dynamic behavior 
*E  : Complex modulus 

E¢  : Storage modulus 
E¢¢  : Loss modulus 
h  : Loss factor (or loss tangent) 
f  : Excitation frequency 

rf  : Reduced frequency 

Ta  : Frequency shifted factor 
s  : Stress 
e  : Strain 
l  : Viscous coefficient 

(0 1)a a< <  : Derivative order 
s  : Laplace transform of s  
e  : Laplace transform of e  
k  : Correction factor 
B  : Material factor 
T0 : Critical temperature 
B¢  : Environment parameter 
l  : Depth 
h  : Width 
b  : Height 
F  : Exciting force 
d  : Displacement 

1b , 2b  : Fractional orders 
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