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Abstract 
 
In order to select the effective features or feature subsets and realize an intelligent diagnosis of aero engine rolling bearing faults, this 

paper presents a sharing pattern feature selection method using multiple improved genetic algorithms. Based on the simple genetic algo-
rithm, a multiple-population improved genetic algorithm was proposed, which improves the speed and effect of algorithm and overcomes 
the shortcomings of local optima that simple genetic algorithm is easy to fall into. Because all populations regularly share and exchange 
their selecting features, the proposed algorithms can quickly dig up the current effective feature patterns, and then analyze and deal with 
the strong correlation between the feature patterns. This will not only give clear directions for the descendant evolution, but also help to 
achieve high accuracy feature selection, for, the features are highly distinctive. This multiple-population improved genetic algorithm was 
applied to rolling bearing fault feature selection and comparisons with other methods are carried out, which demonstrates the validity of 
sharing pattern feature selection method proposed.  
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1. Introduction 

As the key component of aero-engine, aero-engine rolling 
bearing has a direct impact on the flight safety. In order to 
realize the rolling bearing condition monitoring, it is necessary 
to collect the environment data and operating data of rolling 
bearing. In the aspect of feature extraction, there are wildly 
used time-domain features such as peak value, root mean 
square, shape indicator, crest indicator, impulse indicator, 
clearance indicator, kurtosis and skewness [1-3]. As for fre-
quency domain feature extraction, the widely used methods 
are amplitude spectrum analysis, power spectrum analysis, 
cepstrum analysis, high-order spectrum analysis and envelope 
spectrum analysis [4-8]. Feature extraction methods based on 
time-frequency analysis include short-time Fourier transform, 
Wigner-Ville distribution, wavelet and wavelet packet analy-
sis, empirical mode decomposition, spectral kurtosis and sin-
gular value decomposition [9-12]. Because the single feature 
is susceptible as well as the sensitivity of different features of 
different faults are different, bearing condition assessment 
based on a single feature is not ideal enough, and it is hard to 
be applied in practical engineering. A good condition assess-

ment method is supposed to be robustness to working condi-
tion and sensitive to all kinds of faults. Therefore, the multi-
dimensional feature information of time domain, frequency 
domain and time-frequency domain should be fully utilized in 
the fault diagnosis of rolling bearing. However, not all of the 
features play a positive role in bearing state discrimination. 
We hope to select effective feature subset, which not only can 
effectively distinguish the bearing state as much as possible, 
but also make the difference between the features of this fea-
ture subset large. Therefore, it is necessary to take effective 
method to select the best feature subset from the multi-
dimensional features and to achieve high accuracy of the roll-
ing bearing fault diagnosis. This problem can be achieved by 
the feature selection in pattern recognition. 

The task of feature selection is to find a set of the most ef-
fective features for classification, which requires that when the 
feature dimension is reduced to the same level, its classifica-
tion performance is the best. This is a process to solve the 
problem and find optimized combinatorial solutions. In this 
respect, genetic algorithm (GA) has great potential, especially 
when the choice space is large (high feature dimensions) and 
lack of understanding of the relationship between features. 
Genetic algorithm is a randomized optimization algorithm 
with orientation, which is used to simulate the genetic evolu-
tion of biological evolution in nature. It has good global search 
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ability and implicit parallelism; therefore, it is widely used in 
feature selection. 

However, although genetic algorithm has strong global op-
timization potential, it is also easy to fall into local optima. 
This problem can be realized mainly through enhancing the 
genetic operators (selection operators, crossover operators and 
mutation operators) to improve the performance of the algo-
rithm, with higher efficiency to find better features or subset 
[13-16]. For example, Yang et al. [14] proposed a criterion 
function for selecting the optimal feature subset and a search 
strategy called novel quantum genetic algorithm (NQGA). 
NQGA adopted a novel update approach of rotation angles of 
quantum gates, and immigration and catastrophe operations to 
enhance search capability and to avoid premature convergence. 
The proposed feature selection algorithm reduces greatly the 
dimensions of original feature set and heightens accurate rec-
ognition rate of radar emitter signals．Li et al. [15] proposed 
a multi-population agent genetic algorithm with double chain-
like agent structures (close chain-like agent structure and cycle 
chain-like agent structure) for feature selection, with dynamic 
neighborhood competition selection operator, neighborhood 
orthogonal crossover operator and adaptive mutation operator 
to effectively keep and enhance the diversity of the subpopula-
tion, which is good to search for global optima in complex and 
high dimensional search space. 

Genetic algorithm can also be applied to the feature selec-
tion of the rolling bearing faults through state analysis and 
fault diagnosis. Chen et al. [17] presented a new method called 
“automated function generation of symptom parameters” us-
ing genetic algorithms (GA). The proposed method is effec-
tive to express the feature of the signal for discriminating be-
tween normal and abnormal states. And the mutation probabil-
ity of GA is not based on a fixed probability but is obtained 
from the distinction index of the gene position. Kang et al. [18] 
presented a reliable fault diagnosis methodology for various 
single and multiple combined defects of low-speed rolling 
element bearings. The proposed reliable diagnosis approach 
employs a genetic algorithm (GA)-based discriminative fea-
ture analysis (GADFA) to select the most discriminative sub-
set of all the extracted fault signatures, and the GA used in this 
paper focuses on the impact of population size. Ettefagh et al. 
[19] proposed a hybrid GA-K-mean clustering used in fault 
diagnosis of the scaled rotor bearing system experimentally, 
and simple genetic algorithm (SGA) is applied to overcome 
the drawback of K-means. 

Rolling bearings, as a key component of the aero engine, di-
rectly affects flight safety, it is necessary to take an effective 
method to evaluate and select the state data of the rolling bear-
ing, so as to guarantee an intelligent diagnosis. According to 
the above results, genetic algorithm is applied to the fault di-
agnosis of rolling bearings, but more is adopting a single pop-
ulation with genetic algorithm or simple genetic algorithm 
[20]. In contrast, when genetic algorithm is applied to multiple 
populations, the search speed and the quality of results will be 
improved due to the sharing and exchanging of stage results 

between populations, which will be further applied to guide 
the evolution of offspring. Thus, this paper proposes a multi-
ple improved genetic algorithms with sharing the pattern 
(SPMIGA), which is applied to feature selection for roller 
bearing fault diagnosis. Firstly, the Improved Genetic Algo-
rithm (IGA) is adopted based on SGA, which improves the 
mutation operator by using the variance operator. The IGA 
achieves the effect of speeding up the population convergence. 
And then, each of the multiple populations independently 
executes the IGA operations to search for the optimal feature 
subsets. After its evolution with short-iterations, each popula-
tion gets the current best individual, and then uses it in search-
ing for the effective feature pattern. Combined with the Pear-
son correlation coefficient and the weight values of the fea-
tures obtained by ReliefF algorithm, SPMIGA can deal with 
feature selection with strong correlation. Then, each of the 
population reinitializes the individuals according to the feature 
pattern to generate a new population. This procedure contin-
ues until the satisfactory terminal feature pattern is reached. 

 
2. ReliefF 

ReliefF [21], an improved relief algorithm, is proposed by 
Kononenko in 1994. It is also one of the current means of 
feature selection under the filter method, which is mainly used 
to deal with many types of problems and regression problems. 
By constantly adjusting the values attributed to the features, 
the features that correlate to the category are given a higher 
weight. 

ReliefF randomly selects an instance iR  from the training 
sample set called D, and searches from the same class for k 
number of its nearest neighbors called nearest hits jH . Then it 
starts searching from each of the different classes for k number 
of its nearest neighbors called nearest misses jM .  

Following this, it updates the quality estimation ( )W A  for 
all attributes A according to Eq. (1): 
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where m  refers to times of repetition, and 1 2( , , )diff A R R  
signifies the difference between sample 1R  and sample 2R  
on feature A, which is measured by Eq. (2): 
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However, although ReliefF is suitable for dealing with high 

dimensional datasets with a large number of instances, reach-
ing high efficiency in evaluation and excellent performance in 
noise filtering, it cannot remove redundant features [22]. 
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3. Feature selection using multiple improved genetic 
algorithms with sharing pattern 

3.1 The basic flowchart of SPMIGA 

First, on the basis of simple genetic algorithm, an improved 
genetic algorithm is adopted to improve both the search speed 
and the selecting effect. Then, each population independently 
executes the IGA operations to search for the optimal feature 
subsets, in the process of which, each population gets the cur-
rent best individual after its evolution with short-iterations, 
and then mining the effective feature pattern according to the 
best individuals currently obtained by each population. The 
correlations between the selected features in this feature pat-
tern are further analyzed and redundant features are dropped 
out. In this way, each population reinitiates individuals ac-
cording to this feature pattern, and for each individual, if the 
gene appears in the pattern is assigned “1” value, and other-
wise is valued randomly among {0,1}, and then each popula-
tion continues to perform genetic algorithm operations inde-
pendently. These procedures are repeated until the algorithm 
terminates. 

In order to further enhance the reliability of the optimal fea-
tures subsets, and avoid the distraction arising from the occa-
sional features, only those features of high frequency are se-
lected. Fig. 1 illustrated the flowchart of SPMIGA, in which 
the IGA flowchart is shown in Fig. 2. 

 
3.2 Feature pattern 

All the populations select the features simultaneously and, 

after a fixed number of generations of evolution, each popula-
tion will communicate and share stage results, so that effective 
feature pattern is determined and employed to direct the evo-
lution of descendants. Such feature pattern should be com-
posed of important features or feature subsets, which are cho-
sen through the best individual analyses of each population. 
The whole procedure is shown as follows: 

Suppose there are n populations, and after d generation run-
ning, they find their best individuals bj (j = 1, 2,... n), in which 

1 2( ... )m
j j j jb b b b= , m refers to the number of individual genes, 

i.e., the number of features.  
Assume that the feature pattern is represented as pattern = 

p1 p2 ... pm , where i
i i jp p b= +  (i = 1,2,...m) (j = 2,3,...,n), i

jb  
stands for the i-th feature of the best individual bj. When pi 
value is 0, it means that the current the best individuals of n 
populations do not select the i-th feature, which indicates that 
it is quite probable that this feature is not important. In another 
word, the higher the pi value, the greater the importance of this 
feature. 

The initial feature pattern = 00...0. After each population 
has run for d generations, update pattern. Each population then 
initializes the population according to the new pattern: If 

ip t³ (1 ≤ t ≤ n), the i-th feature of each population will be 
assigned “1” value, otherwise, 0 or 1 will be assigned ran-
domly. When t = 1, it means the best individual features se-
lected of each population is important; whereas when t = n, it 
indicates that a feature will be important only when all popula-
tions take the feature as the best individual. These important 
features or important feature subsets thus constitute the feature 
patterns, which not only realize the communication between 
the populations, but also enable each population to select im-
portant features from their own best individuals and use them 
to guide the evolution of their follow up generation. 

 
3.3 The process of redundant features 

Suppose both feature x and feature y are important features, 

 
 
Fig. 1. Method of the feature selection using SPMIGA. 
 

 
 
Fig. 2. Flowchart of proposed IGA. 
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which contribute greatly to the classification. Since they are 
important for classification, a population tends select both of 
them. However, if there is a strong correlation in between and 
no significant difference could be observed between their 
combined classification accuracy and that of each single fea-
ture, it can be inferred that these two features are redundant. In 
order to obtain the final high classification accuracy and 
achieve the relationship between the features of the finally 
selected feature subsets should be as pure as possible; such 
redundant features must be removed. In this paper, the proc-
essing of redundant features is carried out on the basis of the 
current feature patterns, which is specified as follows: 

(1) Calculating the Pearson correlation coefficient [23] be-
tween two features according to Eq. (3), where n is the sample 
size. 
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(2) Calculating the weight of each feature by ReliefF, with 

high weights assigned to features of high correlation with the 
classification, and sorting the features according to their 
weights, the higher the weight, the closer to the top will a fea-
ture is listed. 

(3) Selecting two features of high correlation coefficient, 
dropping either one randomly if their weights are very close, 
that is, setting the value to 0 in the feature pattern, or keeping 
the feature with the higher weights if their weights are quite 
different, that is, setting the value to 1 in the feature pattern. In 
this way, the important features can be retained, and the re-
dundant features can be further removed, so the important and 
"pure" feature pattern can be used to guide the evolution of 
offspring. 

(4) After the above process of redundant features, new fea-
ture models will be obtained. 

 
3.4 IGA 

Genetic algorithm was first proposed by professor Holland 
in 1975. It is a random search method based on the theory of 
natural selection and survival of the fittest. By selecting opera-
tors, crossover operators and mutation operators, it simulates 
the chromosomal operations when organisms reproduce. The 
three operators of selection, crossover and mutation are also 
called the three basic operators of genetic algorithms. Selec-
tion operator and crossover operator promoted the evolution 
of the population but sacrificed the diversity of the population. 
The mutation operator helps to restore the diversity of the 
population and prevents the population fall into the local op-
timum too early by randomly changing a gene or gene on the 
chromosome. While selecting operator usually adopted rou-
lette selection strategy or tournament selection strategy, the 

crossover operator mainly falls into one-point crossover, two-
point crossover and multiple-point crossover. As to mutation 
operation, there are mainly uniform mutation and Gaussian 
mutation. The procedure of the genetic algorithm involves five 
main factors: The individual coding, the setting of initial 
population, the design of fitness function (evaluation function), 
the genetic operators (selection, crossover, mutation and elitist 
strategy) and, algorithm control parameters. The flowchart of 
IGA is shown in Fig. 2. 

 
3.4.1 Fitness function 

The fitness function is designed based on the principle of 
minimum intra-class distance and maximum interclass dis-
tance [24], and the evaluation unit is feature subset rather than 
single feature. It is hoped that the selected feature subset can 
achieve large interclass distance and small intra-class distance. 

Therefore, the ratio of the interclass distance to the intra-
class distance as the fitness function of a chromosome in the 
population is defined as 
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where ( )jx  is the mean vector of the feature subset in class j; 
x  is the mean vector of the feature subset in the whole sam-
ples; ( )j

kx  is the kth sample vector of the jth class; jn  de-
notes the number of samples of class j; c represents the num-
ber of classes. 

 
3.4.2 Differential mutation operator 

In the proposed SPMIGA algorithm, we employ the differ-
ential mutation operator [25]. Each new individual is gener-
ated by a linear combination of multiple individuals from par-
ent population, rather than the traditional cross operation with 
the single individual from parent population in GA. The dis-
tance obtained from these two parent individuals is then used 
to determine how many genes to be mutated, and then the 
gene of the offspring ih  is computed according to Eq. (8). 
This mutation operator acts to maintain the diversity and im-
prove the efficiency of the algorithm, which is given as fol-
lows: 

(1) Selecting three different individuals randomly from par-
ent population, as 1, 2, 3,r r r respectively. 

(2) Computing the distance between 2r  and 3r according 
to Eq. (5): 

 
( ) ( ) 2

1
( 2 3 )NVARS i i

i
dist r r

=
= -å  (5) 

 
where ( )irj  represents the ith gene of individual ( 1,2,3)rj j = ; 
NVARS  denotes the number of genes. 

(3) Determining how many genes the individual needs to be 
mutated according to Eq. (6), where p is a random value uni-
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formly generated within the interval [0, 1]. 
 

(int) 1, ( (int) )
(int) , .

dist if p dist dist
dm

dist otherwise
+     < -ì

= í        î
     (6) 

 
(4) The new gene value after mutation operator: Randomly 

select a gene i, whose value is expressed as ih . Then, calcu-
late their combination of the three individuals 1, 2, 3r r r  se-
lected and assign the value to ih  according to Eq. (7): 

 
( ) ( ) ( )1 * ( 2 3 )i i i

ih r F r r= + -                 (7) 
 
where F is a scaling factor for the difference vector, and gen-
erally is set to a constant in the range [0, 2]. Experience shows 
that if F is too small, it will result in premature convergence, 
while if F is too large, the convergence speed will be obvi-
ously decreased. In this essay, F is set to 1.0. 

As 1, 2, 3r r r  is 0 or 1, it is easy to see that there are eight 
kinds of different combinations of the mutually different 

1, 2r r  and 3r  (the coding we adopted is the binary gene 
model, in which a gene represents a feature), and according to 
Eq. (7), 6 of the different kinds of combination of the three 
individuals can achieve binary number 0 or 1, while the other 
two combinations (001 and 110) were -1 and 2, respectively. 
Hence, ih  in this paper is defined as follows: 
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4. Selection of rolling bearing fault features 

4.1 Introduction to rolling bearing failure simulation ex-
periment 

In this study, a rotor test rig of the aero-engine, which is de-
signed by the Shenyang Aero-engine Design Institute of China, 

was used to carry out the experiments [26]. The acceleration 
sensors were arranged above the tester vertical and horizontal 
direction of the tester to obtain the vibration acceleration sig-
nal of the casing. The vibration signal was collected by the NI 
USB9234 data acquisition device; the acceleration sensor 
signal is B&K 4805 and the sampling frequency is 10.24 kHz. 
The tester is 6206 type rolling bearing. The bearing parameter 
is shown in Table 1, and the tester is shown in Fig. 3. Three 
sets of fault simulation experiments were carried out at the 
aero-engine rotating speeds 1800 rpm, 2000 rpm and 2400 
rpm. Each experiment produces data out of four situations: 
Healthy, outer ring fault, inner ring fault, and rolling ball fault 
(as shown in Fig. 4). There are two measuring points at each 
speed, where CV is the vertical top of the turbine box and CH 
is the horizontal direction of the turbine casing. 

13 dimensionless characteristic were obtained by time do-
main, frequency domain and time-frequency analysis [27]. 
They are the skewness S1, wave factor S2, impact indicator 
S3, peak indicator S4, kurtosis S5, margin indicator S6, center 
of gravity frequency S7, mean square frequency S8, frequency 
variance S9, inner ring frequency envelope spectrum feature 
S10, outer ring frequency envelope spectrum feature S11, 
rolling element frequency envelope spectrum feature S12, and 
the cage frequency envelope spectrum feature S13, respec-
tively. The fault sample data, training samples and test sam-
ples are shown in Table 2, where "1800 CH" indicates the 

Table 1. Basic parameters of bearing 6206.                                                                      [mm] 
 

Bearing designation Thickness Outer race diameter Inner race diameter Roller diameter Pitch diameter 

6206 16 62 30 9.5 46 

 
 

Table 2. Sample data sets of rolling bearing fault diagnosis. 
 

Dataset Number of features Number of total samples Number of the training samples Number of the testing samples 

1800 CV 13 474 315 159 

2000 CV 13 475 315 160 

2400 CV 13 496 330 166 

1800 CH 13 474 315 159 

2000 CH 13 475 315 160 

2400 CH 13 496 330 166 

 
 

 
 
Fig. 3. Aero-engine rotor test. 
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sample data obtained in the horizontal direction of the turbine 
casing at the aero-engine rotating speed 1800 rpm. Other data-
sets are similarly named. 

 
4.2 Parameter setting 

The genetic parameters of IGA and SGA in this paper are 
set as follows: binary encoding, roulette selection, single point 
crossover, population size of 50, each algorithm being set to 
run 50 times, each time running 50 generations, the crossover 
probability being 0.7, mutation probability being 0.05. While 
SGA employs the uniform mutation, SPMSGA (multiple sim-
ple genetic algorithms with sharing the pattern) and SPMIGA 
employs five populations, with each population being proc-
essed by SGA or IGA for 50 generations and each population 
communicate with each other every 10 generations. 

 
4.3 Experiment results and analyses 

4.3.1 Rate of convergence 
Since IGA is based on SGA, and it is to improve the search 

speed and the performance of the algorithm, and all the 
populations in SPMIGA algorithm use the IGA to select the 
features. Therefore, the convergence rate of IGA and SGA is 

compared below. Meanwhile, in order to test the algorithms’ 
convergence rates in rolling bearing fault feature selection, 
1800 CV data set in Table 2 is chosen for sample verification, 
for, as is shown in Fig. 6, the data set classification accuracy 
of the two algorithms is the same (both have selected S8, S9, 
S11 as the optimal feature subset ). Therefore, the comparison 
of convergence rates is based on the fact that both have 
achieved the same accuracy. The results of convergence rate 
comparison of IGA and SGA are shown in Fig. 5. 

From Fig. 5, it can be observed that the convergence rate of 
the IGA is much superior to that of SGA. While it takes 10 
generation running for IGA to find the optimal feature subset, 
SGA has to run 40 generations to reach the same result. This 
shows that the differential strategy adopted by IGA to improve 
the mutation operator is effective. Through linear combination 
of three different parent individuals, the improved mutation 
operator generates a new individual in contrast to the single 
parent chromosome mutation techniques of SGA, which is 
beneficial for the new individual to inherit more excellent 
genes from paternal individuals. 

 
4.3.2 The classification accuracy of the best feature subset 

This paper takes 13 features of rolling bearing faults from 
Table 2 and employs SGA, IGA, SPMSGA and SPMIGA to 
select the rolling bearing faults respectively. Then it uses 
Weka software to identify and classify the features select by 
each algorithm. Their classification accuracy is verified by 

 
(a) Outer ring fault 

 

 
(b) Inner ring fault 

 

 
(c) Rolling ball fault 

 
Fig. 4. Bearing 6206 after fault processing. 

 

 
 
Fig. 5. Convergence graphs of IGA and SGA. 

 
 

 
 
Fig. 6. Classification accuracy by 4 genetic algorithms. 
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J48 10 fold cross validation, where, J48 is a decision tree 
algorithm based on C4.5 [28] algorithm. The final result is 
shown in Fig. 6. 

First, compare SPMSGA, IGA and SGA to verify the effect 
of mutation operator and the sharing pattern with multi-
population. From Fig. 6, it can be seen that classification accu-
racy of IGA is superior to that of SGA, with 2 equal results 
and 4 better ones, which means that IGA are more conducive 
and accurate in finding the feature subset. Meanwhile, from 
the comparison of SPMSGA and SGA, it also can be seen that 
classification accuracy of SPMSGA is superior to that of SGA, 
with 2 equal results and 4 better ones; therefore, the strategy 
of the sharing pattern with multiple populations is effective to 
improve the performance of the algorithm. As for SPMIGA, 
because it is based on IGA and has adopted multiple popula-
tions feature selection, its findings are all superior to that of 
SGA. Compared with IGA and SPMSGA, SPMIGA is also 
more effective, with 1 equal and 5 better result. This indicates 
that not only does SPMIGA bear the advantage of IGA; it also 

turns out to be more efficient in finding the feature subset 
because it employs multiple population, in which all the popu-
lations communicate on a regular basis and share the features 
of their best individuals. The shared feature pattern is then 
passed on to offspring and makes the descendants evolve into 
faster and better performers and thus enhance the efficiency of 
feature selection. 

 
4.4 Feature correlation analysis 

The feature correlation analysis is done within 1800CH data 
sets shown in Table 2. First, Pearson correlation coefficients are 
calculated pairwise. As is shown in Table 3, strong correlations 
can be observed in some features of 1800CH data sets, such as 
S7 and S8, whose Pearson correlation coefficient reaches 0.99. 
Their class diagram is shown in Fig. 7. Their confusion matrix 
and classification accuracy as shown in Table 4. 

 
4.4.1 Pearson correlation coefficients 

 
Table 3. Pearson correlation coefficients in 1800 CH data sets. 
 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 

S1 1.00 0.86 0.82 0.86 0.98 0.87 0.59 0.59 0.41 -0.15 -0.09 0.00 -0.56 

S2  1.00 0.66 0.74 0.76 0.82 0.45 0.45 0.30 -0.07 -0.02 0.03 -0.49 

S3   1.00 0.99 0.80 0.96 0.55 0.54 0.36 -0.10 -0.03 0.02 -0.51 

S4    1.00 0.83 0.99 0.56 0.55 0.37 -0.11 -0.03 0.02 -0.53 

S5     1.00 0.82 0.57 0.57 0.40 -0.18 -0.10 -0.03 -0.53 

S6      1.00 0.54 0.53 0.36 -0.10 -0.03 0.02 -0.53 

S7       1.00 0.99 0.86 -0.06 0.20 0.28 -0.54 

S8        1.00 0.88 -0.10 0.18 0.26 -0.55 

S9         1.00 -0.28 0.09 0.16 -0.44 

S10          1.00 0.65 0.57 0.29 

S11           1.00 0.74 0.21 

S12            1.00 0.14 

S13             1.00 

 
 

      
                       (a) Scatter plots of feature S7                                (b) Scatter plots of feature S8 
 
Fig. 7. Scatter plots of original. 

 



136 X. Guan and G. Chen / Journal of Mechanical Science and Technology 33 (1) (2019) 129~138 
 

 

4.4.2 The scatter plots of feature S7 and feature S8 in differ-
ent bearing states 

Fig. 7 shows the scatter plots of feature S7 and feature S8 in 
different bearing states, namely healthy, outer ring fault, inner 
ring fault and ball fault. In all cases, it is difficult to com-
pletely distinguish the four states by feature S7 or feature S8. 

 
4.4.3 Confusion matrix and classification accuracy 

Confusion matrix depicts the classification accuracy of a 
classifier, which can be calculated by accuracy, true positive 
rate, false positive rate and other various evaluation indexes. 
Table 4 shows the confusion matrix and classification accu-
racy of feature S7, feature S8, features S7 & S8, as is shown 
respectively in Tables 4(a)-(c).  

It can be seen from Table 4 that the classification accuracy 
of S7 and S8 is respectively 70.79 % and 70.16 %, which 
indicates that feature S7 or feature S8 have almost the same 
contribution to feature classification. Table 4(c) also suggests 
that even when feature S7 & feature S8 work together, the 
classification accuracy is not quite different from those of 
feature S7 and feature S8. This means that there is certain 
redundancy between feature S7 and feature S8. Therefore, in 
the feature selection, redundancy must be taken into consid-
eration between high Pearson correlation coefficient features 
and redundancy processing must take its place. This will not 
only achieve high classification accuracy, but also keep the 
features distinctive. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.4.4 Feature weights 

Fig. 8 illustrates the feature weights of 13 rolling bearing 
fault sample data in Table 2, which are processed with ReliefF 
algorithm. It can be seen that, with regards to data set of 
1800CH, the weight of feature S7 is slightly heavier than that 
of S8, which indicates that feature S7 contributes to the classi-
fication slightly more than feature S8. 

After a comprehensive analysis of the scatter plot, Pearson 
correlation coefficient, confusion matrix, classification accu-
racy and ReliefF coefficients of the features S7 and feature S8, 
it is reasonable to remove feature S8 and keep feature S7 in 
the feature pattern, through which such a periodic result will 

 
 
Fig. 8. Feature weight values using ReliefF. 

 

Table 4. Confusion matrix and classification accuracy. 

(a) Feature S7 

Predicted class 
 

Healthy Ball fault Inner ring fault Outer ring fault 
Healthy 45 2 30 7 

Ball fault 0 53 0 27 
Inner ring fault 14 0 59 0 

Actual class 

Outer ring fault 0 12 0 66 
Classification accuracy 70.79 % 

(b) Feature S8 

Predicted class 
 

Healthy Ball fault Inner ring fault Outer ring fault 
Healthy 42 2 25 14 

Ball fault 0 58 0 22 
Inner ring fault 14 0 59 0 

Actual class 

Outer ring fault 1 16 0 61 
Classification accuracy 70.16 % 

(c) Feature S7 & Feature S8 

Predicted class 
 

Healthy Ball fault Inner ring fault Outer ring fault 
Healthy 57 2 18 7 

Ball fault 0 58 0 22 
Inner ring fault 15 0 58 0 

Actual class 

Outer ring fault 2 18 0 58 
Classification accuracy 73.33 % 
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be passed to the descendants. 

 
4.5 Comparison of the classification accuracy of SPMIGA 

and that of other algorithms 

In this paper, SPMIGA employs multiple population feature 
selection, which introduces a regular feature communication 
and redundancy processing. In order to prove its validity in 
feature selection, it is necessary to compare its feature selec-
tion results with other algorithms and all the features. Consid-
ering the validity of the comparison, as ReliefF and InfoGain 
[29] ranking the feature by their weight, all the features se-
lected by each algorithm will be ranked in the same way and 
equal number of top features are taken for comparison. The 
results are shown in Fig. 9 and Table 5, respectively. 

As can be seen from Fig. 9, SPMIGA performs more effi-
ciently in terms of classification accuracy than ReliefF, CFS 
[30] (correlation-based feature selection) and InfoGain, with all 
win advantage over CFS and InfoGain in the 6 data sets and 
only one slightly inferior result to that of ReliefF. Take 
1800CH data set for example, as there is a strong correlation 
between feature S7 and feature S8, redundancy must be taken 
into consideration in the feature selection. For this reason, 
classification accuracy of SPMIGA is the highest as compare 
with the other three algorithms.  

In addition, the classification accuracy of SPMIGA is com-
pared with that of all features, and SPMIGA is dominant on 
the 6 data sets. In other words, SPMIGA obtains higher classi-
fication accuracy with fewer features, which also further illus-
trates the necessity and importance of dealing with features 
that have strong correlation or redundancy. Therefore, this 

result proves that SPMIGA put forward in this paper in effi-
cient and valid in enhancing the classification accuracy in 
feature selection and, the features selected are distinctive. 

 
5. Conclusions 

(1) This paper proposes a sharing pattern multi-population 
genetic algorithm for feature selection, which was based on the 
simple genetic algorithm, adopted a multiple-population im-
proved genetic algorithm and, improved the speed and effect of 
algorithm search result. Meanwhile, SPMIGA employs multiple 
population mechanism in which all populations share and com-
municate their best individuals on a regular basis in the process of 
feature selection and thus direct all populations evolve with the 
help of feature patterns. During this process, redundancy must be 
taken into consideration between high Pearson correlation coeffi-
cient features and redundancy processing must take its place. 

(2) In order to prove the validity of SPMIGA in feature selec-
tion, a comparison research is carried out based on the experi-
mental data of the rolling bearing faults of an aero-engine, which 
involves SPMIGA, ReliefF, CFS and InfoGain. The result shows 
that the classification accuracy of SPMIGA is the highest as 
compare with the other three algorithms and thus proves that 
SPMIGA put forward in this paper in efficient and valid in en-
hancing the classification accuracy in feature selection. 
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