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Abstract 
 
We proposed an appealing method based on refined composite multiscale fuzzy entropy (RCMFE), infinite feature selection (Inf-FS) 

algorithm, and support vector machine (SVM) for implementing localized defect detection to keep the downtime and extended damage 
caused by incipient failure of bearing at a minimum. As a useful approach, multiscale fuzzy entropy (MFE) was utilized to measure the 
complexity and dynamic changes of signals. However, an inaccurate entropy value would be yielded with the increase of scale factor. 
Here, as an improvement version of MFE, the RCMFE was proposed to address the shortcomings in the case of short time series. For this 
novel method, we conducted a full investigation of the effects and robustness by comparing the proposed method with two other entropy-
based approaches using synthetic signals and real data. Results indicate that the proposed algorithm outperforms the other approaches in 
terms of reliability and stability. The RCMFE values of bearing signals from one healthy condition and seven fault states are calculated as 
diagnostic information. Moreover, an intelligent fault identification method was constructed by combining the Inf-FS algorithm and 
SVM classifier. Experimental results show the usefulness of the proposed strategy.  
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1. Introduction 

Rolling element bearing (REB) is the most common part of 
a mechanical system in engineering. A running REB is likely 
to break down due to overload capacity or complicated condi-
tion, thereby causing catastrophic system failure and massive 
financial loss. Therefore, accurate health monitoring for run-
ning bearings is a critical and ongoing challenge. Defective 
bearings lead to considerably typical phenomena, including 
periodic noise and vibration signals [1-3], whereas healthy 
REBs show no such regular recordings. Thus, effective meth-
odologies that are affordable and efficient are needed to detect 
incipient defect by signal processing during operation. 

In the past decades, a number of traditional techniques are 
presented, such as time- and frequency-domain methods [4, 5], 
to perform fault detection. The traditional approaches to cap-
ture the fault feature of collected recordings may fail to yield 
for nonlinear and nonstationary signals. To resolve these 
drawbacks, advanced concepts based on time-frequency 

analysis, known as ensemble empirical mode decomposition 
and wavelet transform [1, 6-8], have been developed as a 
popular method for identifying the characteristic frequency of 
fault REB from complex frequency components. However, 
some limitations occur in noise removal and fault feature ex-
traction. For example, the procedure of diagnosis remains 
complicated, and its recognition rate is relatively low [9]. 

Significant effort has been devoted to finding an efficient 
nonlinear dynamic approach that can characterize fault infor-
mation from the perspective of statistical parameter estimation. 
Important advances in feature extraction have been conducted, 
with a large and increasing studies on techniques, such as 
multiscale permutation (MPE) [10-12], Lempel-Ziv complex-
ity [13], multiscale entropy (MSE) [14-19], multiscale fuzzy 
entropy (MFE) [20-22]. Recent studies have employed these 
methods to quantify the complexity of mechanical signals and 
biomedical recordings. The results reveal important signatures 
of working state or disease and a potentially novel way for 
monitoring and detecting abnormal condition. 

As a powerful alternative, fuzzy entropy (FuzzyEn) [20] 
was introduced to overcome the issue of the sensitivity of the 
estimation of sample entropy (SampEn) to a threshold value. 
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To address the limitations of a single time scale, the MSE and 
MFE, which are combined multiscale concept and entropy-
based approach, were developed to utilize their relative advan-
tages. In other words, we can implement entropy measures 
over a range of scales instead of only one. Some instances 
may further illustrate the importance of the multiscale concept 
[16, 22]. For example, the entropy value of 1/f noise is theo-
retically higher than that of a white Gaussian noise (WGN) 
signal because of long-range correlations [17]. Although 
analysis results agree with the expectation in theory when the 
MSE method can be used, contradictory conclusions at one 
time scale may still be achieved. Moreover, the MSE algo-
rithm can be time-consuming and have the disadvantage of 
coarse-graining, which results in an imprecise measurement of 
entropy for short data points. Therefore, Wu et al. [18] pro-
posed an improved version of the MSE algorithm to yield an 
accurate value and enhance computational efficiency. 

In the present work, an improved MFE method termed as 
refined composite MFE (RCMFE) is developed based on the 
superiority of the MFE [22] and refined composite multiscale 
algorithm [18] to address the aforementioned issues. We 
evaluate the capability of the proposed approach using simu-
lated time series and apply the technique to investigate in roll-
ing bearing fault detection. Thus, the characteristics obtained 
in normal and faulty conditions should feed into a useful clas-
sifier to identify the defect automatically. However, the fea-
ture vector that contains the defect information is inevitably of 
high-dimensional data and with redundant information, which 
can also adversely affect computational resources and recogni-
tion accuracy. Roffo et al. [23, 24] introduced a powerful tool 
called infinite feature selection (Inf-FS) to refine the features 
according to scores. In the present work, we use the Inf-FS 
algorithm to select the important features by assessing the 
importance of each feature. The classifier is utilized to dis-
criminate the bearing status after reconstructing important and 
low-dimensional features. Support vector machine (SVM) [25, 
26], a well-known technique that is successfully applied in 
different research fields, such as pattern recognition and data 
mining, is utilized to identify the working condition of REBs. 

This paper is organized as follows. Sec. 2 briefly describes 
and evaluates the RCMFE algorithm. Sec. 3 reviews the Inf-
FS method. Sec. 4 presents the SVM algorithm. The proposed 
fault diagnosis strategy is validated using experimental data in 
Sec. 5. Finally, Sec. 6 concludes this study. 

 
2. Refined MFE  

2.1 Entropy methods 

To overcome the bias problem in approximate entropy, 
SampEn was developed in 2000 by Richman and Moorman to 
measure the complexity of dynamical systems [14]. In the 
present work, we briefly describe the key steps of SampEn 
statistics procedure as follows [14, 16, 17]. 

(1) Given a discrete time series with N data points 
( ) { (1), (2), , ( )}u s u u u N= L , we form 1N m- +  vectors as 

follows:  
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where m is the dimensionality of vectors. 

(2) The distance between two vectors, namely, template 
m
sU  and template match m

tU , is calculated as  
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The function can be calculated as 
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Similarly, we define ( )1mB r+  in case of 1m +  embed-

ding dimension. 
(4) Finally, SampEn is expressed as follows: 
 

( ) ( )1, , ln ( ) ln ( ) .m mSampEn m r N B r B r+= - -  (5) 

 
The SampEn concept based on Heaviside function is of se-

riously limited use when applied in engineering time series. 
The function, which leads to a type of conventional two-state 
classifier, cannot adapt to the ambiguousness of the bounda-
ries between classes. To address this shortcoming, Chen et al. 
[20] developed FuzzyEn by introducing fuzzy sets, that is, the 
Heaviside function was replaced by an exponential function to 
form a fuzzy function. The key steps are expressed as follows. 

(1) For a random sample of N observations, ( )u s =  
{ (1), (2), , ( )}u u u NL , with parameters including embedding 
dimension m, power n, and tolerance r, a sensible vector can 
be formed as  
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where 0 ( )u s  is the mean value of the u values for baseline 
removal.  
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(2) The distance between m

sU  and m
tU  is calculated simi-

lar to SampEn, as shown as follows:  
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(3) The similarity degree stD  is defined via a fuzzy func-

tion.  
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(4) The function mf  can be expressed as follows:  
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Similarly, we define the 1mf +  in case of 1m +  dimension. 
(5) Finally, we can define the FuzzyEn writing as the nega-

tive natural logarithm of the ratio of ( , )m n rf  and 1( , )m n rf + , 

as shown as follows: 
 

( )
1
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2.2 MSE using coarse-graining 

To measure the information inherent in multiscale time se-
ries, Costa et al. [16, 17] imported the concept of coarse-
graining and combined it with SampEn to propose a novel 
approach called MSE. Later, Zheng et al. [22] introduced 
MFE, which is similar to MSE. Coarse-graining is imple-
mented as follows.  

(1) A time series is represented as ( ) { (1), (2),u s u u=  
, ( )}u NL , which can be preprocessed at a scale factor by 

computing the mean of consecutive samples to form a new 
vector, as shown as follows: 
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where τ is the scale factor. bê úë û  denotes the floor function 
that is the largest integer but is smaller than b. 

(2) The FuzzyEn of each coarse-grained time series is cal-
culated according to the steps described in Sec. 2.1.2 to 
achieve the MFE results. 

 
 
Fig. 1. Schematic of coarse-graining for τ = 3: (a) Traditional process; (b) refined composite process. 
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2.3 RCMSE 

Notably, the MSE algorithm takes a coarse-grained concept 
to compute the entropy values in multiscale; however, this 
approach has some drawbacks [18]. First, MSE is heavily 
dependent on the size of data samples. The size of data points 
divided in the coarse-grained step at a large scale will be small, 
in which case the entropy values with large error have been 
derived from the original time series. Second, for some dataset, 
coarse-graining is inconsistent. That is, the calculation proce-
dure of 1u , 2u  and 3u  should remain the same with 2u , 

3u  and 4u  (Fig. 1); however, separation occurs between 3u  
and 4u  in the traditional MSE method. In view of the relative 
advantages of FuzzyEn approach and multiscale concept, the 
RCMFE is developed in this study to address the aforemen-
tioned issues. The flowcharts of the conventional MFE and 
RCMFE methods are shown in Fig. 2. The estimation using 
RCMFE is achieved in two steps. 

(1) For a time series ( ) { (1), (2), , ( )}u s u u u N= L , the im-
proved coarse-grained forms can be obtained as follows:  
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Here, τ coarse-grained time series will be generated; how-

ever, only one time series is received in the MFE algorithm. 
(2) For a given scale factor τ, the two defined functions 
,

m
k tf  and 1

,
m
k tf +  are calculated. Then, the mean of ,

m
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1
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m
k tf +  denoted as ,

m
k tf  and 1

,
m

k tf +  on 1 k t£ £ , respectively, 
is computed. Finally, RCMFE can be expressed as  
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The difference between RCMFE and MFE is that the for-

mer is conducted by two critical steps, that is, improving 

coarse-graining and the other averaging the value in FuzzyEn 
calculation, such that stable entropy statistics can be obtained. 

 
3. Defect diagnosis strategy 

3.1 Inf-FS 

In preliminary analysis, the RCMFE offers a new method 
for revealing the changes of a mechanical system via feature 
extraction. However, redundant information can be extracted 
along with the useful characteristics, and a FuzzyEn-based 
feature vector can be considered as high-dimensional dataset, 
thereby resulting in long time-consumption and decrease in 
the accuracy rate of pattern recognition. Inf-FS algorithm [23] 
is used for selecting the most important characteristics with 
effective defective features from the calculated scales to over-
come the problem of dimensional disaster and enhance the 
diagnostic accuracy of REBs.  

As filter-based methodology, the Inf-FS is mainly founded 
on a simple cross-validation strategy to select the best k fea-
tures in an unsupervised manner. For a feature dataset 

1{ , , }nE f f= L , x RÎ  indicates a sample of f. Let is  de-
note the final energy scores of the ith feature. The major proc-
ess can be expressed as follows [23]. 

(1) An undirected fully connected graph G is constructed, 
which is then represented as adjacency matrix A. The 
weighted edges can be specified between two pairwise meas-
ures that link if  and jf . 

(2) The energy term can be expressed as follows:  
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where α is a loading coefficient [0, 1], is  is the standard 
deviation (SD) of the samples {x}, and Spearman denotes the 

 
 
Fig. 2. Flowcharts of the MFE and RCMFE methods. 
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Spearman’s rank correlation coefficient. 
(3) The geometric matrix power series can be obtained as 

follows: 
 

( ) 1I IS rA -
= - -
(

 (16) 

 
where r is a regularization factor. 

(4) Finally, the energy scores for each feature are defined as 
follows:  

 
( ) e .

i
s i S= é ùë û
(  (17) 

 
Similarly, the candidate features can be ranked in a de-

scending order according to the scores. The larger the score is, 
the more important the information is. In this study, the fea-
tured approach should be applied to evaluate the importance 
of FuzzyEn-based features. Furthermore, the most relevant 
features are selected to feed into the classifier. 

 
3.2 SVM classifier 

On the basis of the features received by the aforementioned 
approaches, a classifier is used to study the intelligent diagno-
sis of the bearing condition. In terms of pattern recognition 
and prediction, the SVM algorithm is frequently used for clas-
sification in various engineering fields [25, 26], such as bio-
medicine, imaging, and mechanical study. As previously 
stated, various kernel functions, known as Gaussian (or RBF), 
polynomial, and sigmoid kernel, exist. Here, the RBF is util-
ized due to its promising capability. However, the recognition 
results may be affected considerably by two parameters, 
namely regularization parameter and kernel width. We should 
tune the values of the two vital parameters based on previous 
studies on rotation machinery fault diagnosis [26]. Thus, parti-
cle swarm optimization (PSO) algorithm is used to determine 
the two values [27]. 

 
3.3 Proposed method 

Given the superiorities of RCMFE, Inf-FS, and PSO-SVM, 
we propose an intelligent bearing fault diagnosis approach to 
sort multiple and normal types of faulty bearing. The overall 
step of the proposed method is shown in Fig. 3. The further 
details of the diagnosis approach are summarized as follows: 

(1) Samples of raw data are taken by accelerometer at a par-
ticular sampling frequency under various operating conditions. 

(2) The RCMFE values are calculated for different vibra-
tion signals with parameter selection and scale factor 

max 20t = . Twenty features, including the defect information 
of the 1D signals of rolling bearing, are measured. 

(3) The 20 fault features are sorted by Inf-FS algorithm in 
ascending order in terms of their importance and relationship. 

(4) The first five features can be selected by the least scores 
that describe the bearing condition to form the new feature 

vector for fault diagnosis. 
(5) The training and testing samples are fed into the classi-

fier called PSO-SVM to implement automatic fault diagnosis. 
 

4. Evaluation of synthetic signal 

4.1 Parameter selection 

Here, the key parameters used in the entropy algorithm 
should be determined. Time lag δ, embedding dimension m, 
fuzzy power n, threshold r, and scale factor τ exist. The time 
lag δ is a key parameter for coarse-graining. However, stan-
dard criteria for selecting this parameter are unavailable; thus, 
for simplicity of computation, we fix time lag as 1 [16, 22]. 
The embedding dimension m determines how much informa-
tion the reconstructed time series contains. An overly large m 
will need a large number of data points, which results in in-
creased time consumption; by contrast, an overly small m will 
cause insufficient information. For a trade-off between com-
putational efficiency and performance, a good overall selec-
tion of embedding dimension is 2. The fuzzy power n is a 
parameter that controls the boundary gradient of similar toler-
ance. Usually, it should be sufficiently large to capture the 
detailed information of interest in the boundary. However, an 
extremely large n will create a large gradient, resulting in the 
lack of detailed information. Hence, a reasonable value of n is 
2. Threshold r is one of the dominant parameters of the en-
tropy-based approach because it controls the similarity be-
tween the two matched vector components. For larger values 
of r, fewer vectors can be used for matching, which results in 
difficulty in recognition. A smaller value of r will affect the 
entropy measure with insufficient accuracy. Thus, a good 
value is 0.15 SD, where SD is the standard deviation of the 
given signal. A scale factor is determined by the trade-off 
between complexity and reliability result; thus, the value of 
this parameter is set experimentally as 20 [22]. 

 
4.2 Comparative study of MFE, RCMSE and RCMFE 

In this section, the performances of the conventional MFE, 
RCMSE, and the proposed RCMFE are evaluated based on 
the two typical types of synthetic time series, namely, WGN 
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Fig. 3. Framework of the proposed method. 
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and 1/f noise [12, 16, 22]. The waveforms and frequency spec-
tra are shown in Fig. 4. First, the relationship between the 
length and the accuracy of the MFE, RCMSE and RCMFE 
algorithms should be investigated. By generating 100 inde-
pendent samples with different data points (N = 1024, 2048, 
4096, 8192), we calculate the entropy values for the two noise 
signals. The SDs of entropy measures are shown in Fig. 5. As 
expected, in the case of WGN and 1/f noise, the SDs of the 
entropy measures of the three entropy-based methods de-
creases at scales of 1 to 20 with the increase in data length. In 
addition, the fluctuation amplitude of the SDs in each scale is 
effectively reduced. Hence, the accuracy of entropy statistics 
is affected by the size of data sample. In other words, the 
longer the length of the time series, the higher the accuracy of 
the calculation. However, a large value of N results in in-
creased computational cost. A reasonable data length with 
2048 data points is used in this study considering the compu-
tational efficiency and accuracy. 

In the case of the 2048 dataset, the entropy estimation of 
WGN noise for the three approaches is depicted in Fig. 6(a). 
From the figure, the entropy values exhibit a monotonically 
decreasing trend at each scale. The SampEn-based value ob-
tained with RCMSE is larger than that of the FuzzyEn-based 
result. Notably, the curve of the entropy value acquired by 
RCMFE algorithm is smoother than that acquired using the 
traditional MFE.  

Then, the SDs of the three methods are comparatively ana-
lyzed. As shown in Fig. 7(a), the RCMFE has smaller SDs in 
every scale factor compared with RCMSE and MFE. More-
over, the SD of MFE reaches the maximum among the three 
algorithms. Thus, the RCMSE, which is the improved version 

of MSE, estimates more stable values than MFE, whereas the 
MFE outperforms the conventional MSE. Furthermore, as 
expected theoretically, RCMFE can generate the most stable 
results. Notably, for a certain number of data points, the SDs 
render a monotonically increasing trend when the scale factor 
ranges from 1 to 20. This result confirms our theoretical 
analysis about the unstable values of entropy, which results in 
an extremely short coarse-grained sequence. 

A similar trend is observed in the 1/f signal, as shown in 
Figs. 6(b) and 7(b). Unlike the WGN noise, the curves of en-
tropy-based values have small variations and are approxi-
mately constant along with the increased scale. Hence, intui-
tively, the 1/f noise signals are more intrinsically complex than 
WGN signals; accordingly, higher scales can contain addi-
tional important information. Therefore, for WGN and 1/f 
noise signals, the RCMFE values has promising advantages 
that can improve the stability of entropy measures. 

 
5. Experimental validation 

5.1 Evaluation of real vibration signals 

As shown in the above analysis, the RCMFE method as-
sesses the complexity of simulated signals efficiently and 
suitably. The MFE, RCMSE and RCMFE are compared in 
terms of their capability to reveal structural differences be-
tween WGN and 1/f noise. We further analyze these tech-
niques when the time series have different numbers of data 
points. Here, we evaluate the potential advantages of the pro-
posed approach for vibration signals recorded from REBs. 
The vibration data of the bearings are collected from the 
CWRU laboratory [28]. As shown in Fig. 8, the experimental 
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Fig. 4. (a) Time domain of white noise; (b) frequency spectra of white noise; (c) time domain of 1/f noise; (d) frequency spectra of 1/f noise. 
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device comprises an induction motor, a dynamometer, a 
torque transducer (center position), and a control system (not 
shown). The test bearing is a deep groove ball bearing 6205-
2RS JEM SKF. Here, normal and defect bearings in different 

positions are used for testing. The defect bearing is made us-
ing electro-discharge machining with fault dimension of 21 
mil. An accelerometer is attached on the motor housing at the 
right position of the motor, with magnetic bases to finish the 
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Fig. 5. SD of simulated noise with different data points: (a) RCMSE of white noise; (b) RCMSE of 1/f noise; (c) MFE of white noise; (d) MFE of 1/f
noise; (e) RCMFE of white noise; (f) RCMFE of 1/f noise. 
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raw signal gathering process. The sampling frequency of the 
data recorder is 12 kHz, and the rotation speed frequency is 29 
Hz. Additional information about the experiment is available 
in the literature [28]. 

We study the signals of the rolling bearing of the outer race 
fault, from which the dataset is collected in different locations 
of the bearing housing, such as 6:00, 3:00 and 12:00. We fo-
cus on the load zone centered at 6:00. In the ordinary course 
of events, the signals recorded at the load zone should be 
clearer than the other positions. To analyze the differences of 
the recordings, feature extraction is implemented using the 
RCMFE model to characterize the dynamic change. The en-

tropy measure for each location is shown in Fig. 9(a). The 
entropy cure of recordings obtained at the load zone maintains 
the highest stability over most of the temporal scales in com-
parison with the three locations (Fig. 9(a)), which agrees with 
our previous expectation. For the signals collected at 3:00, the 
entropy results for the scale of 1-20 perform serious fluctua-
tions. In the case of the opposite load zone, that is, 12:00, the 
entropy values at each time scale exhibit more smoothness 
than the orthogonal position but greater than the values ob-
tained at the load zone. Notably, the trend for the three posi-
tions from a scale of 1-20 is monotonically decreasing. This 
behavior shows the complexity of the outer race fault, which 
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Fig. 7. SD of simulated noise: (a) White noise; (b) 1/f noise. 
 

 
 
Fig. 8. Experimental setup in the Bearing Data Center of Case Western Reserve University (CWRU) [28]. 
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Fig. 9. RCMFE results: (a) Entropy values of OR recordings collected in different locations; (b) entropy values of OR recording with different 
SNRs. 
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decreases with the increase in time scale. 
To test the robustness of the given techniques to noise, we 

implement the comparison by adding WGN with different 
signal-to-noise ratio (SNR) levels. The vibration data with 
outer race fault are used as the original signal. The noise levels 
with SNRs are selected as 20, 25, 30 and 35. We then apply 
the RCMFE algorithm to represent the difference between the 
original data and the signal with additive noise. The entropy 
values for each signal are plotted in a scale of 1-20, as shown 
in Fig. 9(b). Significant differences are not observed at each 
scale. Notably, the results computed from data with SNR = 20 
are slightly higher than those from raw data. These results 
demonstrate that the RCMFE has good performance, even 
with large noise. 

For a healthy state and the other three defects in different 
locations, including inner race, roller element, and outer race, 
we characterize each vibration data with three straightforward 
methodologies (that is, MFE, RCMSE and RCMFE) to assess 
the performance of the four conditions. The differences in the 
results exist between normal and defective conditions, as 
shown in Fig. 10. Evidently, the four conditions of bearing are 
depicted by the three approaches with a similar trend. Similar 
to the previous discussion in Sec. 2, the FuzzyEn-based en-
tropy of random signal is lower than that of SampEn-based 
values. However, only RCMFE-based entropy shows smooth-
ness and stability. 

The entropy values of the normal time series are larger than 
those of faulty signals over all temporal scales. Hence, impor-
tant information of the bearing system is widely distributed in 
the entire scale factors. This situation illustrates that the 
healthy bearing recording similar to 1/f noise has a linear trend, 
thereby exhibiting more complexity and irregularity than the 
faulty ones. This result agrees with previous findings [22]. For 
each defect of different positions, the general trends of entropy 
measures considerably decrease with the increase in time scale 
(Fig. 10). This phenomenon suggests that the time series con-
taining fault component assigns less complexity and more 

regularity due to the fault information induced by defective 
parts. The load zone position inside the bearing generates 
shocks between these components. The vibration signals in-
duced by the faulty part can dominate the signals of the entire 
bearing system because of the major frequency with powerful 
energy. In addition, the periodicity of faulty signals can create 
low complexity and regularity. Notably the entropy estimation 
on the outer race defect is smaller than that on the inner race 
and roller faults. At the same time, the entropy of recordings 
derived from the roller fault is larger than the signals collected 
from the bearing with inner race fault. This dynamic change is 
observed in different motion patterns of the three components. 
For most of the working conditions, the outer race is fixed on 
an axle box instead of rotating around the axle. The vibration 
contains single-component failure frequency. By contrast, the 
inner race rotates around the axle because of interference fit, 
and the roller rotates around the axle and on its own axis, 
which may cause more complicated frequency components 
compared with the outer race fault. Thus, the roller fault as-
signs larger entropy values at most of time scales compared 
with the inner race defect. Therefore, the RCMFE outperforms 
the other algorithms in this field and achieves excellent per-
formance in distinguishing the state differences of bearings. 

 
5.2 Experimental results and discussion 

Here, we focus on distinguishing the healthy condition of 
the bearings using important and meaningful characteristics. 
Table 1 presents the details of the experimental data. The time 
domain analysis of vibration signals with health and different 
defect types is shown in Fig. 11. On the basis of these differ-
ent signals and the multiscale FuzzyEn approach, a total of 
400 samples are computed for classification. One-fifth of the 
total 400 samples is randomly selected as the training dataset, 
and the remaining 320 samples are the testing dataset. The 
experiment is an eight-class identification problem. 

However, the original RCMFE-based vector is not taken as 
the diagnostic feature set due to redundant information with 
high dimension of extracted RCMFE values at time scales 
between 1 and 20. The high-dimensional fault feature vector 
will cause computational errors and affect the diagnostic re-
sults. To alleviate these problems, the Inf-FS algorithm is used 
to select the significantly independent characteristics by fea-
ture importance to depict the difference of the vibration sig-
nals. After ranking the scores, the reordered RCMFE can be 
expressed as follows: 
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The first five ranked features are selected to compose the 

new feature set. Then, a multi-fault classification algorithm 
named PSO-SVM with RBF kernel is used to complete the 
REB health condition identification. 
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The average recognition rate of classification for the pro-
posed method is presented in Fig. 12, which indicates the 
training and testing outputs. As shown by the results of the 
PSO-SVM classifier, the proposed method can sufficiently 
classify different rolling bearing health conditions with 100 % 
accuracy. Thus, the refined composite MFE method shows 
good performance to discriminate the health of bearings. 
Moreover, we investigate the necessity of feature selection 
algorithm using the Inf-FS approach and the original feature 
vector. The number of training and testing samples is the same 
as above. The diagnostic results with different feature num-
bers are shown in Fig. 13. The accuracy rate of the Inf-FS is 
higher than that of raw feature vectors. Furthermore, the clas-
sification accuracy is up to 100 %, and the five most distin-
guishable features are selected using the Inf-FS method.  

Despite the outstanding results obtained in terms of diag-

nostic accuracy, some limitations still exist. The achieved fault 
classification of the proposed method and the other studies is 
100 % [21, 22]. This result may be caused by the dependence 

Table 1. Description of the testing bearing data. 
 

Fault type Fault size (inch) Rotation speed (rpm) Number of training data Number of testing data Class label 

Normal 0 1750 10 40 1 

IRF 0.007 1750 10 40 2 

REF 0.007 1750 10 40 3 

ORF 0.007 1750 10 40 4 

IRF 0.014 1750 10 40 5 

IRF 0.021 1750 10 40 6 

REF 0.021 1750 10 40 7 

ORF 0.021 1750 10 40 8 
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Fig. 11. Waveforms of bearing vibration signals. 
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Fig. 12. Classification results using the proposed method. 
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of the classification accuracy on the sample size of different 
fault conditions. Moreover, the proposed method is verified 
using a small number of samples, which lead to an easy 100 % 
recognition rate. The experimental data taken from CWRU are 
used for the proposed method. The fault features are ex-
tremely evident to reveal the advantages of this method. 
Therefore, investigations with large samples under engineer-
ing conditions must be used in future works. 

 
6. Conclusion 

In this study, we introduce a novel nonlinear statistical 
technique, namely, RCMFE algorithm, by addressing several 
shortcomings consisted in the traditional MFE approach to 
quantify the complexity of 1D signals. The performance of 
RCMFE is evaluated using synthetic time series, including 
uncorrelated (WGN) and correlated (1/f) signals in compari-
son with other two entropy-based methods, namely, RCMSE 
and MFE. The results further conform that the proposed tech-
nique has better capability in short-signal analysis than the 
other two algorithms. Furthermore, when the proposed 
method is applied to vibrational signals recorded from bear-
ings, the results show improvement in the stability and reli-
ability of entropy values. The fault features based on RCMFE 
are calculated from the different recordings of REBs. The 
important and distinguishable features are ranked using the 
Inf-FS algorithm. Moreover, an excellent bearing multi-defect 
diagnosis approach is proposed by combining PSO with SVM 
classifier. The experiments verify the usefulness of the pro-
posed method. We expect that our findings will be applied in 
gear fault detection in future research. 
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