
 
 

 
Journal of Mechanical Science and Technology 33 (1) (2019) 95~108 

www.springerlink.com/content/1738-494x(Print)/1976-3824(Online) 
DOI 10.1007/s12206-018-1210-9 

 

 

 

 
Diagnosing axle box bearings’ fault using a refined phase difference correction method† 

Qing Xiong1,2,3, Weihua Zhang4, Yanhai Xu1,2,3,*, Yiqiang Peng1,2,3 and Pengyi Deng3 
1Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu, Sichuan 610039, China 

2Key Laboratory of Automotive Measurement, Control and Safety, Xihua University, Chengdu, Sichuan 610039, China 
3School of Automobile and Transportation, Xihua University, Chengdu, Sichuan 610039, China 

4State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031, China    
 

(Manuscript Received February 16, 2018; Revised August 1, 2018; Accepted August 27, 2018)   

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 
The wheelset treads and axle box bearings of railway vehicles often suffer from fatigue failures. Their regular maintenance highly de-

pends on manual off-line inspection with low working efficiency and poor precision for early failure detection. This study proposes a 
fault diagnosis method by band-pass filtering and by enveloping the accelerations collected from the axle box bearing on the underfloor 
wheelset lathe to improve the maintenance efficiency. This process is followed by the refined phase difference correction using the four-
term third derivative Nuttall-windowed fast Fourier transform (RPNWF) to extract accurate amplitudes of the fault characteristic fre-
quency and its harmonics. The integration scheme, work flow, and application examples of the fault diagnosis system are presented. 
Simulation analysis and results show that the developed method can achieve effective diagnosis of the fault and fault degree of axle box 
bearings as well as yield better correction accuracy than the commonly used discrete spectrum correction methods.  

 
Keywords: Axle box bearing; Fault diagnosis; Underfloor wheelset lathe; Refined phase difference correction method; Nuttall-windowed FFT  
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 
 
1. Introduction 

A railway vehicle is usually subjected to different operating 
conditions with variable speeds, payloads, and ambient tem-
peratures, which inevitably lead to wearing, pitting, and even 
peeling fault of its core components, such as wheel treads and 
axle box bearings [1-3]. These failures will not only reduce its 
ride comfort and service life but also impair its safety, which 
may cause serious economic losses or catastrophic casualties, 
leading to the emergence of negative social influences [4]. 
Accidents due to failures of railway vehicles’ critical compo-
nents still occur occasionally [5, 6].  

The core components of wheelsets require rigorous and re-
liable inspections and maintenance to avoid operation acci-
dents [7]. Currently, such inspection and maintenance are 
conducted separately. On the one hand, an underfloor wheel-
set lathe (UWL) is usually applied to restore the shape of the 
worn wheel tread and remove the damage of the wheel tread 
associated with rolling contact fatigue, wheel flats, and cavi-
ties, considering UWL can profile the tread while the wheelset 
remains in situ on the railway vehicle [8, 9]. On the other hand, 
although some methods, such as thermal signal analysis [10], 
acoustic emission [7, 11] and acoustic signal analysis [12], 

have been occasionally used for continuously and remotely 
monitoring the axle box bearings, their regular maintenance 
mainly depend on manual off-line inspection, which suffers 
from low working efficiency and imprecise fault diagnosis 
due to heavy weight and small assembly space along with a 
tedious process comprising several steps [13, 14].  

The maintenance period is usually given by the vehicle 
manufacturer and is related to the type and speed level of the 
railway vehicles. The typical profile period of wheel treads is 
approximately 200000 km [15], and the maintenance period of 
axle box bearings is generally one million km [16]. If the bear-
ings’ maintenance and tread repair happen concurrently, the 
maintenance period and associated cost of the axle box bear-
ings can be reduced. When the UWL is applied, the wheel 
rotates at a low speed, which provides practically viable con-
ditions for bearing fault diagnosis by monitoring its vibration 
signals. This method can reduce the manual intervention, 
which in turn, can improve the diagnostic accuracy and effi-
ciency. To ensure the profiling quality, the profiling speed of 
UWL must be between 30 and 120 m/min [17] when the 
wheel tread is repairing. For the standard wheel diameter of 
0.84 m [18], the corresponding wheel speed can be calculated 
as approximately 12 to 46 r/min. At such a low speed, the 
bearing faults are difficult to identify stably and efficiently. 

The current study proposes an applicable method of inte-
grating a fault diagnosis system for axle box bearings based on 
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the collected vibration signal with UWL. Without changing 
the original structure and function of the UWL, this method 
can effectively diagnose the common faults of the axle box 
bearings, and is significant in improving and enriching the 
existing vehicle maintenance strategy.  

Practically, the discrete spectrum analysis is the most com-
mon method for the fault diagnosis of the rolling bearing. 
However, this method also has its drawbacks. First, at low-
speed condition, the bearing’s fault characteristic frequencies 
and the fault impact energy are insignificant and can easily be 
disturbed by environmental noise [19]. Second, the discrete 
spectrum analysis can only act on a limited interval because 
the computer can only analyze limited samples, which inevi-
tably causes energy leakage due to the truncation in time do-
main [20]. These drawbacks lead to an error that cannot be 
ignored in the extraction of amplitude, frequency, and phase 
of the discrete spectrum; therefore, we cannot directly obtain a 
quantitative and accurate diagnosis of the fault degrees of 
rolling bearing by discrete spectrum.   

In view of these problems, a refined phase difference cor-
rection (RPDC) with the four-term third derivative Nuttall-
windowed fast Fourier transform (FFT, RPNWF) method is 
proposed in this study. This correction method can be poten-
tially applied to realize the quantitative diagnoses of axle box 
bearing failure at low speeds. 

The rest of this paper is organized as follows. Sec. 2 briefly 
describes the key steps of the phase difference correction 
(PDC) method and its refined versions (RPDC and RPNWF). 
Sec. 3 introduces the integrated scheme and the process of 
fault diagnosis for the axle box bearings. The simulation 
analysis in Sec. 4 and the application examples in Sec. 5 are 
demonstrated to verify the effectiveness of the proposed 
methods. The conclusions and recommendations for future 
works are given in Sec. 6. 

 
2. PDC, RPDC and RPNWF methods  

2.1 Brief introduction of the PDC method 

The PDC method was first developed in 2000 by Ding [21] 
to overcome the problem of energy leakage in discrete spec-
trum analysis. Here, we briefly describe the key steps of the 
PDC method.  

Given a harmonic signal, 0( ) cos(2 )x t A f tp q= + , its Fou-
rier transform can be obtained as 

 

0 0

1 1( ) ( ) ( )
2 2

j jX f Ae f f Ae f fq qd d-= + + - ,        (1) 

 
where /sf kf N k f= = D , N is the number of sampling points, 
fs is the sampling frequency, Δf is the frequency resolution, 
and d() is the Dirac delta function. 

The signal x(t) is multiplied by a window function ωT(t) 
with length of T, where ( )1 / sT N f= - . ωT(t) is obtained by 
moving the length T/2 from the symmetric window ω(t) to the 
right, that is, the phase changes .j fTe p- . If W(f) and WT(f) rep-

resent the window function spectrums of ω(t) and ωT(t), re-
spectively, the relationship between them can be expressed as 

 
( ) ( ) j fT

TW f W f e p-= .                  (2) 

 
According to the convolution theorem, the Fourier trans-

form of the signal after adding a window x(t)ωT(t) can be writ-
ten as 

 
0 0( ) ( )

0 0

1 1( ) ( ) ( )
2 2

j T f f j T f f
WX f AW f f e AW f f ep q p q- + + - - -é ù é ùë û ë û= + + - . 

 (3) 
 
The FFT of N points is taken to x(t)ωT(t). The frequency 

resolution Δf cannot be infinitesimal; thus, we assume 
that ( )0 ,f K K f= - D D  where K is an integer and 

0.5 0.5KD Î -é ùë û  is a normalized frequency correction. The 
peak of the discrete spectrum should appear on the K-th spec-
trum line, and its corresponding phase is given by 

 
( )1 0T K f f Kj q p q p= - D - = - D .         (4) 

 
The center of the window function ωT(t) moves the length T 

to the right. When the phase changes .2j fTe p- , the phase of the 
signal after the FFT of N points can be obtained as 

 
( )2 2 2K K Kj q p p q p p= + D + D = - + D .    (5) 

 
The phase difference can then be calculated as 
 

1 2 2 Kj j j pD = - = - D ,              (6) 
 

where the value of Δφ is between 2p- and 2p .  
However, the phase is an arctan function, and the range of 

the main value is ( p- ,p ). Therefore, a proper adjustment of 
the phase difference Δφ is carried out using the equation 

 
2 ,
2 ,

j p j p
j

j p j p
D + D < -ì

D = íD - D >î
.            (7) 

 
The normalized frequency correction is 
 

2
K j

p
D

D = - .                 (8) 

 
The coefficient of the K-th spectrum line of the peak in the 

spectrum is assumed to be ( ) K KX K R jI= + , and the correc-
tion formulas for the amplitude and phase of the signal are 
respectively given by 

 
( )
( )

2 X K
A

W K
=

D
,                 (9) 
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.       (10) 

 
From Eq. (9), the amplitude correction is entirely dependent 

on the window function spectrum W(f). With various windows, 
the window function spectrum W(f) is different, so as the am-
plitude correction formula. In fact, even for the common win-
dow function, its spectral function is complex and can only be 
approximated in numerical calculation. Moreover, the analyti-
cal expressions of the spectral functions of some complex 
window functions are difficult to obtain. This problem greatly 
restricts the selection flexibility of window function in differ-
ent applications. Thus, the amplitude correction must be im-
proved accordingly. 

                     
2.2 RPDC method 

Hu [22] proposed an RPDC method in 2012 to improve the 
accuracy of amplitude correction. The key steps of the method 
are described below.  

Given a discrete time series with N data points, 
( ) ( ) ( ) ( ){ }0 , 1 , ..., 1x n x x x N= - , the signal and sampling 

frequencies are f0 and fs, respectively. The inverse transform 
expression of its discrete Fourier transform can be obtained 
using the equation 

 
21

0

( ) ( )
N j nk

N

k

x n X k e
p-

=

=å ,             (11) 

( )2 /j N nk
ke e p= ,  

 
where 0,1,..., 1, 0,1,..., 1n N k N= - = - , is assumed. We can 
then consider the sequence x(n) of N points as a vector in the 
N dimension linear space. Here, 0 1 1, , ..., Ne e e - can form a 
group of bases, and x(n) can be regarded as a linear combina-
tion of these bases.In addition, ( ) ( ) ( )0 , 1 , ..., 1X X X N -  are 
the coordinates of 0 1 1, , ..., Ne e e - . 

If the signal frequency 0 ( / )sf K f N= , ek represents a 
complex sine sequence with frequency of f0. The correspond-
ing coordinate of ek X(K) has a definite physical meaning, 
which can be used to directly calculate the amplitude and 
phase of the signal. If the signal frequency 

( )0 ( / )sf K K f N= - D , the spectrum leakage will occur.  
Here, 0 1 1, , ..., Ne e e - is multiplied by an N point sequence 
( )2 /j N n Ke p- D  , and a group of new bases 0 1 1, , ..., Ne e e -

% % %  can be 
obtained as 

 
( )2 2 2

.
j nk j n K j n k K

N N N
Ke e e e

p p p
- D -D

= =%            (12)  
 
In addition, ( ) ( ) ( )

~ ~ ~

0 , 1 , ..., 1X X X N - are the coordinates of 
0 1 1, , ..., Ne e e -
% % % . x(n), which can also be expressed as 

 
21 1~ ~

0 0

( ) ( ) ( )
N Nj n K

N
k k

k k

x n X k e e X k e
p- -- D

= =

= =å å% ,        (13) 

where ke%  represents a complex sine sequence with the fre-
quency of ( )0 ( / )sf K K f N= - D . The corresponding coordi-
nate of ek X(K) has a definite physical meaning, which can be 
used to directly calculate the amplitude and phase of the signal. 
If the signal frequency ( )0 ( / )sf K K f N= - D , the spectrum 
leakage will occur. The amplitude and phase of the signal can 
be calculated accurately by the coordinate ( )X k%  correspond-
ing to ke% , and the leakage will not be produced. However, Eq. 
(13) cannot be directly calculated by the FFT algorithm. 

Both sides of Eq. (13) are multiplied by ( )2 /j N n Ke p D , and a 
new sequence ( )x n%  can be obtained 

 
2 21

0

( ) ( ) ( )
Nj n K j nk

N N

k

x n x n e X k e
p p-D

=

= =å %% .       (14) 

 
Eq. (14) is an expression of a standard inverse discrete Fou-

rier transform. The coefficient ( )X k%  in the formula can be 
calculated by FFT for the N point sequence ( )x n% . Its physical 
meaning is that when the signal frequency f0 of the sequence 
x(n) falls between two spectral lines on the discrete spectrum, 
the spectrum will leak out. Multiplying x(n) by a sequence 

( )2 /j N n Ke p D  is equivalent to causing a frequency shift of the 
signal. The signal frequency of the new sequence is only 
aligned with the K-th spectrum line on the discrete frequency 
spectrum; therefore, no leakage will occur. 

The amplitude of the spectrum after adding windows will 
be reduced by the influence of the window function. Accord-
ingly, we assume that the K-th coefficient obtained by FFT on 
signal after adding windows ( ) ( ) ( )x n x n nw w=% %  is given by 

 
( ) K KX K R jIw = +% % % .               (15) 

 
On the basis of Eqs. (9) and (10) from the analysis in this 

section, the amplitude and phase correction formulas for the 
initial signal x(n) can be respectively expressed as 

 
( )
( )

2

0

X K
A

W
w

=
%

,                  (16) 

1tan K

K

I
R

q - æ ö
= ç ÷ç ÷

è ø

%
% .                   (17) 

 
where W(0) is the direct component of ω(n). This component 
only needs the average value of the window function without 
knowing the expression of the window spectrum function. 

 
2.3 RPNWF method 

The RPDC method proposed by Hu et al. [22] improves the 
amplitude accuracy of the traditional PDC method and 
achieves good correction results in the simulation test of dense 
spectrum. The selection of the window function exerts a great 
impact on this method. However, only the combined effect of 
the improved method has been investigated with the tradi-
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tional window functions, such as rectangular and Hanning 
windows. To the best of our knowledge, no in-depth study on 
window functions with superior sidelobe performances has 
been performed. 

On the one hand, the fault signal of the axle box bearing is 
harmonic with the fault characteristic frequency as the funda-
mental one. On the other hand, under low-speed condition, the 
spectrum of the inner-race faults and ball faults of the axle box 
bearing are dense with various frequency components. A win-
dow function with a small sidelobe peak and a large sidelobe 
falloff rate must be selected to analyze this type of dense har-
monic signal. 

The four-term third derivative Nuttall window (for conven-
ience, it is referred to as Nuttall43 hereafter) [23] is a combi-
national cosine window with small leaking; its sidelobe peak 
and falloff rate are -83 dB and 30 dB/octave, respectively. 
Unlike the comprehensive performances of the sidelobe of 
other window functions, Nuttall43's performance is superior, 
and it has been successfully applied in many fields of har-
monic analysis [24-26].  

Therefore, this study combines the RPDC method with the 
Nuttall43-windowed FFT (RPNWF) to explore the effective-
ness of quantitative diagnosis of axle box bearings at low 
speed. Given a discrete time series with N data points, 
( ) ( ) ( ) ( ){ }0 , 1 , ..., 1x n x x x N= - , the detailed process of 

RPNWF is presented below.   
a. Normalized frequency correction KD of envelope signal 

x(n) is achieved by the phase difference method. 
b. According to Eq. (14), multiplying x(n) by an N point se-

quence ( )2 /j N n Ke p D  generates a new sequence ( )x n% . 
c. The signal ( ) ( ) ( )x n x n nw w=% %  is obtained after adding 

Nuttall43 window, where ω(n) is as follows: 
( ) 0.338946 0.481973*cos(2 * / )

0.161054*cos(4 * / )
0.018027 *cos(6 * / )

n n N
n N
n N

w p
p
p

= -
+
-

. 

d. ( )X Kw
%  is calculated by the FFT. The correction for-

mula is used to accurately calculate the amplitudes at the fault 
characteristic frequency and its harmonic components of axle 
box bearing, which can indicate the existence of the fault and 
the fault degree. 

 
3. Brief introduction of the integrated scheme 

3.1 System workflow 

A typical UWL, as illustrated in Fig.1, is composed of the 
frame, track system, positioning device, parameter-measuring 
device, supporting device, clamping device, profiling device, 
and numerical control system [27]. The system workflow that 
integrates the bearings’ fault diagnosis with UWL is shown in 
Fig.2. 

The proposed system work flow can be summarized via the 
following steps: 

a. During the interaction of the clamping device, supporting 
device, and driving friction wheels, the measured wheel is 

firmly fixed in the center position of UWL. 
b. The parameter-measuring device measures the size pa-

rameters of the wheel set, such as the wheel diameter, inner 
distance, flange thickness, and flange height. The numerical 
control system calculates these parameters to form the opti-
mum profiling scheme. 

c. Under the action of the two driving friction wheels, the 
wheel set begins to rotate and reaches a predetermined speed. 
The profiling device is raised, and repair starts. 

d. After one profiling work, the device measures the rele-
vant parameters again. If the parameters remain unqualified, 
step (b) is repeated until all parameters are qualified. 

e. When all parameters are qualified, the profiling tool is 
put down. The wheel set continues to rotate and enters the 
fault diagnosis stage of the axle box bearings. 

The bearing fault diagnosis scheme we proposed above is 
implemented after the completion of the profiling work for 
two reasons. First, in the profiling process, the profiling tool 
that comes into contact with the wheel tread will produce ad-
ditional vibration. Second, when the profiling work is com-
pleted, the wheel tread will be smooth; thus, the signal col-
lected by the acceleration sensor has a high signal-to-noise 
ratio. 

 
3.2 Process of fault diagnosis for the axle box bearings 

The fault diagnosis system of the axle box bearings consists 
of the acceleration sensor, speed sensor, data acquisition de-

 
 
Fig. 1. Underfloor wheelset lathe: (1) Wheelset; (2) clamping device; 
(3) supporting device; (4) driving friction wheel; (5) profiling device; 
(6) frame. 
 

 
 
Fig. 2. System workflow. 
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vice, communication lines, and high-performance computer 
(including analysis software). The specific process of fault 
diagnosis shown in Fig.3 can be described below. 

a. Data acquisition. The devices are connected as shown in 
Fig. 3. The two accelerometers are affixed to the left and right 
clamping devices with two magnetic bases. The speed sensor 
we selected is a noncontact photoelectric sensor, which we 
arranged close to the wheel and must face the reflective label 
on the wheel. The output signals of all sensors are collected 
and processed by the data acquisition device and then com-
municated to the high-performance computer through the 
open platform communications protocol.  

b. Signal processing. Band-pass filtering is performed on 
the original signal obtained by acquisition, after which the 
envelope analysis is conducted. 

c. Fault diagnosis. The RPNWF method is used to accu-
rately calculate the signal amplitude at the fault characteristic 
frequency and its harmonic components for judging the bear-
ing’s fault location and degree. 

 
4. Simulation analysis 

The program and simulation are performed in MATLAB 
platform to verify the application effect of the proposed algo-
rithm.  

The rolling bearing’s signals with different fault types are 
assumed to vary in terms of their fault characteristic frequen-
cies, amplitudes, and phases at each harmonic component. In 
practice, at least three-order harmonics must be identified in 

the spectrum to determine the bearing fault accurately [28]. 
Therefore, we adopt the harmonic signal model given by 

 

( )
9 9

1 1

1 1

1 10cos(2 ) cos(2 )
180m m

m ms s

mf mf mx t A t j t
f m f

pp p
= =

= + = +å å . 

  (18) 
 
In case of the fundamental frequency f1 changing from 4.0 

Hz to 6.0 Hz with 0.2 Hz as the step length, we use the RPDC 
(based on Hanning window) algorithm, the RPDC with 
Blackman-Harris-windowed FFT algorithm (RPBWF), and 
the RPDC with Nuttall43-windowed FFT algorithm (RPNWF) 
to calculate the harmonic frequencies, amplitudes, and phases 
in Eq. (18), respectively. The sampling frequency fs is 320 Hz, 
and the truncated data length of each windowed FFT is 2048. 
Fig. 5 shows a comparison of the time and frequency domains, 
and Table 1 gives the specific sidelobe parameter among the 
three windows mentioned above [22, 29, 30]. 

From Table 1, the absolute sidelobe peak value and falloff 
rate of the Nuttall43 window are obviously higher than those 

 
 
Fig. 3. Process of fault diagnosis for the axle box bearings. 

 

Table 1. Comparison of the sidelobe performance among the three 
windows. 
 

Window function Sidelobe peak  
(dB) 

Sidelobe falloff rate 
(dB/octave) 

Hanning -31 18 

Blackman-Harris -92 6 

Nuttall43 -83 30 
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Fig. 4. Comparison of the time and frequency domains among the three 
windows: (a) Time domain; (b) frequency domain. 
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of the Hanning window. Although the Nuttall43 window’s 
absolute sidelobe peak value is slightly smaller than the 
Blackman-Harris window, its sidelobe falloff rate is 5 times 
greater than that of the latter. Therefore, the overall perform-
ance of the sidelobe of the Nuttall43 window is the best 
among the three candidates. Fig. 5 shows the relative errors of 
harmonic frequencies corresponding to the different algo-
rithms. 

The three-color bars illustrated in Fig. 5 indicate that the 
maximum frequency relative errors of the RPDC, RPBWF 
and RPNWF algorithms are approximately 8*10-3, 6*10-4 and 
3*10-6, respectively. Among the three algorithms, the RPNWF 
has the highest frequency measurement precision, and in 
terms of the uniformity of color distribution, the surface 
formed by all points in the RPNWF is the flattest. Except for a 
few points with high value (color red or yellow), most of the 
points in the RPNWF are evenly distributed (the color is blue), 
indicating that it has the best stability in harmonic frequency 

measurement. By contrast, the surface formed by all points in 
the RPDC is rough and uneven, which implies that the stabil-
ity of the RPDC for the harmonic frequency measurement is 
the worst among the three methods. 

The relative errors of harmonic phases corresponding to the 
different algorithms are shown in Fig. 6. The maximum phase 
relative errors of RPDC, RPBWF and RPNWF are approxi-
mately 0.1, 0.05 and 9*10-5, respectively. The accuracy of the 
RPNWF is obviously better than those of the other two algo-
rithms. Moreover, the surface formed by all points in the 
RPNWF is the flattest, and the colors are evenly distributed; 
hence, it has the best stability in harmonic phase measurement 
of the three algorithms. The maximum relative error of the 
RPDC is concentrated on the second-order harmonics. The 
falloff of the first sidelobe in the Hanning window is relatively 
small, which leads to the second-order harmonics presenting 
major leakage. Among the the three methods, the falloff of the 
first sidelobe in the Blackman-Harris window is the largest   
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Fig. 5. Relative errors of harmonic frequencies that correspond to the 
different algorithms: (a) RPDC; (b) RPBWF; (c) RPNWF. 
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Fig. 6. Relative errors of harmonic phases corresponding to the differ-
ent algorithms: (a) RPDC; (b) RPBWF; (c) RPNWF. 
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(-92 dB), and the falloff speed of its stopband peak is the 
smallest (6 dB/octave). Thus, there is large error in calculating 
the even-order harmonic phases of the second, fourth, sixth 
and eighth orders in the RPBWF. 

Fig. 7 shows the relative errors of the harmonic amplitudes 
corresponding to the different algorithms. The amplitude de-
tection capability of the RPNWF is prominent, the maximum 
relative error is approximately 1.7*10-5, and the harmonic 
amplitude detection accuracy is higher than those of the 
RPDC (the maximum relative error is approximately 2.36) 
and the RPBWF (the maximum relative error is approximately 
1.5*10-3). Even for weak- and high-order harmonic compo-
nents, the RPNWF can also achieve the desired amplitude 
accuracy. 

The above simulation results indicate that the RPNWF not 
only has more advantages in measuring the accuracy of the 
three parameters of harmonic frequency, amplitude, and phase, 
but also has better measurement stability than those of the 

RPDC with Hanning- and Blackman-Harris-windowed FFT 
algorithms.  

Although the time-domain waveform and sidelobe peak of 
the Nuttall43 window in Fig. 4 are similar to those of the 
Blackman-Harris window, the correction accuracy of the har-
monic frequency (see Fig. 5), phase (see Fig. 6), and ampli-
tude (see Fig. 7) are 2 or 3 orders of magnitude higher than 
that of the Blackman-Harris window.  

In addition, the correction accuracy of the discrete spectrum 
is closely related to the sidelobe comprehensive performance 
of the window function. Either a small sidelobe peak or a large 
sidelobe falloff rate can lead to unsatisfactory errors. However, 
the sidelobe falloff rate of the Nuttall43 window (30 
dB/octave) is 5 times greater than that of the Blackman-Harris 
window (6 dB/octave). 

 
5. Applications 

5.1 Data acquisition and processing 

We conduct the fault setting test of the axle box bearings on 
a UGL-type UWL (see Fig. 8(a)) at the Hefei Rolling Stock 
Depot of the Shanghai Railway Administration. This was 
carried out with the aim of  proving the effectiveness of the 
method proposed in this study.  

The test bearings are double-row cylindrical roller bearings 
(NJ(P)3226X1), which are widely used in the axle box of the 
railway vehicles. The geometrical parameters and fault char-
acteristic frequency of the bearings are shown in Tables 2 and 
3, respectively. 

The Jining Mould Company in Shandong Province provides 
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Fig. 7. Relative errors of the harmonic amplitudes corresponding to the 
different algorithms: (a) RPDC; (b) RPBWF; (c) RPNWF. 

 

 

Table 2. Geometrical parameters of the bearings. 
 

Axle box 
bearing 

OD  
(mm) 

ID 
(mm) 

PD 
(mm) 

T 
(mm) 

BD  
(mm) 

BT  
(mm) 

NJ(P)3226X1 250 130 190 80 32 52 

* OD, ID, PD and T denote the outside diameter, inside diameter, pitch 
diameter, and bearing thickness, respectively; BD and BT denote the 
diameter and thickness of ball, respectively. 
 

Table 3. Fault characteristic frequency of the bearings. 
 

Inner-race 
(Hz) 

Outer-race 
(Hz) 

Ball 
(Hz) 

Cage 
(Hz) 

6.1342 4.3658 2.1634 0.3118 

 

 
 
Fig. 8. Experimental setup: (a) UGL-type UWL; (b) installation loca-
tion of acceleration sensor. 
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the test bearings with precise machining to achieve seven 
faults with different locations and degrees, as shown in Fig. 9. 
Every fault location consists of two degrees, namely, slight 
faults (the width is 5 mm, the depth is 1.5 mm) and serious 
faults (the width is 10 mm, the depth is 2.0 mm). 

When the UWL is running, the wheel speed is 45 r/min. In 
other words, the outer-race of the axle box bearing is fixed, 
while the inner-race of the axle box bearing rotates with a 
rotational frequency of 0.75 Hz (the load of the axle box is 80 
kN). The accelerometer affixed to the clamping devices of the 
UWL is instrumented to collect vibration signals (see Fig. 
8(b)), with a sampling frequency of 25.6 kHz. 

Through the experiments, we obtain seven types of vibra-
tion acceleration signals with different fault locations and 
different fault degrees of axle box bearings. The fault labels 
and sizes of the seven signals are shown in Table 4. 

Fig. 10 illustrates the gathered first half-second acceleration 
time histories associated with the seven states of axle box 

bearing. The graph shows that the seven states cannot be dis-
tinguished by referring only to the original waveforms. 

Band-pass filtering is performed on the original signals to 
remove the low-frequency noise and enhance the periodic 
signals containing fault information. According to Ref. [31] 
and from our repeated experimental experience, we select a 
500- to 10-kHz band-pass filter. All the filtered signals are 
subjected to an envelope detector, and seven types of envelope 
signals are obtained, as shown in Fig. 11. The amplitude unit 
of the envelope signal is dimensionless, because the Hilbert 
transformation is used to demodulate the signal in the enve-
lope analysis [32]. 

Figs. 10 and 11 indicate that, after band-pass filtering and 
envelope analysis, the impact characteristics hidden in the 
signals appear. However, the states of the bearings remain 
impossible to judge directly through these signals. 

 
5.2 FFT algorithm without correction 

We collect the data length of 90 s in each state and divide 
each data set evenly into 10 segments in order to reduce the 
randomness of operation. 

Envelop analysis is performed on the 10 samples, and we 
obtain 10 sets of envelop data in each state. All the 70 envelop 
signals are subjected to the Hanning-windowed FFT algorithm 
to obtain the FFT spectra. This is a common method in engi-

Table 4. Fault labels and sizes of seven signals. 
 

Label Running state Fault width 
(mm) 

Fault depth 
(mm) 

S1 Normal 0 0 

S2 Slight inner-race faults 5 1.5 

S3 Serious inner-race faults 10 2.0 

S4 Slight outer-race faults 5 1.5 

S5 Serious outer-race faults 10 2.0 

S6 Slight ball faults 5 1.5 

S7 Serious ball faults 10 2.0 

  

 
 
Fig. 9. Artificial faults on the components of the axle box bearing: (a) 
Normal; (b) slight outer-race faults; (c) serious outer-race faults; (d) 
slight inner-race faults; (e) serious inner-race faults; (f) slight ball 
faults; (g) serious ball faults. 

 

 

 
 
Fig. 10. Original waveforms of the seven vibration acceleration sig-
nals: (a) S1; (b) S2; (c) S3; (d) S4; (e) S5; (f) S6; (g) S7.  

 

 
 
Fig. 11. Waveforms of the seven envelope signals: (a) S1; (b) S2; (c) 
S3; (d) S4; (e) S5; (f) S6; (g) S7. 
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neering but without correction. Table 3 shows that the maxi-
mum failure frequency is 6.1342 Hz; according to the Shan-
non sampling theorem [33], and from the actual experience, 
we select the frequency range of 0 to 50 Hz. After averaging, 
the FFT spectrum of the normal signal is presented in Fig. 12, 
which shows the irregular distribution of various frequency 
components. 

The FFT spectra of the slight inner-race faults after averag-
ing are illustrated in Figs. 13(a) (0 to 50 Hz) and 14(b) (0 to 10 
Hz). In the frequency range of 0 to 50 Hz, spectral peaks occur 
at the frequency of 6.2188 Hz and its harmonics (12.4688, 
18.6875, 24.9063, 31.1250, 37.3750, 43.5938 and 49.8125 
Hz). The frequency sidebands of 0.75 Hz are also observed (as 
shown clearly in Fig. 13(b)) with decreasing amplitudes at 
both sides of these frequencies. In practice, when the axle box 
bearing is running, the motions of its balls are not purely roll-
ing, and the rotational speed is imperfectly constant [34]. Thus, 
the actual fault frequencies are slightly different from the theo-
retical calculation values in Table 3. 

The frequency of 6.2188 Hz is close to the inner-race fault 
characteristic frequency of 6.1342 Hz, which is calculated in 
Table 3, and the frequency of 0.75 Hz is the same as the rota-
tional frequency of the inner-race. The vibration amplitude of 
the inner-race fault characteristic frequency is modulated by 
the vibration amplitude of the rotating frequency, which is a 
typical feature of the inner-race failure [35]. Therefore, a fail-
ure in the inner-race of the bearing can be determined. 

The FFT spectra of the serious inner-race faults are shown 

in Figs. 14(a) (0 to 50 Hz) and (b) (0 to 10 Hz). In the fre-
quency range of 0 to 50 Hz, spectral peaks occur at the fre-
quency of 6.2500 Hz and its harmonics (12.5313, 18.7813, 
25.0625, 31.3438, 37.5938 and 44.6250 Hz). The frequency 
sidebands of 0.75 Hz are determined (as shown clearly in Fig. 
14(b)) with decreasing amplitudes at both sides of these fre-
quencies. Hence, a failure is determined in the inner-race of 
the bearing.  

The FFT spectrum of the slight outer-race faults is shown in 
Fig. 15. In the frequency range of 0 to 50 Hz, spectral peaks 
occur at the frequency of 4.3750 Hz and its harmonics (8.7500, 
13.1250, 17.4688, 21.8438, 26.2188, 30.5938, 34.9688, 
39.3125, 43.6875 and 48.0625 Hz). Moreover, the frequency 
of 4.3750 Hz is close to the outer-race fault characteristic fre-
quency of 4.3658 Hz calculated in Table 3. Discrete spectral 
peaks exist in the outer-race fault characteristic frequency and 
its harmonics, which is a typical feature of outer-race failure 
[35]. Therefore, a failure occurs in the outer-race of the bear-
ing. 

The FFT spectrum of the serious outer-race faults is shown 
in Fig. 16. In the frequency range of 0 to 50 Hz, spectral peaks 
exist at the frequency of 4.3125 Hz and its harmonics (8.6563, 
12.9688, 17.2813, 21.6250, 25.9375, 30.2500, 34.5938, 
38.9063, 43.2188 and 47.5313 Hz). Thus, a failure is also 
determined in the outer-race of the bearing. 

The FFT spectra of the slight ball faults are shown in Figs. 
17(a) (0 to 50 Hz) and (b) (0 to 10 Hz). In the frequency range 
of 0 to 50 Hz, spectral peaks are identified at the frequency of 
2.1875 Hz and its harmonics (4.3750, 6.5625, 8.8750 and 
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Fig. 12. FFT spectrum of the normal signal. 
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Fig. 13. FFT spectra of slight inner-race fault signal: (a) 0 to 50 Hz; (b) 
0 to 10 Hz. 
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Fig. 14. FFT spectra of serious inner-race faults signal: (a) 0 to 50 Hz; 
(b) 0 to 10 Hz. 
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Fig. 15. FFT spectrum of slight outer-race fault signal (0 to 50 Hz). 
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11.0313 Hz). The frequency sidebands of 0.312 Hz (as shown 
clearly in Fig. 17(b)) are also observed at one or both sides of 
some harmonics. 

The frequency of 2.1875 Hz is close to the ball fault charac-
teristic frequency of 2.1634 Hz calculated in Table 3, and the 
frequency of 0.3125Hz is close to the cage fault characteristic 
frequency of 0.3118 Hz. The vibration amplitude of the ball 
fault characteristic frequency is modulated by the vibration 
amplitude of the cage fault characteristic frequency, which is a 
typical feature of ball failure [35]. Therefore, a failure occurs 
in the ball of the bearing. 

The FFT spectras of the serious ball faults are shown in Figs. 
18(a) (0 to 50 Hz) and (b) (0 to 10 Hz). In the frequency range 
of 0 to 50 Hz, spectral peaks occur at the frequency of 2.2813 
Hz and its harmonics (4.5625, 6.8438 and 9.1250 Hz), and 
frequency sidebands of 0.3125 Hz (as shown clearly in Fig. 
18(b)) exist at one or both sides of some harmonics. Thus, a 
failure is determined in the ball of the bearing. 

In summary, the FFT spectrum without correction can accu-
rately indicate whether a fault occurs and the location of such 
a fault in the axle box bearings. However, can the amplitude 
of this method be used to judge the fault degree of bearings? 
To answer this question, we extract the amplitudes of the first 
visible four-order harmonics of six fault signals, as shown in 
Table 5. 

Table 5 indicates that, for the outer-race and ball faults, all 
the amplitudes of slight faults (S4,S6) are smaller than those of 
serious faults (S5,S7). For the inner-race faults, except the 

amplitude of the second-order harmonic of S2 (0.05947) is 
smaller than that of S3 (0.07520), the other harmonic ampli-
tudes of S2 are larger than those of S3. Therefore, the ampli-
tudes of the FFT spectrum without correction cannot distin-
guish the fault degree of the bearings. 

 
5.3 Quantitative diagnosis method based on the RPNWF 

Apart from the 10 envelop signals of the normal state, the 
RPNWF spectrum analysis is performed on the other envelop 
signals obtained in Subsec. 5.2, after which 10 sets of data in 
each fault state are obtained.  

We also feed the same samples into the interpolation correc-
tion (IPC) [30, 36], energy centrobaric correction (ECC) [37, 
38], the PDC [26, 39], the RPDC and the RPBWF methods 
for the comparison of correction results. This was done in 
order t to clearly demonstrate the advantages of the RPNWF 
method in the fault diagnosis of axle box bearing compared 
with other methods. The peak detection interval of all methods 
is ±0.15 of the theoretical frequency of each order harmonic. 
The parameters of each order of harmonics are extracted, as 
shown in Table 6.  
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Fig. 16. FFT spectrum of serious outer-race fault signal (0 Hz to 
50 Hz). 
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Fig. 17. FFT spectra of slight ball fault signal: (a) 0 to 50 Hz; (b) 0 to 
10 Hz. 

 

 

Table 5. Amplitudes of the fault characteristic frequency and its har-
monics among six signals. 
 

Amplitude 
Running state f 2f 3f 4f 

S2 0.07037 0.05947 0.06439 0.06117 

S3 0.06960 0.07520 0.05080 0.05100 

S4 0.01439 0.01465 0.01140 0.01211 

S5 0.03715 0.03101 0.02730 0.02521 

S6 0.01118 0.02044 0.01404 0.01299 

S7 0.03280 0.03630 0.02470 0.01640 

* f denotes the fault frequency; 2f, 3f and 4f denote 2, 3 and 4 times the 
fault frequency, respectively. 
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Fig. 18. FFT spectra of serious ball fault signal: (a) 0 Hz to 50 Hz; (b) 
0 Hz to 10 Hz. 
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Table 6. Parameters of the first four harmonics among six fault signals. 
 

Fault characteristic frequency and its 
harmonics Fault 

state 
Calculation 

method Parameter 
f 2f 3f 4f 

Theoretical frequency 6.1342 12.2684 18.4026 24.5368 

Frequency 6.2188 12.4688 18.6875 24.9063 Without 
Correction Amplitude 0.07037 0.05947 0.06439 0.06117 

Frequency 6.2169 12.4336 18.6501 24.8681 
IPC 

Amplitude 0.07291 0.06018 0.06499 0.06251 

Frequency 6.2160 12.4349 18.6509 24.8672 
ECC 

Amplitude 0.07340 0.06091 0.06447 0.06323 

Frequency 6.2171 12.4338 18.6596 24.8663 
PDC 

Amplitude 0.07302 0.06057 0.06443 0.06322 

Frequency 6.2183 12.4582 18.6747 24.8700 
RPDC 

Amplitude 0.07212 0.06240 0.06961 0.06490 

Frequency 6.2179 12.4343 18.6659 24.8690 
RPBWF 

Amplitude 0.07366 0.06198 0.06489 0.06747 

Frequency 6.2171 12.4338 18.6596 24.8663 

S2 

RPNWF 
Amplitude 0.07371 0.06320 0.06449 0.06271 

Theoretical frequency 6.1342 12.2684 18.4026 24.5368 

Frequency 6.2500 12.5313 18.7813 25.0625 Without 
Correction Amplitude 0.06960 0.07520 0.05080 0.05100 

Frequency 6.2450 12.4887 18.7342 24.9798 
IPC 

Amplitude 0.07937 0.08378 0.06496 0.06419 

Frequency 6.2449 12.4814 18.7353 24.9879 
ECC 

Amplitude 0.07967 0.08361 0.06289 0.06248 

Frequency 6.2454 12.4983 18.7345 24.9793 
PDC 

Amplitude 0.07949 0.08592 0.06528 0.06495 

Frequency 6.2496 12.5098 18.7434 25.0003 
RPDC 

Amplitude 0.07294 0.07719 0.07064 0.06717 

Frequency 6.2475 12.4984 18.7400 24.9961 
RPBWF 

Amplitude 0.07799 0.07996 0.06903 0.06971 

Frequency 6.2454 12.4983 18.7345 24.9793 

S3 

RPNWF 
Amplitude 0.08048 0.08076 0.06995 0.06954 

Theoretical frequency 4.3658 8.7316 13.0974 17.4632 

Frequency 4.3750 8.7500 13.1250 17.4688 Without 
Correction Amplitude 0.01439 0.01465 0.01140 0.01211 

Frequency 4.3743 8.7417 13.1203 17.4662 
IPC 

Amplitude 0.01742 0.01810 0.01673 0.01644 

Frequency 4.3745 8.7419 13.1192 17.4674 
ECC 

Amplitude 0.01733 0.01804 0.01668 0.01632 

Frequency 4.3731 8.7412 13.1228 17.4643 
PDC 

Amplitude 0.01780 0.01785 0.01737 0.01716 

Frequency 4.3740 8.7481 13.1248 17.4679 
RPDC 

Amplitude 0.01409 0.01416 0.01316 0.01140 

Frequency 4.3743 8.7426 13.1232 17.4654 
RPBWF 

Amplitude 0.01602 0.01780 0.01657 0.01644 

Frequency 4.3731 8.7412 13.1228 17.4643 

S4 

RPNWF 
Amplitude 0.01732 0.01804 0.01672 0.01655 

      

Theoretical frequency 4.3658 8.7316 13.0974 17.4632 

Frequency 4.3125 8.6563 12.9688 17.2813 Without 
Correction Amplitude 0.03715 0.03101 0.02730 0.02521 

Frequency 4.3293 8.6585 12.9916 17.3195 
IPC 

Amplitude 0.03985 0.03697 0.03371 0.03360 

Frequency 4.3294 8.6589 12.9902 17.3193 
ECC 

Amplitude 0.03971 0.03691 0.03401 0.03354 

Frequency 4.3303 8.6588 12.9932 17.3230 
PDC 

Amplitude 0.04240 0.03695 0.03153 0.03043 

Frequency 4.3291 8.6570 12.9824 17.3028 
RPDC 

Amplitude 0.03274 0.03604 0.0257 0.03080 

Frequency 4.3302 8.6574 12.9837 17.3036 
RPBWF 

Amplitude 0.03916 0.03559 0.03398 0.03543 

Frequency 4.3303 8.6588 12.9932 17.3230 

S5 

RPNWF 
Amplitude 0.04015 0.03690 0.03380 0.03442 

Theoretical frequency 2.1634 4.3268 6.4902 8.6536 

Frequency 2.1875 4.3750 6.5625 8.8750 Without 
Correction Amplitude 0.01118 0.02044 0.01404 0.01299 

Frequency 2.1730 4.3197 6.4628 8.7064 
IPC 

Amplitude 0.01203 0.02673 0.02011 0.01702 

Frequency 2.1614 4.4701 6.4676 8.7020 
ECC 

Amplitude 0.01451 0.02136 0.02074 0.01813 

Frequency 2.1610 4.3205 6.4333 8.7076 
PDC 

Amplitude 0.02042 0.02688 0.01747 0.01882 

Frequency 2.1772 4.3199 6.4295 8.7114 
RPDC 

Amplitude 0.01414 0.02503 0.02615 0.02707 

Frequency 2.1714 4.3168 6.4304 8.7078 
RPBWF 

Amplitude 0.01761 0.02455 0.03000 0.0313 

Frequency 2.1610 4.3205 6.4333 8.7076 

S6 

RPNWF 
Amplitude 0.01781 0.02674 0.01991 0.01716 

Theoretical frequency 2.1634 4.3268 6.4902 8.6536 

Frequency 2.2813 4.5625 6.8438 9.1250 Without 
Correction Amplitude 0.03280 0.03630 0.02470 0.01640 

Frequency 2.1599 4.3719 6.3675 8.7496 
IPC 

Amplitude 0.03634 0.04097 0.04781 0.03207 

Frequency 2.1781 4.3763 6.3768 8.7576 
ECC 

Amplitude 0.05649 0.04153 0.05165 0.03474 

Frequency 2.1772 4.3652 6.3837 8.7457 
PDC 

Amplitude 0.05827 0.06901 0.02629 0.02494 

Frequency 2.1854 4..3744 6.3783 8.7492 
RPDC 

Amplitude 0.03620 0.03609 0.02763 0.02740 

Frequency 2.1796 4.3694 6.3795 8.7466 
RPBWF 

Amplitude 0.03831 0.03522 0.03428 0.03155 

Frequency 2.1772 4.3652 6.3837 8.7457 

S7 

RPNWF 
Amplitude 0.03849 0.03740 0.04275 0.03053 
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Table 6 indicates that, in each fault state, the frequencies 
calculated by all the seven methods (without correction and  
the IPC, ECC, PDC, RPDC, RPBWF and RPNWF) have 
minimal differences from the theoretical frequency. The theo-
retical frequency is calculated under the condition of constant 
speed and pure rolling of all balls, which are difficult to 
achieve in practice. The PDC and RPNWF adopt the phase 
difference method with the Nuttall43 window to correct the 
frequency; therefore, the frequencies calculated by the two 
methods are the same. 

Table 6 also indicates that, in each fault state, the frequen-
cies calculated by all the correction methods (the IPC, ECC, 
PDC, RPDC, RPBWF and RPNWF) are closer to the theoreti-
cal frequency than that of the method without correction. Most 
of the corrected amplitudes are higher than that of the uncor-
rected one, which proves that the six methods (the IPC, ECC, 
PDC, RPDC, RPBWF and RPNWF) are effective in prevent-
ing spectrum leakage. 

Next, we plot the amplitudes versus the order of harmonic 
frequency from each fault state in Table 6 in Figs. 19(a)-(g). 
This was done in order to intuitively investigate whether the 
corrected amplitudes are effective in identifying the fault de-
gree of the axle box bearings. 

From Figs. 19(a)-(g), we can see that the amplitude curves 
of the outer-race faults are all smooth, and the amplitude dif-
ference among the same-order harmonics of all the methods is 
relatively small. On the contrary, each order amplitude curve 
of inner-race and ball faults fluctuates relatively significantly, 
and the corresponding amplitudes of some order harmonics 
are distinctly different, such as the second-order harmonic 
amplitude in the serious ball faults. Therefore, the above 
methods achieve good correction effects on sparse spectrum 
(outer-race faults) with frequency interval of each order that is 

far away and without side frequency interference. In compari-
son, the correction effect for the dense spectrum (inner-race 
and ball faults) with side frequency interference is relatively 
poor. 

Theoretically, if the spectrum energy is not leaked or the 
correction method is effective, serious fault degree results in 
large harmonic amplitudes of the spectrum. From Fig. 19(g), 
we can see that significant amplitude differences exist in dif-
ferent fault states. Such differences are sufficient to distin-
guish the fault degree under the same fault location (serious 
faults > slight faults), indicating that the RPNWF method is 
effective for fault quantitative diagnosis. However, in Figs. 
19(a)-(f), the fault degrees of outer-race faults (green curve) 
and ball faults (blue curve) can barely be separated (serious 
faults > slight faults), but the effectiveness of these methods in 
other two situations (inner-race and ball faults) is unsatisfac-
tory. 

In Fig. 19(a), in addition to the two points at abscissa 1 co-
inciding with each other, an obvious cross point exists be-
tween the two red curves at approximately abscissa 2.5. The 
third- and fourth-order harmonic amplitudes of the serious 
inner-race faults are obviously smaller than those of slight 
inner-race faults, which is inconsistent with the actual situa-
tion. This result proves that we cannot quantitatively diagnose 
the fault degrees of rolling bearing by discrete spectrum with-
out correction.  

Moreover, the third and fourth values of the two red curves 
in Figs. 19(b)-(d) yield close values, which makes it difficult 
to distinguish between the two states of slight and serious 
inner-race faults.  

The curves with the same color in Fig. 19(e) have four po-
tential coincidence points (both red and blue curves are two), 
which correspond to the first and third harmonic amplitudes of 
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Fig. 19. Amplitudes of each fault state with various calculation methods: (a) Without correction; (b) IPC; (c) ECC; (d) PDC; (e) RPDC; (f) RPBWF; 
(g) RPNWF. 
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the inner-race faults and the third and fourth harmonic ampli-
tudes of the ball faults, respectively. In Fig. 19(f), the number 
of such coincidence points is only one, which corresponds to 
the fourth harmonic amplitudes of the ball faults. However, no 
such point is observed in Fig. 19(g). Thus, the RPDC method 
may be misjudged in the severity of inner-race and ball faults, 
and the effect of the amplitude correction is the worst among 
the three methods. The RPBWF method is also difficult to 
diagnose the ball faults quantitatively, and the effect of ampli-
tude correction is located between the RPDC and RPNWF 
methods. The RPNWF method can distinguish the fault de-
grees in three different fault locations (outer-race, inner-race, 
and ball), and the amplitude correction effect is the best 
among the three methods. These results are consistent with 
those obtained in the simulation analysis. 

The RPNWF method proposed in this study is effective in 
the quantitative fault diagnosis of the seven signals with dif-
ferent faults of axle box bearings used in this study. The am-
plitudes of the fault characteristic frequency and its harmonics 
extracted by this method can help obtain the axle box bear-
ing's fault and the degree of such fault.  

 
6. Conclusions 

The following conclusions can be drawn based on the 
study's main findings: 

a. For the seven signals with different fault locations and 
fault degrees of axle box bearings used in this study, the tradi-
tional FFT algorithm without correction can be used to iden-
tify whether the bearing is faulty and, if so, the location of 
such a fault; however, it cannot identify the fault degree. 

b. For the seven signals with different fault locations and 
fault degrees of axle box bearings used in this study, the 
RPNWF can effectively distinguish the seven signals with 
different fault locations and fault degrees of the axle box bear-
ings on UWL. Its amplitude correction effect is better than 
those of the traditional discrete spectrum correction methods, 
such as the IPC, ECC, PDC methods. 

c. The fault setting experiments prove that the idea of inte-
grating the fault diagnosis system of axle box bearings based 
on vibration monitoring with UWL is feasible and practically 
applicable. 

 
In terms of its limitations, this study categorizes the states of 

the axle box bearings into only seven classes under the cir-
cumstance of small samples. Moreover, the faults are gener-
ated artificially, which may be different from the reality. Thus, 
realistic samples should be supplemented with various health 
states to test the capability of the proposed method confidently 
for multiple classifications. 
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