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Abstract 
 

Research has shown that the damping of a vibrating structure is highly dependent on its stress function. In this study, the bending stress 

and damping of wide cantilever beams under free vibration were analyzed using the classical plate and beam theory. The damping stress 

equation for cantilever beams under free vibration was derived based on the empirical function of unit dissipating energy, whereas the 

plate bending equation was derived using the double finite integral transform method. The bending stress and damping ratio results from 

the beam and the plate theory were compared with simulation results from finite element analysis (FEA) for different length-to-width 

ratios. Results show that the plate theory displayed a good agreement with FEA results in terms of estimated value and trending curve 

shape when a significantly large number of terms were used. Using a small number of terms resulted in large errors at high length-to-

width ratios, but provided sufficient estimates when the length-to-width ratio dropped below four. It was found that the beam theory was 

only valid for beams with very high length-to-width ratios or square plates. Beyond this ratio, the beam theory recorded a higher error 

estimate than the plate theory. Overall, the most accurate stress and damping estimations come from the use of plate theory with a very 

high number of terms.  
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1. Introduction 

The harvesting of vibration energy from an ambient source 

to replace conventional batteries in low-powered devices has 

been carefully studied over the past decade [1-5]. Approaches 

for converting vibration energy to electrical energy generally 

involve a clamp-free cantilever beam subjected to base excita-

tion motion, although the transduction method may vary be-

tween piezoelectric, electromagnetic, and electrostatic. Most 

of the current literature focuses on design optimization of the 

harvester to increase the device’s efficiency [6-11]. However, 

very few studies have attempted to explore the effect of damp-

ing on the performance of these devices.  

In an attempt to generate more power from a vibration en-

ergy harvester, Dayou et al. [12, 13] proposed a ‘split-width’ 

method, hypothesizing that the damping of a cantilever beam 

increases when the width of the beam is enlarged. The hy-

pothesis was validated with experimental proof. It was con-

cluded that using a smaller beam width was more beneficial 

since a lower damping resulted in a higher power output. 

Likewise, Hosseini and Hamedi [14] also noted a similar trend 

in their work. The reason as to why damping increases when 

the beam width increases was not explained in their work. 

However, it is expected that the increase in damping is due to 

the increase in bending stress in wider beams. 

In an earlier study, Lazan [15] proposed a theory relating 

the damping of a structure to its maximum bending stress. He 

then developed an empirical formula that relates the energy-

dissipation unit of a structure to its stress amplitude based on 

the many metals he tested. Applying this relation, Lazan [16], 

Kume et al. [17], and Gounaris and Anifantis [18] each devel-

oped a refined empirical equation relating the maximum bend-

ing stress and the fatigue limit stress of a cantilever beam un-

der forced vibration to its loss factor. The slight differences 

that appeared in their equations are due to the different ap-

proach taken by the authors in deriving the refined equations, 

although these differences are reportedly very small. Gounaris 

and Anifantis [18] demonstrated that by using their equation, 

it was possible to analytically determine the damping capacity 

of beam-like structures through an iterative finite element 

analysis (FEA) process. As compared to the approach by 

Lazan [15] and Kume et al. [17] in which the maximum bend-

ing stress was obtained experimentally, the approach by 

Gounaris and Anifantis [18] does not require any experimental 

input. Since damping is highly related to the stress of a struc-
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ture, it is important to apply the correct stress theory to obtain 

a more accurate damping estimation.   

In this work, we analyzed the accuracy of the classical beam 

theory (Euler-Bernoulli) and the classical plate theory (Kirch-

hoff-Love) in predicting the stress and damping of wide canti-

lever beams under free vibration. Other forms of beam and 

plate theories were not considered in this work as the aspect 

ratios that are generally used in vibration energy harvesting 

applications allow for thin beam approximations [19]. The 

damping-stress relation of a cantilever beam under free vibra-

tion was first derived based on the empirical formulae pro-

vided by Lazan [15]. The maximum bending stress amplitude 

and damping ratio prediction from the beam theory and the 

plate theory were compared with the results from finite ele-

ment analysis (FEA). The validity of both theories was out-

lined and their implications on damping prediction were dis-

cussed. 

 

2. Damping stress equation for free vibration 

The damping factor of a vibrating system greatly influences 

its output performance. Assuming hysteretic damping, the loss 

factor of a structure can be described as Eq. (1) [20]. 

 

,
2

D

G
γ

π
=   (1) 

 

where γ  is the loss factor of the structure, D  is the energy 

loss per unit volume in the structure and G  is the total strain-

energy per unit volume of the structure. This form of damping 

is related to the internal material damping of a structure. As-

suming proportional damping, the first mode damping ratio of 

a structure is equal to half of its loss factor [21]. The energy 

loss term D  can be determined from Eq. (2) and the total 

strain energy term, G , is defined by Eq. (3).  
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where V is the volume the structure, 
a

σ  is the bending stress 

amplitude experienced by the vibrating structure, E  is 

Young’s modulus of the structure and ( )a
f σ  is the unit 

dissipating energy as a function of stress given by 
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where 
f

σ  is the fatigue limit stress of the structure. The fa-

tigue limit stress usually known. Note that Eq. (4) represents 

an empirical formula derived by Lazan [15] from many tested 

samples. For cases of forced vibration, 
a

σ  refers to the stress 

amplitude at resonance. For free vibration, 
a

σ  reflects the 

initial stress applied on the structure to induce vibration. At 

the given time, the bending stress of the vibrating structure 

was obtained experimentally. However, it is possible to ana-

lytically derive the bending stress of simple structures such as 

a rectangular beam. For cases of cantilever beams under free 

vibration, the vibration of the beam is usually induced by an 

instantaneous load applied at the free-end of the beam. The 

undamped motion of a beam under this form of vibration can 

be modelled by 
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where ( ),rel
z x t  is the vertical displacement of the cantilever 

beam at position x  along the length of the beam and time t , 

L  is the length of the beam, C  is an arbitrary constant, 
n

ω  

is the natural frequency of the beam and ( )n
xϕ  and ( )P x  

are defined as [22] 
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where 
n

τ  is a constant, 
n

λ  is a frequency constant, P  is 

the load applied at the free end of the beam and I  is the sec-

ond moment of area of the beam. The subscript n refers to the 

mode of vibration. Considering the first six modes of vibration 

at 0t = , Eq. (5) simplifies to 
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By applying the Euler-Bernoulli theory of bending, the 

bending stress amplitude of a cantilever beam can be de-

scribed by 
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where 
a

σ  is the bending stress amplitude acting on the vi-

brating cantilever beam at position ( ),x z  and z  is the posi-

tion along the thickness of the beam relative to the center. 

Substituting Eqs. (9) and (10) into Eq. (2) and integrating it 

with respect to the width, w , length, L , and thickness, t , of 

the beam results in Eq. (11): 
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Solving the first integral with respect to the z  direction 

yields 
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Applying the same steps for Eq. (3), the following equation 

is obtained:  
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Substituting Eqs. (12) and (13) into Eq. (1) defines the 

damping stress equation for the first mode damping ratio of a 

cantilever beam:  
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and 
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It is difficult to analytically solve the integral parts in Eqs. 

(15) and (16) due to the power exponent of each term. Never-

theless, the terms in Eqs. (15) and (16) can be approximated 

using the following expressions with an error less than 1.7 % 

for all values. 
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Substituting Eqs. (15) and (16) into Eq. (12) results in 
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Notice that the term in the rounded brackets in Eq. (19) is 

actually equal to the solution of Eq. (10) for x = 0 and y = 

/ 2h . This position corresponds to the top and bottom surface 

of the vibrating beam at the clamped end, which is also the 

location where the beam experiences its maximum bending 

stress during vibrations. Hence, Eq. (19) can also be defined 

as 
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where 
m

σ  is the maximum bending stress located at the 

clamped end of the cantilever beam. In addition, the desig-

nated term also corresponds to the classical beam bending 

theory. Note that the same results as in Eq. (20) can be ob-

tained for cases of a clamp-free cantilever beam under har-

monic base excitation [17]. 

Since Eq. (20) was derived from the basic beam theory, Eq. 

(20) would always predict the same stress and damping for 

cases where the force per unit beam width ( / )P w  is con-

stant. Generally, this means that the width of the beam does 

not affect the maximum bending stress and hence the damping 

of the beam. This conclusion contradicts the observations 

made by Dayou et al. [12]. Dayou et al. [12] analyzed damp-

ing in both free and forced vibration. It is unclear if the ratio of 

/P w  was fixed in their free vibration analysis. However, a 

similar trend was also recorded in their forced vibration ex-

periment where the ratio of /P w  was constant for this case 

since a constant forced acceleration was used. Both experi-

ments recorded an increase in damping with increasing beam 

width. This suggests that the classical beam theory is unable to 

differentiate the stress and damping of wider beams. A solu-

tion for this issue would be to consider plate theory instead of 

beam theory. Since plates are essentially wide beams, it is 

assumed that Eq. (20) is applicable for plates. 

 

3. Plate bending theory 

Since the maximum stress in Eq. (20) relates to the bending 

of a cantilever beam under an applied concentrated load, this 

section will consider the bending of a cantilever plate under 

the same type of loading. Kirchhoff-Love theory of thin plates 

states that 
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where ( ),W x y  is the vertical displacement of the plate at 

position x  along the length and y  along the width, q  is 

the loading applied on the plate and *E  is the plate’s flexural 

rigidity defined as  
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where v  is Poisson’s ratio of the plate. The boundary condi-

tions for a cantilever plates are 
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Applying the method of double finite integral transform, 

( ),W x y  can be defined as [23] 
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where 1,3,5i = … ,  1j = …  and 
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The term 
ij

W  can be derived from the boundary condition 

problems resulting in [23] 
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The term 
ij

q  refers to the double finite integral transform 

of the load function ( ),q x y  applied on the plate and can be 

defined as 
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For cases of concentrated point load, 
ij

q  can be solved by 

considering the integral identities of delta functions [24]. 
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where ( ),η Ω  marks the x  and y  location of the applied 

load. The terms , ,
j j i

P Q R  and 
i

S  from Eq. (30) are un-

knowns which can be determined by solving the boundary 

condition problems in Eqs. (23)-(26). The accuracy of Eq. 

(30) depends on the number of unknown terms used. In this 

paper, the effect of the number of terms used for each of the 

four unknown variables on the accuracy of the predicted stress 

and damping is explained in the next section. The maximum 

bending stress amplitude at the clamped end of the beam can 

be calculated using Eq. (36). 
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4. Comparison with FEA 

In this section, the effect of the beam length to beam width 

ratio ( /L w ) on the maximum bending stress amplitude and 

damping ratio of a steel cantilever beam under concentrated 

loading was analyzed using FEA. Since the classical beam and 

plate theory is only valid for thin beams, the effect of beam 

thickness was not investigated. The loading was applied at the 

center of the beam’s free end. FEA simulation was conducted 

using ANSYS software. The constant properties of the steel 

beam are in Table 1. The beam was modelled using three-

dimensional elements with a mesh size of 0.2 mm. 

The length-to-width ratio of the beam was varied between 

Table 1. Properties of steel beam. 
 

E  (GPa) 200 

v  0.3 

L  (mm) 100 

t  (mm) 1 

f
σ  (MPa) 186 
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/ 1L w =  to / 20L w =  while maintaining a constant length, 

thickness and a /P w  ratio of 100. The bending stress ampli-

tude for each scenario was recorded at the center of the 

beam’s clamped end. To compare the beam theory and plate 

theory with FEA, the von Mises stress was considered. Eqs. 

(37) and (38) describe the von Mises stress of beams and 

plates: 

 

 ,beam

von m
σ σ=   (37) 

( ) ( )2 22

  .
2

m m m mplate

von

v vσ σ σ σ
σ

− + +
=   (38) 

 

The results of the plate theory were computed using 100, 

300, 500, 700 and 1200 number of terms for each of the four 

unknown variables. Fig. 1 illustrates the von Mises stress 

comparison between the two theories with FEA. Fig. 2 shows 

the damping ratio comparison of the three methods where the 

damping ratio was calculated using Eq. (20). Results show the 

same trend in both stress and damping. This is expected since 

the recorded stresses in Fig. 1 were much lower than the fa-

tigue limit stress value in Table 1. Hence, Eq. (20) becomes an 

approximately linear relation. The FEA results in Fig. 2 show 

that as the width of the beam increases, the damping ratio 

increases until a specific value and decreases again after that. 

However, the increase in damping is not very significant. 

Dayou et al. [12] observed a much higher increase in damping 

in their experiment than in Fig. 2. The discrepancies that arise 

here may be due to the different material used and the contri-

bution of other forms of damping in the experiment. Theoreti-

cally, the FEA results in Fig. 2 predict that a cantilever beam 

would experience minimum damping under free vibration 

motion when w L= .  

The important matter of this study is to discuss the validity 

of the classical beam and plate bending for wide beams. It is 

assumed that the FEA results are accurate. It can be seen that 

as the ratio of /L w  increases, the required number of terms 

also increases in order to obtain a more accurate stress and 

damping estimate. Large errors can be observed between the 

plate theory estimations and FEA results when only 100 terms 

are used for cases where / 4L w > . In addition, the trending 

curves displayed by plate theory when using a lower number 

of terms are significantly different than the FEA results. This 

shows that the plate theory becomes more sensitive when 

larger /L w  ratios are used. 

Overall, the use of a smaller number of terms in plate theory 

is only valid when / 4L w ≤ . The plate theory is seen to con-

verge to the beam theory when w L= , due to the contribution 

of the poison ratio effect. In addition, a strong agreement be-

tween the beam theory and the FEA results was recorded only 

when w L= . This means that the beam theory can be deemed 

accurate for square plate estimations. The maximum differ-

ence between the beam theory and FEA results in Figs. 1 and 

2 is 8.5 % and 2.5 %, whereas the maximum difference for 

plate theory using 1200 terms is 3.7 % and 1.4 %, respectively. 

These errors may differ depending on the material properties 

of the beam itself. 

This analysis shows that in determining the bending stress 

and damping of wide cantilever beams under free vibration, 

plate theory results in a more accurate prediction. However, 

the estimations of plate theory highly depend on the number 

of terms used in Eq. (30), especially when dealing with larger 

/L w  ratios. Generally, the classical beam theory assumes 

zero shear deformation. Hence, the beam theory estimations 

would be more accurate when the width of the beam ap-

proaches zero. Nevertheless, this study shows that the beam 

theory is also valid for square plates.  

 

5. Conclusion 

This study explored the application of the classical beam 

and plate theory in predicting the stress and damping of wide 

cantilever beams. The damping stress equation for cantilever 

beams under free vibrations was derived from the empirical 

unit dissipating energy function given by Lazan [15]. The 

classical plate bending theory was derived using the method of 

 
 

Fig. 1. von Mises stress comparison between beam theory, plate theory 

and FEA simulation. 

 

 
 

Fig. 2. Damping ratio comparison between beam theory, plate theory 

and FEA simulation. 
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double integral transform. The maximum bending stress and 

damping ratio results from the beam and plate theory were 

then compared to FEA results. 

Results show that the accuracy of the classical plate theory 

is highly dependent on the length-to-width ratio of the beam. 

Since the solution to the derived plate bending equation is a 

summation of a specified number of four unknown terms, this 

number plays a major role in the accuracy of the plate theory. 

It was found that the number of terms required for a sufficient 

stress and damping estimation increases when the /L w  ratio 

increases. In addition, the trending curve of stress against 

/L w  displayed by the FEA results can only be achieved 

when a significantly high number of terms are used. If a small 

number of terms were used, then the results from the plate 

theory would only be valid for when / 4L w ≤ . The maxi-

mum difference between the plate theory and FEA results in 

terms of bending stress and damping was recorded to be 3.7 % 

and 1.4 % when 1200 terms were used for each of the four 

unknowns.  

The results from the classical beam theory suggest that the 

beam theory is valid for square plates. If the assumptions 

made in the development of the beam theory were considered, 

this means that the beam theory is only valid when the ratio of 

/L w  is significantly high or equal to one (square plate). Be-

yond these ratios, comparison between the beam theory and 

the FEA results recorded a maximum difference of 8.5 % and 

2.5 % in terms of bending stress and damping. Overall, plate 

theory can be concluded to be more accurate in estimating the 

bending stress and damping of wide beams, provided that a 

high number of terms are used. Nevertheless, results show that 

the width of a cantilever beam has a minor effect on its mate-

rial damping ratio and that the observations made by Dayou et 

al. [12] may be due to the contributions of other form of 

damping. 
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