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Abstract 
 
Influence of material shear nonlinearity on multidirectional laminates in terms of failure envelopes was investigated. In applying clas-

sic laminate theory, elastic constants were employed in transverse and longitudinal directions, while initial shear modulus was substituted 
by the secant shear modulus, which was achieved by means of Ramberg-Osgood model. The fracture curves were generated from maxi-
mum stress, Tsai-Wu and Puck criteria. The similarities and differences between nonlinear and linear shear models can be expressed in 
terms of symmetric balanced laminates [±θ°]2s and asymmetric laminates [0°2/±θ°], which are both arranged by material E-glass/MY750 
oriented at different directions. All σ1 - σ2 failure envelopes due to material nonlinearity extend outward in tensile and compressive direc-
tions, but the phenomenon is not obvious with increasing ply angles. Similarly, the differences of all σ1 - τ12 failure envelopes between 
nonlinear shear analysis and linear shear analysis are decreasing with increased ply angles. Ply orientations and loading directions are 
involved in the effect of nonlinear shear properties on failure envelopes. According to the failure modes obtained from maximum stress 
criterion, it is reasonably derived that the influence of material shear nonlinearity will lead whether the failure envelopes from the other 
two failure criteria are more conservative or not.  
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1. Introduction 

A composite material can be manufactured when 
orthotropic elastic fibers are embedded into a plate isotropic 
elastoplastic matrix. However, due to poor properties in trans-
verse direction compared with properties in longitudinal direc-
tion, plies cannot be aligned parallel to the fiber direction, 
Hence, plies oriented at different directions are arranged into 
the laminate in order to achieve desired strength and stiffness. 
From experimental stress-strain curves [1], it can be observed 
that uniaxial stress-strain curves are linear and shear stress-
strain is significantly nonlinear for unidirectional laminates 
(UD) when uniaxial loads are applied. While UD are sub-
jected to the loads with off-axis angle other than 0°, obvious 
nonlinear stress-strain response governs [2]. For multidirec-
tional laminates [3, 4], both uniaxial and shear stress-strain 
curves show nonlinear relationships; however, uniaxial stress-
strain curves of laminates composed of plies oriented at a 
small angle may propose a slightly nonlinear property at a 
high strain level, while shear response is always nonlinear no 

matter what laminate stacked sequences.  
Based on the characteristics mentioned above, many re-

searchers have studied the influence of nonlinear properties on 
mechanical behavior of laminates. In Ref. [5], tensile and 
shear strengths of UD are investigated by means of Puck’s 
action plane in terms of improved nonlinear model, and there 
also exists good agreement between force-displacement and 
curves of experimental results. As for the effect of material 
nonlinearity on compressive strength of laminates, it turns out 
to reduce the predicted value of the strength through the utili-
zation of a kind band model [6]. Zand [7] improved a strain 
energy based failure theory to predict the mechanical response 
and failure of laminates considering a nonlinear inelastic ma-
terial. And the model shows better agreement between nu-
merical results and experimental data for laminates than angle 
ply laminates. In this paper, the influence of material shear 
nonlinearity on failure envelopes of multidirectional laminates 
is presented. 

 
2. Theory  

2.1 Nonlinear shear stress-strain constitutive relation 

Generally, material elastic constants are employed in analy-
sis of composite laminates. Initial modulus remains constant 
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throughout the whole proceeding of increasing or decreasing 
loads. However, this is different than the reliably experimental 
results, just shown in Fig. 1. Regardless of ply orientations or 
load conditions, shear stress-strain curves are always signifi-
cantly nonlinear owing to plasticity in the matrix. Aiming at 
fitting the in-plane shear stress-strain experimental curves, 
both macro-mechanical and micro-mechanical models are 
proposed [8-11]. In the process, difficulties lie in the area 
where the slope of stress strain curves changes obviously.  

However, the Ramberg-Osgood model can provide material 
elastoplastic responses at a low strain level. And it is proposed 
by two different expressions that strains and stresses are re-
garded as variables, respectively. From the stress-strain curve 
depicted in Fig. 1, stress slightly increases at a high strain 
level. Furthermore, it may have an asymptotic valve with be-
ing close to the failure strain. Hence, in order to achieve match 
accuracy, the format described in the Eq. (1) is taken into ac-
count. Both secant and tangent moduli can bring a good 
agreement between numerical analysis and test data. But just 
as the definition of elastic moduli, shown in Fig. 1, the secant 
modulus is advantageous on simple calculations over the tan-
gent modulus. Therefore, secant shear modulus is used for 
accurate shear stress-strain relations instead of initial shear 
modulus or tangent modulus, written in Eq. (2). 
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The Ramberg-Osgood coefficients involved in the expres-
sions are summarized in Table 1. Fig. 1 shows a good agree-
ment between experimental data [1] and fitting curves for 
material E-glass/MY750 through the formula. 

Principal material direction is not always coincident with 
laminate direction, since all plies oriented in fiber direction 
could not always exist due to poor transverse properties. Con-
sequently, a rotation angle θ is made from material coordinate 
system (1, 2, 3) to laminate coordinate system (x, y, z) when 
material coordinates are not parallel to the loading direction, 
just presented in Fig. 2.  

In the analysis, Kirchhoff hypothesis is performed. So trans-
verse normals do not change in lengths (i.e., εz = 0), and re-
main straight and perpendicular to the middle surface after 
deformation (γyz = γxz = 0). Accordingly, the constitutive law 
for plane stress condition is defined with transformation ma-
trix. 
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where`Q is modified stiffness matrix specified by reduced 
stiffness matrix and transformation matrix. The elements in`Q 
are listed below. 
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It is easily concluded that the utilization of secant shear 

modulus reduces coefficients`Q11,`Q22,`Q66 and increases 
coefficient`Q12. A positive effect on`Q16 occurs when the 
effect on`Q26 is negative, and a negative effect on`Q16 occurs 
when the effect on`Q26 is positive. The two parameters`Q16 
and`Q26 could play a significant role in shear extension cou-
pling effect between the resultant stress and strain, which 
makes analysis stress and deformation analyses more compli-
cated. However, in-plane shear property makes no contribu-

Table 1. Ramberg-Osgood parameters for E-glass/MY750 material. 
 

Initial shear modulus G0 (GPa) 5.83 

Shear asymptotic stress τ0 (MPa) 76.8 

Shear parameter n 2 

 

 
 
Fig. 1. The definition of elastic moduli and comparison of experimen-
tal and fitting curves for E-glass/MY750 UD. 

 

 
 
Fig. 2. Schematic of definitions of mid-plane and the ply angle. 
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tion to components `Q16,`Q26,`Q66 in transforming reduced 
stiffness if the ply is aligned at 45°. The previous parame-
ters`Qij are used for calculating in-plane resultant forces per 
unit width {N} and moments per unit width {M} in terms of 
mid-plane strains ε0 and plate curvatures κ0. 
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where [A], [B] and [D] are extensional stiffness matrix, cou-
pling stiffness matrix, bending stiffness matrix, respectively. 

 
2.2 Criteria for failure mechanisms 

Failure envelopes are generated by combination of the 
stresses acting on laminates and material conventional 
strengths in a certain criterion. There is no failure theory to 
solve all load conditions. Therefore, in this study, three typical 
kinds of failure criteria were employed in observing the influ-
ence of nonlinear shear behavior on the failure envelopes: 
Maximum stress failure criterion, a limit failure model; Tsai-
Wu failure criterion, an interactive failure model; Puck failure 
criterion, a separate mode. All three theories are based on first 
ply failure. 

Based on maximum stress theory, failure occurs when any 
one of the lamina stresses equals or exceeds the corresponding 
ultimate strength. The function is written below. 
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Tsai-Wu criterion is proposed by a series of quadratic poly-

nomial expressions involving all stress components, which are 
formulated to match experimental results physically. The 
function for plane stress condition can be written below. 
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Like the Tsai-Wu failure criterion, the Puck criterion is also 

based on a phenomenological model, but the Puck criterion 
distinguishes between fiber and matrix for failure, which is 
divided into tension and compression modes, separately [12, 
13]. 
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Fiber compressive failure ((…) < 0): 
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Matrix tensile failure (σ2 > 0): 
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where XT, XC, YT, YC and S12 are strengths corresponding to 
longitudinal, transverse and shear directions, respectively. All 
strengths take absolute values, while all stresses keep their 
signs. The coefficients used in the Tsai-Wu formula are de-
termined by the material conventional strengths, which are 
listed in the following. 
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As for coefficients used in Puck criterion, ( )p +

^P  and ( )p -
^P  

are inclination parameters derived from experimental (σ2, τ12) 
fracture curves. Other parameters AR^^ , ( )p -

^^  and τ12c are ob-
tained below. Index θ is fracture angle defined by the angle 
between normal direction of fracture plane and transverse 
direction of lamina. 
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2.3 Methods for generating failure envelopes 

Biaxial combining loads are applied to observe the effect of 
shear nonlinear behavior on the failure of multidirectional 
laminates. The fracture curves are generated for all possible 
stress combinations, which are caused by the following three 
types of load combinations for the flat plates: Nx - Ny, Nx-Nxy, 
and Ny - Nxy, as shown in Fig. 3.  

Detailed algorithm to generate failure envelopes is pre-
sented in Fig. 4. According to the flowchart, Fig. 5 shows an 
example of σ1 - τ12 curves for UD E-glass/MY750. In the 
process of getting the curve, the first step is to find the coordi-
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nates of failure loads of laminates on x - axis, (xi, 0). The next 
step is to confirm the critical values (xj, yj). As a result, the 
range of x - axis coordinates is identified. So for any x - axis 
value selected in the range, y - axis values can be adjusted to 
meet that the failure index FI is in the tolerance range.  

Without consideration of material shear nonlinearity, the 
failure stresses can be calculated by equation ( )iN FI t× . FI is 
the failure index generated from the above three criteria. Con-
dition FI < 1 defines the safe zone of the stress states for the 

laminates. And the area enclosed by the failure lines means a 
safe zone. As long as stress states are ranged in the safe zone, 
material can still sustain from increasing load. In our study, 
the tolerance FItolerance is 0.03, which means the secant 
modulus keeps constant when the equation occurs |FI-1| < 
FItolerance. In other words, the material property is assumed 
linear when the distance of |FI-1| is less than FItolerance value. 

 
3. Numerical results 

The material E-glass/MY750 properties including elastic 
properties, strength and parameters for Puck’s criterion are 
listed in Table 2.  

There are two different kinds of laminate stacked sequences 
[±θ°]2s, [0°/±θ°] employed, in which θ° varies among 30°, 45°, 
60°. The laminates arranged with [±θ°]2s are symmetric bal-
anced material. There should be an identical ply at position 
with negative thickness direction when the ply in θ° direction 
is arranged at position with positive thickness direction. Hence, 
there is no connection between in-plane forces and out-of-
plane deformation of laminates, and in-plane strains are also 
irrelevant to moments. Moreover, balanced laminates are con-
stituted of equal numbers of θ° and -θ° angled plies, which 
leads to no coupling between axial loads and in-plane shear 
strain. The required plots and laminates layup are summarized 
in Table 3.  

In this section, the influence of nonlinear shear stress-strain 
property on fracture curves resulting from the three failure 
criteria is compared in Figs. 6 and 7, followed by the legend of 
the figures. Therein, the σ2 vs τ12 envelopes from [±30°]2s and 
[±60°]2s laminates have physically the same meaning for σ1 vs 
τ12 envelopes from [±60°]2s and [±30°]2s laminates, which 
leads to that σ2 vs τ12 envelopes can be neglected. 

As shown from the failure envelopes for symmetrical bal-

 
 
Fig. 3. In-plane loads per unit length on a composite plate. 

 

 
 
Fig. 4. Computational algorithm for generating failure envelopes. 

 

 
 
Fig. 5. σ1-τ12 curves for UD E-glass/MY750 obtained by computational 
algorithm described in Fig. 4. 

 

Table 2. Material properties of E-glass/MY750. 
 

Elastic properties  Strength properties Puck criterion  

E1(GPa) 45.6 XT (MPa) 1280 Ef1 (GPa) 76.8  

E2(GPa) 16.2 XC (MPa) 800 vf12 0.2  

v12 0.278 YT (MPa) 40 mσf 1.3  

G12(GPa) 5.83 YC (MPa) 145 ( )p +
^P  0.3  

 S12 (MPa) 73 ( )p -
^P  0.25  

 
Table 3. Summary of laminate types and plots required. 
 

Case No. Laminate lay-up Plots required 

1 [±30°]2s σ1 vs σ2 σ1 vs τ12 

2 [±45°]2s σ1 vs σ2 σ1 vs τ12 

3 [±60°]2s σ1 vs σ2 σ1 vs τ12 

- 

4 [0°2/±30°] σ1 vs σ2 σ1 vs τ12 σ2 vs τ12 

5 [0°2/±45°] σ1 vs σ2 σ1 vs τ12 σ2 vs τ12 

6 [0°2/±60°] σ1 vs σ2 σ1 vs τ12 σ2 vs τ12 

Thickness of ply is 0.125 mm 
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anced laminates resulting from Fig. 6, the following observa-
tions can be made. 1) For all curves of [±45°]2s laminates, 
there is no difference of curves between nonlinear analysis 
and linear analysis. Checking variation of elements in the 
transformed stiffness matrix, the in-plane shear property has 
no contribution to the shear property of laminates. Hence, 
failure stress is also not influenced when biaxial loads are 
applied. 2) For σ1 vs σ2 curves of [±30°]2s laminates, stress 
components σ1 extend outward in x - axis tensile and com-
pressive directions. 3) For those curves of [±60°]2s laminates, 
stress components σ1 extend outward in y - axis tensile and 
compressive directions. 4) For σ1 vs τ12 curves of [±30°]2s 
laminates, all curves from linear analysis are more conserva-
tive than those from nonlinear analysis when laminates are 
just under tensile loads (σ1>0). Meanwhile, curves from 
nonlinear analysis are more conservative than those from lin-
ear analysis when laminates are just under tensile loads (σ1<0). 
5) for σ1 vs τ12 curves of [±60°]s laminates, curves almost 
coincide comparing the nonlinear shear influences under ten-
sile loads (σ1 > 0); curves with regard to nonlinearity show 
fewer safe zones except that endpoints of curves are a little 
higher. 

The influence of material shear nonlinearity on failure enve-
lopes for [0°2/±θ°] is depicted in Fig. 7. Out-of-plane deforma-

tion occurs when in-plane forces are applied because of 
asymmetry of the laminates, which leads to the irregular frac-
ture curves. As a consequence, the following observations can 
be made. 1) For σ1 vs σ2 curves of [0°2/±θ°] (θ° = 30°, 45°, 
60°) laminates, except that the closed curves of [0°2/±30°] 
with regard to material shear nonlinearity cover the conserva-
tive curves from linear analysis, curves from the two different 
models coincide for the other two different stacked laminates. 
To be more precise, only stress components σ1 from 
[0°2/±30°] laminates just extend outward in x – axis tensile 
and compressive directions. 2) For σ1 vs τ12 curves of [0°2/±θ°] 
laminates, the differences of all σ1 - τ12 failure envelopes be-
tween nonlinear shear analysis and linear shear analysis are 
decreasing with increasing ply angles. Especially, shear 
nonlinearity does not affect the fracture curves at all for 
[0°2/±60°] material. 3) For σ2 vs τ12 curves of [0°2/±θ°] lami-
nates, there is nearly no difference between nonlinear shear 
analysis and linear shear analysis.  

 
4. Discussion and conclusions 

All trends of failure envelopes described by arbitrary stress 
combinations resulting from the three failure criteria are the 

 
               (a1)                     (a2) 
 

 
               (b1)                    (b2) 
 

 
                (c1)                   (c2) 
 
Fig. 6. Comparison of failure envelopes between linear and nonlinear 
shear responses for [±θ°]2S E-glass/MY750: (a1) σ1-σ2 for [±30°]2S; 
(a2) σ1-τ12 for [±30°]2S; (b1) σ1-σ2 for [±45°]2S; (b2) σ1-τ12 [±45°]2S; 
(c1) σ1-σ2 for [±60°]2S; (c2) σ1-τ12 for [±60°]2S. 

 

 
          (a1)              (a2)               (a3) 
 

 
          (b1)              (b2)               (b3) 
 

 
         (c1)               (c2)               (c3) 
 

 
 
Fig. 7. Comparison of failure envelopes between linear and nonlinear 
shear responses for [0°2/±θ°] E-glass/MY750: (a1) σ1-σ2 for [0°2/±30°]; 
(a2) σ1-τ12 for [0°2/±30°]; (a3) σ2-τ12 for [0°2/±30°]; (b1) σ1-σ2 for 
[0°2/±45°]; (b2) σ1-τ12 for [0°2/±45°]; (b3) σ2-τ12 for [0°2/±45°]; (c1) σ1-
σ2 for [0°2/±60°]; (c2) σ1-τ12 for [0°2/±60°]; (c3) σ2-τ12 for [0°2/±60°]. 

 



5828 H. Jia et al. / Journal of Mechanical Science and Technology 32 (12) (2018) 5823~5829 
 

 

same, that is, curves from the other two criteria also present 
more safe zone when failure curves from any one of the three 
criteria cover more safe zone in terms of material shear 
nonlinear property. 

In this study, secant shear modulus rather than initial shear 
modulus was employed in the generation of failure envelopes 
when laminates are under biaxial loads; thus, the decrement in 
shear modulus results in the decreasing diagonal values of the 
ABD matrix, which brings about increment in absolute values 
of strains and curvatures acting on reference plane. Lamina 
strains are derived from reference plane strains and curvatures. 
Consequently, strain distributions of any ply embedded in 
laminates are accordance with strain components resulting 
from left plies for symmetric balanced laminates, while strain 
behaviors of asymmetrical laminates could not be like this. 

For symmetrical balanced laminates, stress components of 
ply oriented in positive direction should be the same in magni-
tude and sign as the corresponding stresses components of ply 
oriented in negative direction. In addition, stresses acting on 
the lower surface should be the same as the stresses acting on 
the upper surface of the identical ply. However, the stress 
distribution rules mentioned above would not apply at all to 
the asymmetrical laminates. Stress components of any one of 
the three plies are different from the corresponding stress 
components of any one of the left two plies. And the bottom 
stresses are not equal to the top corresponding stresses of the 
same layer. It is all due to the existence of a coupling stiffness 
matrix in asymmetrical laminates. 

Due to the changes in stiffness matrix, the stress states caus-
ing nonlinear numerical model failure may not be the same as 
the stress states causing linear numerical model failure, even 
when loads are the same in direction and magnitude. It is 
shown clearly in Fig. 1(b) that the larger shear strain provides 
more influence on the secant modulus. Failure occurs when 
any separate item of combined stresses reaches the conven-
tional strength of ply embedded in laminates based on maxi-
mum stress criterion.  

For symmetric balanced laminates, decrement of shear 
modulus leads to that the maximum absolute values of axial 
stresses (σ1 and σ2) are increased and that maximum absolute 
values of in-plane shear stresses (τ12) are decreased. Whether 
normal stress or shear stress causes the linear model failure, as 
long as it is shear stress that causes the nonlinear shear model 
based on maximum stress criterion, which will lead that the 
nonlinear model with smaller value of shear stress needs the 
larger values of normal stress to make up, in order to make the 
failure indexes from the other two criteria equal to 1. When 
normal stress causes the two models failure, it means that the 
influence of secant shear modulus on stresses is limited. When 
normal stress causes the nonlinear model failure and shear 
stress causes the linear model failure, it means the shear stress 
of nonlinear model has a smaller value. The conditions mean 
that the nonlinear shear model provides more conservative 
failure envelopes Therefore, once which stress component 
causes fracture is determined according to maximum stress 

criterion, the similarity and differences of failure envelopes 
between the nonlinear shear models resulting from Tsai-Wu 
and Puck criteria can be derived. Failure envelopes of 
[±45°]2s laminates from the nonlinear model are the same as 
those from the linear model, because shear nonlinearity makes 
no contribution to ply stress components owing to expressions 
of`Qij. 

For asymmetric laminates, the fracture of the nonlinear and 
linear shear models could be caused by the lamina placed in 
the same orientation and position, but it is also possible that 
the fracture of the two models is caused by the lamina placed 
in the inconsistency of orientation and position. However, the 
content in the previous paragraph described by different stress 
components causing laminates failure will lead to the fact that 
similarity and differences of failure envelopes from the two 
models can be applied here. 

The failure mentioned in our study is the initial failure, 
which means one lamina of the laminate fractures, but the load 
capability of the laminate is determined by the final ply failure 
derived from a progressive failure analysis model lacked in 
the study. From the comparison of failure envelopes presented 
in the above figures and discussions, the facture stresses of 
failed plies in sequence and the failure models from the 
nonlinear shear analysis could not be the same as the condi-
tions from the linear shear analysis under the same given load, 
which leads to different theoretical stress-strain curves of 
laminates resulting in different predictions of load capability. 
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