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Abstract 
 
A finite element code is parallelized by vertex-oriented domain decomposition method which utilizes one- or multi-dimensional parti-

tioning in structured mesh and METIS Library in unstructured mesh. For obtaining the domain-decomposed solution, iterative solvers 
like conjugate gradient method are used. To accelerate the convergence of iterative solvers, parallel incomplete LU factorization precon-
ditioners are employed, and their performances are compared. For the communication between processors, Message Passing Interface 
Library is used. The speedups of parallel preconditioned iterative solvers are estimated through computing 2- and 3-dimensional Laplace 
equations. The effects of mesh and partitioning method on the speedup of parallel preconditioners are also examined.  
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1. Introduction 

Domain decomposition method has been efficiently used in 
parallel machines with distributed memory as an analysis tool 
for governing equations including elliptic-type partial differ-
ential equations. In this method, a calculation domain is de-
composed into a number of subdomains equal to the number 
of processors, so that each processor is assigned a subdomain. 
Each subdomain generates a local matrix which is implicitly 
coupled with adjacent local matrices as shown for example in 
Fig. 1. When a domain is decomposed, local matrices are gen-
erated from respective processors so that communications 
between adjacent processors are required to obtain the solution 
for the entire domain. This is called communication overhead. 
Besides, in the procedure for solving local matrices with itera-
tive methods like conjugate gradient method (CG), the itera-
tion number increases as the number of subdomains increases. 
The speedup (for definition, see Eq. (11)) decrease is mainly 
due to the increase in the iteration number, together with the 
increase in the communication overhead. Consequently, many 
efforts have been made to develop an algorithm that mini-
mizes the communication overhead and the increase in the 

iteration number. In particular, in developing a scalable paral-
lel preconditioned CG algorithm, it is important to design an 
optimal parallel preconditioner that minimizes these factors.  

Basermann et al. [1] used block incomplete LU(0) factoriza-
tion (block ILU(0)) preconditioner to solve various types of 
problems. The local matrix assigned to each processor is di-
vided into several block matrices, and ILU(0) preconditioner 
is applied to each block matrix independently by ignoring 
elements that are implicitly coupled with other block matrices. 
To improve the performance of block ILU(0), Magolu monga 
Made and van der Vorst [2, 3] overlapped local matrices with 
those of neighboring subdomains, and preconditioned local 
matrices after increasing fill-in entries in the overlapped parts. 
They obtained more scalable results for elliptic partial differ-
ential equations, as compared with previous block ILU(0). 
They showed that increasing fill-in entries by extending the 
overlapped parts of a subdomain was more efficient in im-
proving the performance of block ILU(0) than increasing fill-
in entries without extending the overlapped parts. Parallel 
preconditioner utilizing the Schur complement was proposed 
by Saad and Sosonkina [4], where only boundary variables of 
subdomains were used to compose a Schur system so that 
their exact values could be obtained by solving this reduced 
system. Using these values as boundary conditions, each proc-
essor can deal with the corresponding subdomain completely 
in parallel. However, solving a Schur system accurately is a  
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time-consuming procedure resulting in more inefficient paral-
lel algorithm than block ILU(0). Hence, they proposed a paral-
lel iterative algorithm that uses GMRES to solve the Schur 
complement approximately before interior parts of the sub-
domains are solved. A hybrid parallel solver of sparse linear 
system was proposed by Manguoglu [5]. This technique con-
tained both direct and iterative solver based on a domain de-
composition method for parallel computing and was shown to 
be both robust and scalable. Lemmer and Hilfer [6] solved a 
very large scale problem of the flow through porous media 
consisting of 20483 voxels by using a parallel domain decom-
position method with non-blocking communication. SIMPLE 
algorithm was used to solve the Stokes equation. Recently, an 
additive Schwarz preconditioner for adaptive finite element 
method was proposed for parallel computation based on do-
main decomposition method by Loisel and Nguyen [7] They 
employed a parallel conjugate gradient (CG) method to effi-
ciently solve the global linear system and showed that the 
convergence rate of the CG method was dependent on the 

effective conditioner number. 
The objective of the present study is to compare the per-

formances of the well-known representative preconditioners 
such as diagonal preconditioning (DIAG), block ILU(0) with-
out overlapping (BIWO) [8], iterative block ILU(0) (ITBI) 
and distributed ILU(0) (DILU) [9] by applying them for the 
solution of an elliptic partial differential equation. In addition, 
we propose modified distributed ILU(0) (MDLU) to compare 
its performance with aforementioned parallel preconditioners. 
For iterative solvers, CG and Bi-CGSTAB proposed by Van 
der Vorst [10] are used. 

 
2. Test problems 

A square is chosen as the computational domain for 2-
dimensional problems and a cube is chosen for 3-dimensional 
problems as shown in Fig. 2. Except for the case of estimating 
speedup in unstructured mesh, we use structured mesh that has 
equal number of uniform or non-uniform nodes in each direc-
tion. The relative precision of the final residual in each linear 
system is 10-6. The test problems are run on Cray T3E of Ko-
rea Institute of Science and Technology Information (KISTI) 
that has 128 processors and 16 GB memory, although we util-
ize up to only 64 of processors. We consider the Laplace 
equation: 

 
2

0
j j

u
x x
¶

=
¶ ¶

         (1)  

 
where for 2-dimensional problem the boundary conditions are 
u = 1 at x = 0 and u = 0 at other sides, and for 3-dimensional 
problem they are u = 1 on face 1 and u = 0 on faces 2 - 6 in 
Fig. 2. Structured linear finite element mesh and CG are em-
ployed for solving the Laplace equation. 

 
3. Parallelization 

After a mesh for the whole domain is generated, domain 
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Fig. 1. Non-zero pattern of a domain-decomposed matrix obtained by a 
finite element discretization for the meshes to be shown in Fig. 3. 

 

 
 
Fig. 2. Computational domain for 3-dimensional problems. 
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decomposition method is implemented to solve the problem 
by a parallel machine. Communication between adjacent 
processors is achieved by Message Passing Interface (MPI) 
Library [11] and parallel preconditioned iterative solvers are 
used to obtain the solution for the whole domain.  

 
3.1 Domain decomposition method 

For efficient parallelization, we partition the computational 
domain in such a way that the calculation load of each domain 
is balanced and the communication load between processors is 
minimized. When structured finite elements are adopted, 1-
dimensional or multi-dimensional domain decomposition is 
applied. For the case of an unstructured mesh, METIS Library 
[12] is to be used for mesh partitioning. Fig. 3 shows exam-
ples of 1-dimensional and 2-dimensional decomposed compu-
tational domains for solving the 2-dimensional Laplace equa-
tion (see Subsec. 4.1). A computational domain is decom-
posed by vertex-oriented domain decomposition method on 
the basis that each subdomain has the same number of vertices 
to satisfy the load balance for all processors. Each decom-
posed subdomain consists of internal nodes, interior and exte-
rior boundary nodes as illustrated in Fig. 4 [13]. After domain 
decomposition, the nodes are locally renumbered in the order 
of internal nodes, interior boundary nodes and exterior bound-
ary nodes. Each processor calculates the values of flow vari-
ables at internal nodes independently. However, for those at 
interior and exterior boundary nodes, communications with 
adjacent processors are needed before the calculation. In each 

processor, only local values belonging to each subdomain are 
computed and stored. Therefore, rows for exterior boundary 
nodes are neglected in constructing the local matrix for each 
processor. The local matrix [An] for solving values at internal 
and interior boundary nodes in decomposed nth subdomain can 
be typically constructed as follows: 

 
[ ]{ } { }n n nA x f=  

0
[ ] , { } , { } .
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    (2) 

 
An example of non-zero patterns of the local matrices [An] 

is illustrated in Fig. 5. It is noted that {un} and {sn} are com-
ponents from internal node values, and {vn} and {tn} are com-
ponents from interior boundary node values. These are from a 
local subdomain and do not need any communication. But 
{wn

m} is the part from exterior boundary nodes. Thus, [Bn] is a 
part of the local matrix generated from internal nodes, [En] and 
[Fn] are linked parts generated from internal and interior 
boundary nodes, [Cn] is a part generated from interior bound-
ary nodes, and [In

m] is a linked part generated from interior 
and exterior boundary nodes that are communicated with mth 
subdomain. Since {wn

m} and [In
m] in Eq. (2) are linked com-

ponents with adjacent subdomains, communication with adja-
cent processors is required to solve this part. 

 
3.2 Preconditioned CG (PCG) algorithm 

Serial PCG algorithm is represented by the following se-
quence of operations with subscript “j” denoting jth step of 
PCG iteration only in this subsection: 
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where {rj} is the residual vector of which the initial value is 
defined as {r0}={f}-[A]{x0}, {dj} is the search direction, {zj} 
is the preconditioned residual vector, and [M] is the precondi-
tioner matrix. In this work, a parallel conjugate gradient code 
for P1P1 finite element formulation has been developed and 
tested with various parallel preconditioned matrices in Eq. (6).  

 
3.3 Parallel preconditioning method 

Convergence rate of an iterative solver depends on the con-

 
(a) 1-dimensional decomposition    (b) 2-dimensional decomposition 
 
Fig. 3. An illustration of decompositions of a 2-dimensional computa-
tional domain into 4 subdomains. 

 

 
 
Fig. 4. Classification of cells in a subdomain. 
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dition number of a matrix, and preconditioners accelerate the 
convergence rate by reducing the condition number. Generally, 
ILU [14] preconditioners show good convergence rate in se-
rial computations. However, in parallel computations, the 
communication overhead originates from the intrinsic sequen-
tial characteristics of ILU preconditioners. Then, in order to 
acquire scalable results, one should modify the algorithms of 
ILU preconditioners so that they reduce the communication 
overhead at the cost of small increase in the iteration number. 

 
3.3.1 Diagonal preconditioning (DIAG) 

The preconditioner matrix for nth subdomain is now defined 

as [Mn] = Diag n n

n n

B E
F C
æ ö
ç ÷
è ø

 (see Eq. (2)) in diagonal precondi-

tioning. Since they are independent of adjacent subdomains, 
the computation process for Eq. (6) can be executed inde-
pendently in each processor. Therefore, for this preconditioner, 
there are neither additional modifications nor communication 
overhead due to parallelization. 

 
3.3.2 Block ILU(0) without overlapping (BIWO) [10] 

Instead of applying ILU(0) preconditioning to the whole 
domain, BIWO independently applies it to local subdomains. 
ILU precondtioner is applied to each local matrix [An] exclud-
ing [In

m] elements that are linked to adjacent processors, i.e. to 

each n n

n n

B E
F C
æ ö
ç ÷
è ø

. By neglecting [In
m] elements, there is an 

advantage that each processor can compute the preconditioner 
matrix ([Mn] = [Ln][Un]) and execute forward and backward 
substitution procedures ([Ln][Un]{z} = {r}) independently. Ln 
and Un are lower and upper triangular matrices after incom-
plete LU(ILU(0)) decomposition of matrix Mn. But the num-
ber of ignored elements of the global matrix increases along 
with the increase of the number of subdomains, which results 
in the increase of the iteration number of PCG solver. 

 
3.3.3 Iterative block ILU(0) (ITBI) 

When computing the preconditioner matrix ([Mn] = 
[Ln][Un]), ITBI neglects [In

m] elements as BIWO does. But, in 
computing the preconditioned residual vector {z}, ITBI uses 
[In

m] elements in Eq. (2). For example, processor 1 solves the 
following equation to obtain {z1} (preconditioned residual 
vector in subdomain 1) in the case as shown in Fig. 5: 

 
1 1 1 1[ ]{ } { } [ ]{ }, (m 1)m

mM z r I z= - ¹    (9) 
 

where {z0} and {z2}, which are computed locally in proces-
sors 0 and 2, are needed for calculating [I1

m]{zm} in processor 
1. Therefore, a communication procedure is necessary to 
transfer these values to processor 1. To solve Eq. (9) simulta-
neously in all the processors, inclusive of coupled components, 
the following equation instead of Eq. (9) is solved iteratively: 

 
1

1 1 1 1[ ]{ } { } [ ]{ },  (m 1)p m p
mM z r I z+ = - ¹  (10) 

where the superscript p denotes the iteration number. In the 
present ITBI, one more additional iteration is executed for 
solving Eq. (10), so that the iteration number of CG methods 
does not increase as much as BIWO, regardless of the increase 
of the number of subdomains.  

 
3.3.4 Distributed ILU(0) (DILU)  

DILU applies ILU(0) to the entire global matrix, which is 
reconstructed with local matrices of respective local subdo-
mains, without dropping any nonzero entries. It differs from 
BIWO in that it does not neglect [In

m] elements that are linked 
with exterior boundary nodes, while applying ILU(0). There-
fore, while ILU(0) for [Bn] and [En] elements are executed 
independently in each processor “n” (see Eq. (2)), values of 
[C] and [I] elements that were previously preconditioned by 
ILU(0) in preceding processors “k” (k < n) must be obtained 
before applying ILU(0) to rows of matrices that include ele-
ments from [Cn], [Fn] and [In

m]. For the case of DILU, com-
munications between processors and waiting times are needed 
to form a preconditioner matrix ([M] = [L][U]). Thus, these 
are some of the reasons that prevent DILU from being a scal-
able algorithm. 

Once a parallel preconditioner matrix is obtained, Eq. (6) is 
used to obtain a preconditioned residual vector {z}. This vec-
tor consists of {zext} components that are linked to other sub-
domains and {zint} components that are not linked to other 
subdomains. The forward substitution procedure in each proc-
essor would be summarized as follows [14]: ① [Un]{zn

int} is computed in each subdomain(processor) 
“n” independently. ② Get [Uk]{zk

ext} from linked subdomain “k” (k < n). ③ Compute linked interface vector components [Un]{zn
ext}. ④ Send [Un]{zn

ext} to linked subdomain “l” (l > n). 
The backward substitution procedure will be in the order 

opposite to the forward substitution procedure. This precondi-
tioning method, closest to the serial ILU(0) in that it does not 
neglect any nonzero elements, does not increase much the 

 
 
Fig. 5. An illustration of non-zero pattern of the global matrix when 3 
processors are used. 
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iteration number of CG methods, but has a disadvantage that it 
is difficult to obtain scalable algorithm due to many non-
parallelizable parts in the algorithm and long waiting times. 

 
3.3.5 Modified distributed ILU(0) (MDLU) 

In DILU, the efficiency of parallel algorithm is degraded 
due to the communications with adjacent processors and wait-
ing times during the computation of the preconditioned resid-
ual vector at the interior boundary nodes. We now test three 
algorithms to increase the efficiency of parallel algorithm by 
reducing the waiting times in DILU. 

First, MDLU-I changes the order of computations to reduce 
the waiting times. In the case of computing forward-
substituted values ([U]{z}) at interior boundary nodes, the 
procedure can be divided into two parts. One consists of com-
putations linked with the preceding processors and the other 
consists of computations linked with the following processors. 
Not like DILU, MDLU-I carries out computations linked with 
the following processors first. As a result, the forward substi-
tution procedure for MDLU-I in processor “n” would be as 
follows: 

(1) Computations linked with processor “l” (l > n) are car-
ried out independently in each processor along with computa-
tions at internal nodes and ahead of computations linked with 
processor “k” (k < n). The non-zero terms related to subdo-
main “k” are ignored when calculating values at interior 
boundary nodes linked with processor “l”. 

(2) Before each processor “n” calculates the rest of forward-
substituted values that are linked with processor “k”, each 
processor sends [ ]{ }ext

n n lU z -  components to processor “l” and 
receives [ ]{ }ext

k n kU z -  from processor “k”. 
Next, to reduce the waiting times, MDLU-II ignores com-

munications between processors linked by a small number of 
interface nodes. When a structured mesh is used and multi-
dimensional partitioning is applied, the number of subdomains 
to communicate in the preconditioning procedure reduces 
from 8 to 4 in 2-dimensional case and from 26 to 6 in 3-
dimensional case. As MDLU-II neglects some elements of 
[In

m] for reducing the waiting times, the iteration number in-
creases a little. 

Lastly, MDLU-III is an algorithm that is a combination of 
MDLU-I and MDLU-II. 

 
4. Results and discussions 

As a measure of parallelization efficiency, we use speedup 
which is defined as follows: 

 
1

N

TSpeedup
T

=          (11) 

 
where T1 is the calculation time using one processor and TN is 
the calculation time using N processors. The ideal speedup, 
which has no additional parallelization overheads, is just the 
number of processors used. In reality, the speedup decreases 

due to communications between processors, waiting times for 
synchronization and additional calculations caused by paral-
lelization. 

 
4.1 Efficiency of parallel preconditioners in conjunction 

with 2-dimensional Laplace equation 

4.1.1 Performances in structured mesh 
In Fig. 6, calculation times of parallel preconditioners are 

compared when 512 × 512 structured uniform and non-
uniform meshes divided by 2-dimensional partitioning method 
are used. Non-uniform meshes are generated by the algebraic 
grid generation techniques suggested by Hoffmann and 
Chiang [15]. All preconditioners show almost the same per-
formance in the two meshes except that the calculation time of 
DIAG is larger for non-uniform mesh. The calculation time 
for non-uniform mesh increases since the matrix from non-
uniform mesh is more difficult to solve (due to the increase of 
matrix condition number with diagonal preconditioning). Due 
to the increase of waiting time, the decrease rate of calculation 
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(b) Non-uniform mesh 

 
Fig. 6. Comparison of calculation time for 512 ´ 512 meshes. 
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time for DILU is reduced in comparison with other precondi-
tioners, as the number of processors increases. 

 
4.1.2 Effects of domain partitioning methods 

The speedup of each preconditioning method differs de-
pending on how a domain is partitioned. This is due to 
changes in communication overhead, non-zero pattern of the 
global matrix and neglected terms in the preconditioning. 
Speedup and increase of the iteration number for 1-
dimensional and 2-dimensional partitioning methods in a 512 
× 512 non-uniform mesh are shown in Fig. 7. Since DIAG 
does not have any neglected terms and communication over-
head in the preconditioning procedure, the efficiencies of the 
two partitioning methods are almost similar, so that the results 
for DIAG are not shown in Fig. 7. For the cases of other pre-
conditioners, the iteration number varies with the virtually 
reconstructed global matrix as shown in Fig. 1 and with the 
neglected terms when preconditioners are applied. As shown 

in Fig. 7(a), 2-dimensional partitioning method shows less 
increase in the iteration number than 1-dimensional partition-
ing for all the preconditioning methods since 2-dimensional 
partitioning has less interface nodes than 1-dimensional parti-
tioning for the same number of processors. Since BIWO ne-
glects more non-zero terms in the preconditioning as the num-
ber of interface nodes increases, the iteration number increases 
greatly when 1-dimensional partitioning is applied. In spite of 
the same preconditioner matrix as BIWO, ITBI shows less 
increase in the iteration number because it is suppressed by 
taking account of the neglected terms in the additional itera-
tion for computing the preconditioned residual vector. Due to 
larger increase in the iteration numbers in 1-dimensional parti-
tioning, the speedup of 2-dimensional partitioning is larger 
than 1-dimensional case for BIWO and ITBI preconditionings, 
as shown in Fig. 7(b). In the case of DILU, the increase in the 
iteration number is larger for 1-dimensional partitioning, 
which is similar to other preconditioning methods, but the 1-
dimensional speedup shows better results than 2-dimensional 
case due to larger communication overhead for 2-dimensional 
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Fig. 7. Performance in conjunction with 1-dimensional and 2-
dimensional domain decompositions of a 512 ´ 512 non-uniform 
mesh. 
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(a) 256 ´ 256 mesh 
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Fig. 8. Speedup in non-uniform meshes. 
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case. Since, in the case of DILU, the preconditioner matrices 
between adjacent processors are linked, a processor has to 
wait for its turn to calculate the linked parts until the respec-
tive parts are sent from the preceding processors. But in 1-
dimensional case, as the two interfaces are not linked to each 
other, a processor can calculate the parts linked with the fol-
lowing processor and send the calculated values before it re-
ceives the linked parts from the preceding processor.  

On the other hand, in 2-dimensional case, a processor has to 
postpone sending the linked parts to the following processors 
until it receives and calculates the values from all adjacent 
preceding processors. As a result, the communication over-
head for 2-dimensional case increases considerably as the 
number of processors increases. 

 
4.1.3 Effects of problem size 

Speedup varies with the size of the problem that is to be 
solved. Fig. 8 compares the speedup of different problem sizes 
when non-uniform meshes partitioned by 2-dimensional 
method are adopted. All preconditioners show better speedup 
in Fig. 8(b) than in Fig. 8(a). Since the ratio of interface nodes 

to total nodes in a subdomain decreases as the number of 
nodes increases, the ratio of communication overhead to cal-
culation load allocated to each processor relatively decreases. 
Due to this decrease, better speedup is obtained for larger 
problems.  

 
4.1.4 Performance of unstructured meshes 

In unstructured mesh, METIS [12] Library is used to de-
compose the domain, which pursues computational load bal-
ance as well as communication overhead minimization. Fig. 
9(a) shows an unstructured mesh in the square calculation 
domain decomposed by METIS Library. The non-zero pattern 
of the matrix generated from this decomposed calculation 
domain is shown in Fig. 9(b), and is similar to that of multi-
dimensionally decomposed structured mesh in Fig. 1(b). After 
the domain decomposition, the nodes are renumbered in the 
order of internal nodes, interior and exterior boundary nodes 
in each subdomain. Due to this renumbering, the arrangements 
of nodes become similar, regardless of using unstructured or 
structured mesh. As a result, non-zero patterns of the matrices 
resemble each other. 
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Fig. 9. An illustration of domain decomposition of unstructured mesh. 
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Fig. 10. Performance of unstructured meshes. 
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The parallel efficiencies are evaluated in Fig. 10 for the 2-
dimensional Laplace equation in an unstructured mesh. The 
speedup in unstructured mesh resembles that of the structured 
mesh in Fig. 8(a). However, the increase of the iteration num-
ber in Fig. 10(b) has a different trend compared to that of Fig. 
7(a). It needs to be noted that the subdomains in an unstruc-
tured mesh, which are partitioned by METIS Library, have 
different shapes depending on the number of the subdomains 
and on the mesh geometry while in a structured mesh the 
shapes of the subdomains are similar to each other regardless 
of the number of processors. 

 
4.2 Performance of MDLU preconditioning method 

MDLU is compared with BIWO, which has shown the best 
speedup for most of the cases considered, in the case of 2-
dimensional and 3-dimensional Laplace equations in Fig. 11. 
A 512 × 512 mesh is used for the 2-dimensional problem and 
a 64 × 64 × 64 mesh for the 3-dimensional problem. Serial 
calculation of the 3-dimensional case is excluded due to insuf-

ficient memory. BIWO which shows best performance when 
8 processors are used, is taken as a reference for evaluating the 
speedup. From the fact that the speedup of MDLU-I is larger 
than that of MDLU-II, it can be inferred that the main cause 
for the degradation of DILU is the waiting time. MDLU-III, 
the combination of the two algorithms, shows almost the same 
performance as BIWO for the 2-dimensional cases.  

But for the 3-dimensional cases it shows a slight perform-
ance degradation compared to BIWO. In the problems we 
have considered, the iteration numbers are smaller for the 3-
dimensional cases than for the 2-dimensional cases, so that the 
increase of the iteration number was not so large for BIWO. 
From this result, we can predict that if the MDLU-III is ap-
plied to problems that have large iteration number (matrix of 
large condition number), MDLU-III will at least exhibit the 
performance of BIWO. 

 
5. Conclusions 

In this work, performances of several parallel incomplete 
LU preconditioners have been compared and examined for the 
convergence acceleration of parallel iterative solvers, so that 
the following conclusions are obtained: 

(1) The iteration numbers of uniform and non-uniform 
structured meshes are not much different for most of the pre-
conditioners except DIAG. 

(2) The iteration numbers are smaller for multi-dimensional 
partitioning methods than for 1-dimensional partitioning 
method and the speedup increases as the problem size be-
comes larger. However, in the case of DILU, the 1-
dimensional speedup shows better results than 2-dimensional 
case due to larger communication overhead for 2-dimensional 
case although the increase in the iteration number is larger for 
1-dimensional partitioning. 

(3) BIWO shows the best performance in the test problems, 
and MDLU-III seems to be a good alternative for the prob-
lems that have large condition numbers. 
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