

Journal of Mechanical Science and Technology 32 (11) (2018) 5315~5323

www.springerlink.com/content/1738-494x(Print)/1976-3824(Online)
DOI 10.1007/s12206-018-1030-y

Performance comparison of various parallel incomplete LU factorization

preconditioners for domain decomposition method†
Sungwoo Kang1, Hyounggwon Choi2,*, Wanjin Chung3, Yo-Han Yoo4 and Jung Yul Yoo5

1Powertrain NVH Development Team 1, Hyundai Motor Group, Hwaseong-si, Gyeonggi-do, Korea
2Department of Mechanical & Automotive Engg, Seoul National University of Science and Technology, Seoul, Korea
3Department of Mechanical System Design Engg, Seoul National University of Science and Technology, Seoul, Korea

4Agency for Defence Development, Yuseong P.O. Box 35-4, Daejeon 305-600, Korea
5School of Mechanical and Aerospace Engg, Seoul National University, Seoul, Korea

(Manuscript Received May 24, 2018; Revised July 16, 2018; Accepted July 27, 2018)

--

Abstract

A finite element code is parallelized by vertex-oriented domain decomposition method which utilizes one- or multi-dimensional parti-

tioning in structured mesh and METIS Library in unstructured mesh. For obtaining the domain-decomposed solution, iterative solvers
like conjugate gradient method are used. To accelerate the convergence of iterative solvers, parallel incomplete LU factorization precon-
ditioners are employed, and their performances are compared. For the communication between processors, Message Passing Interface
Library is used. The speedups of parallel preconditioned iterative solvers are estimated through computing 2- and 3-dimensional Laplace
equations. The effects of mesh and partitioning method on the speedup of parallel preconditioners are also examined.

Keywords: Finite element method; Domain decomposition method; Preconditioned conjugate gradient; Parallel ILU preconditioner
--

1. Introduction

Domain decomposition method has been efficiently used in
parallel machines with distributed memory as an analysis tool
for governing equations including elliptic-type partial differ-
ential equations. In this method, a calculation domain is de-
composed into a number of subdomains equal to the number
of processors, so that each processor is assigned a subdomain.
Each subdomain generates a local matrix which is implicitly
coupled with adjacent local matrices as shown for example in
Fig. 1. When a domain is decomposed, local matrices are gen-
erated from respective processors so that communications
between adjacent processors are required to obtain the solution
for the entire domain. This is called communication overhead.
Besides, in the procedure for solving local matrices with itera-
tive methods like conjugate gradient method (CG), the itera-
tion number increases as the number of subdomains increases.
The speedup (for definition, see Eq. (11)) decrease is mainly
due to the increase in the iteration number, together with the
increase in the communication overhead. Consequently, many
efforts have been made to develop an algorithm that mini-
mizes the communication overhead and the increase in the

iteration number. In particular, in developing a scalable paral-
lel preconditioned CG algorithm, it is important to design an
optimal parallel preconditioner that minimizes these factors.

Basermann et al. [1] used block incomplete LU(0) factoriza-
tion (block ILU(0)) preconditioner to solve various types of
problems. The local matrix assigned to each processor is di-
vided into several block matrices, and ILU(0) preconditioner
is applied to each block matrix independently by ignoring
elements that are implicitly coupled with other block matrices.
To improve the performance of block ILU(0), Magolu monga
Made and van der Vorst [2, 3] overlapped local matrices with
those of neighboring subdomains, and preconditioned local
matrices after increasing fill-in entries in the overlapped parts.
They obtained more scalable results for elliptic partial differ-
ential equations, as compared with previous block ILU(0).
They showed that increasing fill-in entries by extending the
overlapped parts of a subdomain was more efficient in im-
proving the performance of block ILU(0) than increasing fill-
in entries without extending the overlapped parts. Parallel
preconditioner utilizing the Schur complement was proposed
by Saad and Sosonkina [4], where only boundary variables of
subdomains were used to compose a Schur system so that
their exact values could be obtained by solving this reduced
system. Using these values as boundary conditions, each proc-
essor can deal with the corresponding subdomain completely
in parallel. However, solving a Schur system accurately is a

*Corresponding author. Tel.: +82 1066550422
E-mail address: hgchoi@snut.ac.kr

† Recommended by Associate Editor Simon Song
© KSME & Springer 2018

5316 S. Kang et al. / Journal of Mechanical Science and Technology 32 (11) (2018) 5315~5323

time-consuming procedure resulting in more inefficient paral-
lel algorithm than block ILU(0). Hence, they proposed a paral-
lel iterative algorithm that uses GMRES to solve the Schur
complement approximately before interior parts of the sub-
domains are solved. A hybrid parallel solver of sparse linear
system was proposed by Manguoglu [5]. This technique con-
tained both direct and iterative solver based on a domain de-
composition method for parallel computing and was shown to
be both robust and scalable. Lemmer and Hilfer [6] solved a
very large scale problem of the flow through porous media
consisting of 20483 voxels by using a parallel domain decom-
position method with non-blocking communication. SIMPLE
algorithm was used to solve the Stokes equation. Recently, an
additive Schwarz preconditioner for adaptive finite element
method was proposed for parallel computation based on do-
main decomposition method by Loisel and Nguyen [7] They
employed a parallel conjugate gradient (CG) method to effi-
ciently solve the global linear system and showed that the
convergence rate of the CG method was dependent on the

effective conditioner number.
The objective of the present study is to compare the per-

formances of the well-known representative preconditioners
such as diagonal preconditioning (DIAG), block ILU(0) with-
out overlapping (BIWO) [8], iterative block ILU(0) (ITBI)
and distributed ILU(0) (DILU) [9] by applying them for the
solution of an elliptic partial differential equation. In addition,
we propose modified distributed ILU(0) (MDLU) to compare
its performance with aforementioned parallel preconditioners.
For iterative solvers, CG and Bi-CGSTAB proposed by Van
der Vorst [10] are used.

2. Test problems

A square is chosen as the computational domain for 2-
dimensional problems and a cube is chosen for 3-dimensional
problems as shown in Fig. 2. Except for the case of estimating
speedup in unstructured mesh, we use structured mesh that has
equal number of uniform or non-uniform nodes in each direc-
tion. The relative precision of the final residual in each linear
system is 10-6. The test problems are run on Cray T3E of Ko-
rea Institute of Science and Technology Information (KISTI)
that has 128 processors and 16 GB memory, although we util-
ize up to only 64 of processors. We consider the Laplace
equation:

2

0
j j

u
x x
¶

=
¶ ¶

 (1)

where for 2-dimensional problem the boundary conditions are
u = 1 at x = 0 and u = 0 at other sides, and for 3-dimensional
problem they are u = 1 on face 1 and u = 0 on faces 2 - 6 in
Fig. 2. Structured linear finite element mesh and CG are em-
ployed for solving the Laplace equation.

3. Parallelization

After a mesh for the whole domain is generated, domain

PE 1

PE 0 PE 2

PE 3

PE 0

PE 1

PE 2

PE 3
(a) 1-dimensional decomposition

PE 3PE 0 PE 1 PE 2

PE 0

PE 1

PE 2

PE 3

(b) 2-dimensional decomposition

Fig. 1. Non-zero pattern of a domain-decomposed matrix obtained by a
finite element discretization for the meshes to be shown in Fig. 3.

Fig. 2. Computational domain for 3-dimensional problems.

 S. Kang et al. / Journal of Mechanical Science and Technology 32 (11) (2018) 5315~5323 5317

decomposition method is implemented to solve the problem
by a parallel machine. Communication between adjacent
processors is achieved by Message Passing Interface (MPI)
Library [11] and parallel preconditioned iterative solvers are
used to obtain the solution for the whole domain.

3.1 Domain decomposition method

For efficient parallelization, we partition the computational
domain in such a way that the calculation load of each domain
is balanced and the communication load between processors is
minimized. When structured finite elements are adopted, 1-
dimensional or multi-dimensional domain decomposition is
applied. For the case of an unstructured mesh, METIS Library
[12] is to be used for mesh partitioning. Fig. 3 shows exam-
ples of 1-dimensional and 2-dimensional decomposed compu-
tational domains for solving the 2-dimensional Laplace equa-
tion (see Subsec. 4.1). A computational domain is decom-
posed by vertex-oriented domain decomposition method on
the basis that each subdomain has the same number of vertices
to satisfy the load balance for all processors. Each decom-
posed subdomain consists of internal nodes, interior and exte-
rior boundary nodes as illustrated in Fig. 4 [13]. After domain
decomposition, the nodes are locally renumbered in the order
of internal nodes, interior boundary nodes and exterior bound-
ary nodes. Each processor calculates the values of flow vari-
ables at internal nodes independently. However, for those at
interior and exterior boundary nodes, communications with
adjacent processors are needed before the calculation. In each

processor, only local values belonging to each subdomain are
computed and stored. Therefore, rows for exterior boundary
nodes are neglected in constructing the local matrix for each
processor. The local matrix [An] for solving values at internal
and interior boundary nodes in decomposed nth subdomain can
be typically constructed as follows:

[]{ } { }n n nA x f=

0
[] , { } , { } .

n
n n n

n n n nm
n n n nm

n

u
B E s

A x v f
F C I t

w

æ ö
æ ö æ öç ÷= = =ç ÷ ç ÷ç ÷
è ø è øç ÷

è ø

 (2)

An example of non-zero patterns of the local matrices [An]

is illustrated in Fig. 5. It is noted that {un} and {sn} are com-
ponents from internal node values, and {vn} and {tn} are com-
ponents from interior boundary node values. These are from a
local subdomain and do not need any communication. But
{wn

m} is the part from exterior boundary nodes. Thus, [Bn] is a
part of the local matrix generated from internal nodes, [En] and
[Fn] are linked parts generated from internal and interior
boundary nodes, [Cn] is a part generated from interior bound-
ary nodes, and [In

m] is a linked part generated from interior
and exterior boundary nodes that are communicated with mth
subdomain. Since {wn

m} and [In
m] in Eq. (2) are linked com-

ponents with adjacent subdomains, communication with adja-
cent processors is required to solve this part.

3.2 Preconditioned CG (PCG) algorithm

Serial PCG algorithm is represented by the following se-
quence of operations with subscript “j” denoting jth step of
PCG iteration only in this subsection:

{ } { }

{ } []{ }

T
j j

j T
j j

z r
d A d

a = (3)

1{ } { } { }j j j jx x da+ = + (4)

1{ } { } []{ }j j j jr r A da+ = - (5)
1

1 1{ } [] { }j jz M r-
+ += (6)

1 1{ } { }
{ } { }

T
j j

j T
j j

z r
z r

b + += (7)

1 1{ } { } { }j j j jd z db+ += + (8)

where {rj} is the residual vector of which the initial value is
defined as {r0}={f}-[A]{x0}, {dj} is the search direction, {zj}
is the preconditioned residual vector, and [M] is the precondi-
tioner matrix. In this work, a parallel conjugate gradient code
for P1P1 finite element formulation has been developed and
tested with various parallel preconditioned matrices in Eq. (6).

3.3 Parallel preconditioning method

Convergence rate of an iterative solver depends on the con-

(a) 1-dimensional decomposition (b) 2-dimensional decomposition

Fig. 3. An illustration of decompositions of a 2-dimensional computa-
tional domain into 4 subdomains.

Fig. 4. Classification of cells in a subdomain.

5318 S. Kang et al. / Journal of Mechanical Science and Technology 32 (11) (2018) 5315~5323

dition number of a matrix, and preconditioners accelerate the
convergence rate by reducing the condition number. Generally,
ILU [14] preconditioners show good convergence rate in se-
rial computations. However, in parallel computations, the
communication overhead originates from the intrinsic sequen-
tial characteristics of ILU preconditioners. Then, in order to
acquire scalable results, one should modify the algorithms of
ILU preconditioners so that they reduce the communication
overhead at the cost of small increase in the iteration number.

3.3.1 Diagonal preconditioning (DIAG)

The preconditioner matrix for nth subdomain is now defined

as [Mn] = Diag n n

n n

B E
F C
æ ö
ç ÷
è ø

 (see Eq. (2)) in diagonal precondi-

tioning. Since they are independent of adjacent subdomains,
the computation process for Eq. (6) can be executed inde-
pendently in each processor. Therefore, for this preconditioner,
there are neither additional modifications nor communication
overhead due to parallelization.

3.3.2 Block ILU(0) without overlapping (BIWO) [10]

Instead of applying ILU(0) preconditioning to the whole
domain, BIWO independently applies it to local subdomains.
ILU precondtioner is applied to each local matrix [An] exclud-
ing [In

m] elements that are linked to adjacent processors, i.e. to

each n n

n n

B E
F C
æ ö
ç ÷
è ø

. By neglecting [In
m] elements, there is an

advantage that each processor can compute the preconditioner
matrix ([Mn] = [Ln][Un]) and execute forward and backward
substitution procedures ([Ln][Un]{z} = {r}) independently. Ln
and Un are lower and upper triangular matrices after incom-
plete LU(ILU(0)) decomposition of matrix Mn. But the num-
ber of ignored elements of the global matrix increases along
with the increase of the number of subdomains, which results
in the increase of the iteration number of PCG solver.

3.3.3 Iterative block ILU(0) (ITBI)

When computing the preconditioner matrix ([Mn] =
[Ln][Un]), ITBI neglects [In

m] elements as BIWO does. But, in
computing the preconditioned residual vector {z}, ITBI uses
[In

m] elements in Eq. (2). For example, processor 1 solves the
following equation to obtain {z1} (preconditioned residual
vector in subdomain 1) in the case as shown in Fig. 5:

1 1 1 1[]{ } { } []{ }, (m 1)m

mM z r I z= - ¹ (9)

where {z0} and {z2}, which are computed locally in proces-
sors 0 and 2, are needed for calculating [I1

m]{zm} in processor
1. Therefore, a communication procedure is necessary to
transfer these values to processor 1. To solve Eq. (9) simulta-
neously in all the processors, inclusive of coupled components,
the following equation instead of Eq. (9) is solved iteratively:

1

1 1 1 1[]{ } { } []{ }, (m 1)p m p
mM z r I z+ = - ¹ (10)

where the superscript p denotes the iteration number. In the
present ITBI, one more additional iteration is executed for
solving Eq. (10), so that the iteration number of CG methods
does not increase as much as BIWO, regardless of the increase
of the number of subdomains.

3.3.4 Distributed ILU(0) (DILU)

DILU applies ILU(0) to the entire global matrix, which is
reconstructed with local matrices of respective local subdo-
mains, without dropping any nonzero entries. It differs from
BIWO in that it does not neglect [In

m] elements that are linked
with exterior boundary nodes, while applying ILU(0). There-
fore, while ILU(0) for [Bn] and [En] elements are executed
independently in each processor “n” (see Eq. (2)), values of
[C] and [I] elements that were previously preconditioned by
ILU(0) in preceding processors “k” (k < n) must be obtained
before applying ILU(0) to rows of matrices that include ele-
ments from [Cn], [Fn] and [In

m]. For the case of DILU, com-
munications between processors and waiting times are needed
to form a preconditioner matrix ([M] = [L][U]). Thus, these
are some of the reasons that prevent DILU from being a scal-
able algorithm.

Once a parallel preconditioner matrix is obtained, Eq. (6) is
used to obtain a preconditioned residual vector {z}. This vec-
tor consists of {zext} components that are linked to other sub-
domains and {zint} components that are not linked to other
subdomains. The forward substitution procedure in each proc-
essor would be summarized as follows [14]: ① [Un]{zn

int} is computed in each subdomain(processor)
“n” independently. ② Get [Uk]{zk

ext} from linked subdomain “k” (k < n). ③ Compute linked interface vector components [Un]{zn
ext}. ④ Send [Un]{zn

ext} to linked subdomain “l” (l > n).
The backward substitution procedure will be in the order

opposite to the forward substitution procedure. This precondi-
tioning method, closest to the serial ILU(0) in that it does not
neglect any nonzero elements, does not increase much the

Fig. 5. An illustration of non-zero pattern of the global matrix when 3
processors are used.

 S. Kang et al. / Journal of Mechanical Science and Technology 32 (11) (2018) 5315~5323 5319

iteration number of CG methods, but has a disadvantage that it
is difficult to obtain scalable algorithm due to many non-
parallelizable parts in the algorithm and long waiting times.

3.3.5 Modified distributed ILU(0) (MDLU)

In DILU, the efficiency of parallel algorithm is degraded
due to the communications with adjacent processors and wait-
ing times during the computation of the preconditioned resid-
ual vector at the interior boundary nodes. We now test three
algorithms to increase the efficiency of parallel algorithm by
reducing the waiting times in DILU.

First, MDLU-I changes the order of computations to reduce
the waiting times. In the case of computing forward-
substituted values ([U]{z}) at interior boundary nodes, the
procedure can be divided into two parts. One consists of com-
putations linked with the preceding processors and the other
consists of computations linked with the following processors.
Not like DILU, MDLU-I carries out computations linked with
the following processors first. As a result, the forward substi-
tution procedure for MDLU-I in processor “n” would be as
follows:

(1) Computations linked with processor “l” (l > n) are car-
ried out independently in each processor along with computa-
tions at internal nodes and ahead of computations linked with
processor “k” (k < n). The non-zero terms related to subdo-
main “k” are ignored when calculating values at interior
boundary nodes linked with processor “l”.

(2) Before each processor “n” calculates the rest of forward-
substituted values that are linked with processor “k”, each
processor sends []{ }ext

n n lU z - components to processor “l” and
receives []{ }ext

k n kU z - from processor “k”.
Next, to reduce the waiting times, MDLU-II ignores com-

munications between processors linked by a small number of
interface nodes. When a structured mesh is used and multi-
dimensional partitioning is applied, the number of subdomains
to communicate in the preconditioning procedure reduces
from 8 to 4 in 2-dimensional case and from 26 to 6 in 3-
dimensional case. As MDLU-II neglects some elements of
[In

m] for reducing the waiting times, the iteration number in-
creases a little.

Lastly, MDLU-III is an algorithm that is a combination of
MDLU-I and MDLU-II.

4. Results and discussions

As a measure of parallelization efficiency, we use speedup
which is defined as follows:

1

N

TSpeedup
T

= (11)

where T1 is the calculation time using one processor and TN is
the calculation time using N processors. The ideal speedup,
which has no additional parallelization overheads, is just the
number of processors used. In reality, the speedup decreases

due to communications between processors, waiting times for
synchronization and additional calculations caused by paral-
lelization.

4.1 Efficiency of parallel preconditioners in conjunction

with 2-dimensional Laplace equation

4.1.1 Performances in structured mesh
In Fig. 6, calculation times of parallel preconditioners are

compared when 512 × 512 structured uniform and non-
uniform meshes divided by 2-dimensional partitioning method
are used. Non-uniform meshes are generated by the algebraic
grid generation techniques suggested by Hoffmann and
Chiang [15]. All preconditioners show almost the same per-
formance in the two meshes except that the calculation time of
DIAG is larger for non-uniform mesh. The calculation time
for non-uniform mesh increases since the matrix from non-
uniform mesh is more difficult to solve (due to the increase of
matrix condition number with diagonal preconditioning). Due
to the increase of waiting time, the decrease rate of calculation

Number of Processors

C
al

cu
la

tio
n

Ti
m

e

10 20 30 40 50 60

100

101

102

DIAG
BIWO
ITBI
DILU

(a) Uniform mesh

Number of Processors

C
al

cu
la

tio
n

Ti
m

e

10 20 30 40 50 60

100

101

102

DIAG
BIWO
ITBI
DILU

(b) Non-uniform mesh

Fig. 6. Comparison of calculation time for 512 ´ 512 meshes.

5320 S. Kang et al. / Journal of Mechanical Science and Technology 32 (11) (2018) 5315~5323

time for DILU is reduced in comparison with other precondi-
tioners, as the number of processors increases.

4.1.2 Effects of domain partitioning methods

The speedup of each preconditioning method differs de-
pending on how a domain is partitioned. This is due to
changes in communication overhead, non-zero pattern of the
global matrix and neglected terms in the preconditioning.
Speedup and increase of the iteration number for 1-
dimensional and 2-dimensional partitioning methods in a 512
× 512 non-uniform mesh are shown in Fig. 7. Since DIAG
does not have any neglected terms and communication over-
head in the preconditioning procedure, the efficiencies of the
two partitioning methods are almost similar, so that the results
for DIAG are not shown in Fig. 7. For the cases of other pre-
conditioners, the iteration number varies with the virtually
reconstructed global matrix as shown in Fig. 1 and with the
neglected terms when preconditioners are applied. As shown

in Fig. 7(a), 2-dimensional partitioning method shows less
increase in the iteration number than 1-dimensional partition-
ing for all the preconditioning methods since 2-dimensional
partitioning has less interface nodes than 1-dimensional parti-
tioning for the same number of processors. Since BIWO ne-
glects more non-zero terms in the preconditioning as the num-
ber of interface nodes increases, the iteration number increases
greatly when 1-dimensional partitioning is applied. In spite of
the same preconditioner matrix as BIWO, ITBI shows less
increase in the iteration number because it is suppressed by
taking account of the neglected terms in the additional itera-
tion for computing the preconditioned residual vector. Due to
larger increase in the iteration numbers in 1-dimensional parti-
tioning, the speedup of 2-dimensional partitioning is larger
than 1-dimensional case for BIWO and ITBI preconditionings,
as shown in Fig. 7(b). In the case of DILU, the increase in the
iteration number is larger for 1-dimensional partitioning,
which is similar to other preconditioning methods, but the 1-
dimensional speedup shows better results than 2-dimensional
case due to larger communication overhead for 2-dimensional

Number of Processors

Ite
r N

/I
te

r 1

10 20 30 40 50 60
1

1.2

1.4

1.6

1.8

2

2.2

BIWO (2D)
ITBI (2D)
DILU (2D)
BIWO (1D)
ITBI (1D)
DILU (1D)

(a) Iteration number ratio

Number of Processors

Sp
ee

du
p

10 20 30 40 50 60

10

20

30

40

50

60 BIWO (2D)
ITBI (2D)
DILU (2D)
BIWO (1D)
ITBI (1D)
DILU (1D)

(b) Speedup

Fig. 7. Performance in conjunction with 1-dimensional and 2-
dimensional domain decompositions of a 512 ´ 512 non-uniform
mesh.

Number of Processors

Sp
ee

du
p

10 20 30 40 50 60

10

20

30

40

50

60 DIAG
BIWO
ITBI
DILU

(a) 256 ´ 256 mesh

Number of Processors

Sp
ee

du
p

10 20 30 40 50 60

10

20

30

40

50

60
DIAG
BIWO
ITBI
DILU

(b) 512 ´ 512 mesh

Fig. 8. Speedup in non-uniform meshes.

 S. Kang et al. / Journal of Mechanical Science and Technology 32 (11) (2018) 5315~5323 5321

case. Since, in the case of DILU, the preconditioner matrices
between adjacent processors are linked, a processor has to
wait for its turn to calculate the linked parts until the respec-
tive parts are sent from the preceding processors. But in 1-
dimensional case, as the two interfaces are not linked to each
other, a processor can calculate the parts linked with the fol-
lowing processor and send the calculated values before it re-
ceives the linked parts from the preceding processor.

On the other hand, in 2-dimensional case, a processor has to
postpone sending the linked parts to the following processors
until it receives and calculates the values from all adjacent
preceding processors. As a result, the communication over-
head for 2-dimensional case increases considerably as the
number of processors increases.

4.1.3 Effects of problem size

Speedup varies with the size of the problem that is to be
solved. Fig. 8 compares the speedup of different problem sizes
when non-uniform meshes partitioned by 2-dimensional
method are adopted. All preconditioners show better speedup
in Fig. 8(b) than in Fig. 8(a). Since the ratio of interface nodes

to total nodes in a subdomain decreases as the number of
nodes increases, the ratio of communication overhead to cal-
culation load allocated to each processor relatively decreases.
Due to this decrease, better speedup is obtained for larger
problems.

4.1.4 Performance of unstructured meshes

In unstructured mesh, METIS [12] Library is used to de-
compose the domain, which pursues computational load bal-
ance as well as communication overhead minimization. Fig.
9(a) shows an unstructured mesh in the square calculation
domain decomposed by METIS Library. The non-zero pattern
of the matrix generated from this decomposed calculation
domain is shown in Fig. 9(b), and is similar to that of multi-
dimensionally decomposed structured mesh in Fig. 1(b). After
the domain decomposition, the nodes are renumbered in the
order of internal nodes, interior and exterior boundary nodes
in each subdomain. Due to this renumbering, the arrangements
of nodes become similar, regardless of using unstructured or
structured mesh. As a result, non-zero patterns of the matrices
resemble each other.

PE 0

PE 1 PE 2

PE 3

(a) Partitioned mesh

PE 3PE 0 PE 1 PE 2

PE 0

PE 1

PE 2

PE 3

(b) Non-zero pattern of the global matrix

Fig. 9. An illustration of domain decomposition of unstructured mesh.

Number of Processors

Sp
ee

du
p

10 20 30 40 50 60

10

20

30

40

50

60 DIAG
BIWO
ITBI
DILU

(a) Speedup

Number of Processors

Ite
r N

/I
te

r 1

10 20 30 40 50 60
1

1.1

1.2

1.3

1.4

BIWO
ITBI
DILU

(b) Iteration number ratio

Fig. 10. Performance of unstructured meshes.

5322 S. Kang et al. / Journal of Mechanical Science and Technology 32 (11) (2018) 5315~5323

The parallel efficiencies are evaluated in Fig. 10 for the 2-
dimensional Laplace equation in an unstructured mesh. The
speedup in unstructured mesh resembles that of the structured
mesh in Fig. 8(a). However, the increase of the iteration num-
ber in Fig. 10(b) has a different trend compared to that of Fig.
7(a). It needs to be noted that the subdomains in an unstruc-
tured mesh, which are partitioned by METIS Library, have
different shapes depending on the number of the subdomains
and on the mesh geometry while in a structured mesh the
shapes of the subdomains are similar to each other regardless
of the number of processors.

4.2 Performance of MDLU preconditioning method

MDLU is compared with BIWO, which has shown the best
speedup for most of the cases considered, in the case of 2-
dimensional and 3-dimensional Laplace equations in Fig. 11.
A 512 × 512 mesh is used for the 2-dimensional problem and
a 64 × 64 × 64 mesh for the 3-dimensional problem. Serial
calculation of the 3-dimensional case is excluded due to insuf-

ficient memory. BIWO which shows best performance when
8 processors are used, is taken as a reference for evaluating the
speedup. From the fact that the speedup of MDLU-I is larger
than that of MDLU-II, it can be inferred that the main cause
for the degradation of DILU is the waiting time. MDLU-III,
the combination of the two algorithms, shows almost the same
performance as BIWO for the 2-dimensional cases.

But for the 3-dimensional cases it shows a slight perform-
ance degradation compared to BIWO. In the problems we
have considered, the iteration numbers are smaller for the 3-
dimensional cases than for the 2-dimensional cases, so that the
increase of the iteration number was not so large for BIWO.
From this result, we can predict that if the MDLU-III is ap-
plied to problems that have large iteration number (matrix of
large condition number), MDLU-III will at least exhibit the
performance of BIWO.

5. Conclusions

In this work, performances of several parallel incomplete
LU preconditioners have been compared and examined for the
convergence acceleration of parallel iterative solvers, so that
the following conclusions are obtained:

(1) The iteration numbers of uniform and non-uniform
structured meshes are not much different for most of the pre-
conditioners except DIAG.

(2) The iteration numbers are smaller for multi-dimensional
partitioning methods than for 1-dimensional partitioning
method and the speedup increases as the problem size be-
comes larger. However, in the case of DILU, the 1-
dimensional speedup shows better results than 2-dimensional
case due to larger communication overhead for 2-dimensional
case although the increase in the iteration number is larger for
1-dimensional partitioning.

(3) BIWO shows the best performance in the test problems,
and MDLU-III seems to be a good alternative for the prob-
lems that have large condition numbers.

Acknowledgments

This study was supported by the Research Program funded
by the SeoulTech (Seoul National University of Science and
Technology).

References

[1] A. Basermann, B. Reichel and C. Schelthoff, Preconditioned
CG methods for sparse matrices on massively parallel ma-
chines, Parallel Computing, 23 (3) (1997) 381-398.

[2] M. Magolu monga Made and H. A. van der Vorst, A gener-
alized domain decomposition paradigm for parallel incom-
plete LU factorization preconditionings, Future Generation
Computer Systems, 17 (8) (2001) 925-932.

[3] M. Magolu monga Made and H. A. van der Vorst, Parallel
incomplete factorizations with pseudo-overlapped subdo-

Number of Processors

Sp
ee

du
p

10 20 30 40 50 60

10

20

30

40

50

60
DILU
BIWO
MDLU-I
MDLU-II
MDLU-III

(a) 2-dimensional Laplace equation with a 512 ´ 512 mesh

Number of Processors

Sp
ee

du
p

10 20 30 40 50 60

10

20

30

40

50

60
DILU
BIWO
MDLU-I
MDLU-II
MDLU-III

(b) 3-dimensional Laplace equation with a 64 ´ 64 ´ 64 mesh

Fig. 11. Comparison of MDLU with DILU and BIWO.

 S. Kang et al. / Journal of Mechanical Science and Technology 32 (11) (2018) 5315~5323 5323

mains, Parallel Computing, 27 (8) (2001) 989-1008.
[4] Y. Saad and M. Sosonkina, Distributed Schur complement

techniques for general sparse linear systems, SIAM Journal
on Scientific Computing, 21 (4) (1999) 1337-1356.

[5] M. Manguoglu, A domain-decomposing parallel sparse lin-
ear system solver, Journal of Computational and Applied
Mathematics, 236 (3) (2011) 319-325.

[6] A. Lemmer and R. Hilfer, Parallel domain decomposition
method with non-blocking communication for flow through
porous media, Journal of Computational Physics, 281
(2015) 970-981.

[7] S. Loisel and H. Nguyen, An optimal Schwarz precondi-
tioner for a class of parallel adaptive finite elements, Journal
of Computational and Applied Mathematics, 321 (2017) 90-
107.

[8] G. Radicati di Brozolo and Y. Robert, Parallel conjugate
gradient-like algorithms for solving sparse nonsymmetric
linear systems on a vector multiprocessor, Parallel Comput-
ing, 11 (2) (1989) 223-239.

[9] Y. Saad, Iterative methods for sparse linear systems, PWS
Publishing Company: Boston (1996).

[10] H. A. Van der Vorst, Bi-CGSTAB: A fast and smoothly
converging variant of Bi-CG for the solution of nonsymmet-
ric linear systems, SIAM Journal on Scientific and Statistical
Computing, 13 (2) (1992) 631-644.

[11] M. Snir, S. W. Otto, S. Huss-Lederman, D. Walker and J.
Dongarra, MPI: The complete reference, The MIT Press:
London, England (1996).

[12] http://www-users.cs.umn.edu/~karypis/metis.
[13] G. F. Carey, Y. Shen and R. T. McLay, Parallel conjugate

gradient performance for least-squares finite elements and
transport problems, International Journal for Numerical
Methods in Fluids, 28 (10) (1998) 1421-1440.

[14] D. S. Kershaw, The incomplete Cholesky-conjugate gradi-
ent method for the iterative solution of systems of linear
equations, Journal of Computational Physics, 26 (1) (1978)
43-65.

[15] K. A. Hoffmann and S. T. Chiang, Computational fluid
dynamics for engineers, A Publication of Engineering Edu-
cation System: Wichita, Kansas, USA, 1 (1993).

Hyoung Gwon Choi obtained a Ph.D.,
major in the development of CFD algo-
rithms of finite element method, from
Seoul National University, Korea. He is
currently a Professor in the Department
of Mechanical/Automotive Engineering,
Seoul National University of Science
and Technology.

