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Abstract 
 
To analyze data from multi-level view, reduce computational burden, and improve fault diagnosis accuracy, a novel fault diagnosis 

method of rolling bearings based on mean multigranulation decision-theoretic rough set (MMG-DTRS) and non-naive Bayesian classi-
fier (NNBC) is proposed in this paper. First, fault diagnosis features of rolling bearings in training samples are extracted to construct 
MMG-DTRS. Then, the significance degree of condition attribute in MMG-DTRS is defined to quantitatively measure the influence of 
condition attributes with respect to the decision ability of an information system. An attribute reduction algorithm based on MMG-DTRS 
is applied to acquire a lower dimensional condition attribute set, which reduces computational complexity and avoids the interference of 
irrelevant or redundant condition attributes. Finally, NNBC is constructed to classify rolling bearing conditions in test samples. The clas-
sification procedures by using NNBC are given. The performance of the proposed method is validated and the advantages are investi-
gated by using a fault diagnosis experiment of rolling bearings. Experimental investigations demonstrate the proposed method is effective 
and reliable in identifying fault categories and fault severities of rolling bearings.  
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1. Introduction 

Rolling bearings are one of the key components in rotating 
machinery, such as wind turbines, motors, and planetary gear-
boxes, etc. [1-3]. Due to harsh operating conditions caused by 
heavy load, high speed, or contamination, rolling bearings are 
prone to various faults such as crack, pitting and spalling, etc. 
[4, 5]. Once they suffer from the faults, they may lead to entire 
system shutdown, huge production losses or even catastrophic 
results. Therefore, fault diagnosis is a crucial task to guarantee 
healthy operation state of rolling bearings. 

Recently, various data-driven fault diagnosis methods of 
rolling bearings have been put forward. Many intelligent tech-
niques, such as deep neural network (DNN), support vector 
machine (SVM), and fuzzy logic (FL), have been investigated 
and developed as novel tools for rolling bearing fault diagno-
sis [6]. Deep learning as a novel machine learning tool pos-
sesses the capability to overcome the inherent disadvantages 
of traditional intelligent techniques [7, 8]. The most obvious 
advantage of deep learning models lies in that they can auto-
matically discovery valuable information from raw data. The 

most popular deep learning model is DNN, which has been 
extensively applied in rolling bearing fault diagnosis owing to 
its strong representation ability and simple structure [9-13]. 
Gan et al. [9] put forward a hierarchical diagnosis network 
(HDN) using deep learning. A two stage diagnosis strategy is 
used for hierarchical classification through a two-layer HDN. 
The first layer is utilized to classify fault types, and the second 
one is employed to realize fault severity reorganization. Guo 
et al. [10] proposed an adaptive hierarchical deep convolution 
neural network for fault type recognition and fault size evalua-
tion of rolling bearings. Shao et al. [11] used ensemble deep 
auto-encoders (EDAEs) to propose an intelligent fault diagno-
sis method of rolling bearings. Different activation functions 
are regarded as the hidden functions of a series of auto-
encoders. EDAEs are constructed by these auto-encoders 
through unsupervised feature learning. Then, these learned 
deep features are considered as the input of classifiers for fault 
identification. Shao et al. [12] presented a fault diagnosis 
method of electric locomotive bearings using convolutional 
deep belief network (CDBN). Collected vibration data is 
compressed through an auto-encoder. A CDBN constructed 
through Gaussian visible units is used to learn deep features. 
The constructed CDBN is improved by an exponential mov-
ing average. Zhang et al. [13] constructed a deep convolu-
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tional neural network model for bearing fault diagnosis under 
variable working load and noisy environment. This model can 
achieve very high accuracy without any domain adaptation 
algorithm or any target domain information. However, deter-
mination of DNNs’ structure and parameters requires a great 
number of training samples. High computational cost and low 
adaptation ability remains unsolved. 

SVM, as a supervised machine learning technique, has been 
widely applied in fault diagnosis owing to its high prediction 
accuracy and outstanding generalization ability [14-19]. Be-
sides, it does not need a large number of training samples to 
realize mode identification. Li et al. [15] combined hierarchi-
cal fuzzy entropy (HFE) with improved SVM to propose a 
bearing fault diagnosis method. HFE is utilized to extract fault 
features. Then, refined fault features are regarded as the input 
of the improved SVM to automatically identify fault patterns. 
Liu et al. [16] constructed a dictionary using roller bearing 
mechanism to put forward a diagnose method combining 
short-time matching and SVM. Practical bearing experimental 
results indicate the proposed method can classify a weak fault 
at the early stage from complex and non-stationary signals. Li 
et al. [17] presented a bearing fault diagnosis approach com-
bining multiscale permutation entropy with improved SVM. 
Experimental results demonstrate this approach has high clas-
sification accuracy. Ziani et al. [18] proposed a bearing fault 
diagnosis strategy combining SVM with binary particle 
swarm optimization (BPSO). Regularized Fisher’s criterion is 
considered as the fitness function of BPSO algorithm. Zheng 
et al. [19] put forward a fault detection and diagnosis method 
of rolling bearings combining composite multiscale fuzzy 
entropy (CMFE) with ensemble SVM. CMFE is used to 
measure the complexity of rolling bearing signals and extract 
fault features. The ensemble SVM is used for fault identifica-
tion. Nevertheless, the parameter selection of SVM is a time-
consuming process and many parameter selection algorithms 
are not satisfactory. 

FL technique transforms qualitative, vague or ambiguous 
data into numerical terms. Ambiguous judgments can be real-
ized according to uncertain or imprecise information. Conse-
quently, FL technique has been successfully used in rolling 
bearing fault diagnosis [20-25]. Straczkiewicz et al. [20] pre-
sented a fault diagnosis approach of rolling element bearings 
using FL technique for integration of vibration-based diagnos-
tic features. Ziani et al. [21] combined multi-scale permutation 
entropy (MPE) and adaptive neuro fuzzy classifier (ANFC) to 
propose a bearing fault diagnosis method. MPE is used to 
extract fault features and refine these features. The refined 
features are considered as the input of ANFC to classify fault 
modes. Xu et al. [22] put forward an intelligent fault diagnosis 
approach using selective ensemble of multiple fuzzy classifi-
ers. Optimal features are regarded as the input of the selective 
ensemble of multiple fuzzy classifiers to classify fault patterns. 
Sun et al. [23] presented a fault diagnosis strategy of rolling 
bearings integrating fuzzy evidence discovery with Dempster–
Shafer evidence theory. Li et al. [24] introduced a probabilistic 

fuzzy system to classify bearing faults. Each rule in the rule-
based system can determine a fault and assign a probability to 
this fault. Experimental analyses demonstrate that this fuzzy 
system can match the effectiveness of other intelligent diagno-
sis methods. Although FL technique can achieve satisfactory 
diagnostic results by fuzzy decision rules, the procedures of 
acquiring fuzzy decision rules are very time-consuming. 
Moreover, construction of fuzzy system relies on human ex-
pertise and many parameter estimation algorithms are quite 
complicated. 

In recent years, multigranulation rough sets (MGRSs) have 
attracted considerable attention for their multi-level view [26, 
27]. They describe lower and upper approximations via multi-
ple granulation relations to realize approximate approximation. 
Different from traditional rough sets, MGRSs are constructed 
according to a series of equivalence relations rather than a 
single one. Therefore, they have been successfully applied in 
attribute reduction and fault diagnosis fields. Qian et al. [28] 
introduced an importance measure method of condition attrib-
utes to realize attribute reduction based on pessimistic MGRS 
model. Tan et al. [29] developed belief reduction algorithms to 
find pessimistic lower (or upper) approximate reduct by evi-
dence theory-based characteristics. Several measurements by 
using the belief and plausibility functions are introduced, and 
attribute reduction algorithms based on these measurements 
are given. Zhang et al. [30] proposed a fault diagnosis ap-
proach of steam turbine based on single-valued neutrosophic 
MGRSs over two universes. Single-valued neutrosophic 
MGRSs over two universes are defined. Then, general deci-
sion rules are constructed using rough sets over two universes 
for fault diagnosis. Zhang et al. [31] combined interval-valued 
hesitant fuzzy sets with MGRS to present a novel fault diag-
nosis method. Experimental results demonstrate that this 
method can increase fault diagnosis accuracy and greatly re-
duce uncertainty. During the attribute reduction using MGRSs, 
seeking common ground while removing differences is the 
most frequently used reduction strategy. It can be considered 
as a conservative reduction strategy, which means that it re-
tains common rules while removing inconsistent rules. Hence, 
most of the attribute reduction algorithms by using MGRSs 
are based on pessimistic MGRS model. However, compared 
to optimistic MGRS model, constraint conditions of pessimis-
tic MGRS model are excessively harsh. Sensitive and essen-
tial condition attributes are probably removed and fault diag-
nosis accuracy is reduced in practical application. 

To overcome this problem, based on mean multigranulation 
decision-theoretic rough set (MMG-DTRS) and non-naive 
Bayesian classifier (NNBC), a novel fault diagnosis method of 
rolling bearings is put forward in this paper. First, fault diag-
nosis features of rolling bearings in training samples are ex-
tracted to construct MMG-DTRS. Then, an attribute reduction 
algorithm based on MMG-DTRS is applied to acquire a lower 
dimensional condition attribute set. Finally, NNBC is con-
structed to classify rolling bearing conditions in test samples. 
Experimental results demonstrate that this method can effec-
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tively and accurately identify fault categories and fault sever-
ities of rolling bearings. 

The remainder of this paper is organized as follows. Sec. 2 
briefly introduces the preliminaries of MGRSs, MMG-DTRS 
and NNBC. A fault diagnosis method of rolling bearings 
based on MMG-DTRS and NNBC is proposed in Sec. 3. The 
experimental results are analyzed and discussed in Sec. 4. 
Finally, conclusions are drawn in Sec. 5. 

 
2. Preliminaries 

2.1 Multigranulation rough sets 

MGRSs were introduced by Qian et al. [26, 27]. Different 
from traditional rough sets, MGRSs are constructed according 
to a series of equivalence relations rather than a single one. 
Some basic concepts about MGRSs are summarized as fol-
lows. 

An information system (IS) is defined as a quadru-
ple ( ), , ,U A V f , whereU is a non-empty finite set of cases 
called the universe, A C D= U is a non-empty finite set of 
attributes, where C is the condition attribute set and D is the 
decision attribute.V is regarded as the finite set of attributes. 
Each attribute a AÎ is associated with a set aV , where aV is the 
set of values of a , called the domain of attrib-
ute a . : af U A V´ ® is a total function such as ( ), af x a VÎ for 
each a AÎ and x UÎ . 

Definition 1 [26]. Let ( ), , ,U A C D V f= U be an IS in 
which 1 2,  ,..., mB B B CÍ , then X U" Í , the optimistic lower 
approximation and upper approximation of X are denoted by 
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Proposition 1. Let ( ), , ,U A C D V f= U be an IS in 

which 1 2,  ,..., mB B B CÍ , then X U" Í , we have 
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Definition 2 [26]. Let ( ), , ,U A C D V f= U be an IS in 
which 1 2,  ,..., mB B B CÍ , then X U" Í , the pessimistic lower 
approximation and upper approximation of X are denoted by 
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å å  is the pessimistic MGRS model. 

 
Proposition 2. Let ( ), , ,U A C D V f= U be an IS in which 

1 2,  ,..., mB B B CÍ , then X U" Í , we have 
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     (6) 
 
In the optimistic MGRS model, the word “optimistic” 

means that in multiple granular structures, it needs only at 
least a granular structure to satisfy with the inclusion condition 
between knowledge granule and target concept. In the pessi-
mistic MGRS model, “pessimistic” means that in multiple 
granular structures, it needs all granular structures to satisfy 
with the inclusion condition between knowledge granule and 
target concept. 

 
2.2 Mean multigranulation decision-theoretic rough set 

Decision-theoretic rough sets (DTRSs) [32], as a form of 
probabilistic tools, possess very strong theoretical basis. 
DTRSs introduce Bayesian decision procedure to minimize 
decision costs. They provide a systematic strategy to set the 
threshold parameters according to loss functions. In the 
Bayesian decision procedure, a finite set of states can be writ-
ten as { ,  }X XW = : . A finite action set can be denoted 
by { ,  ,  }P N BA a a a= , where Pa , Na  and Ba denote three actions, 
namely, deciding ( )x POS XÎ , deciding ( )x NEG XÎ , and 
deciding ( )x BND XÎ . 11l , 21l  and 31l represent the loss for 
taking actions of Pa , Na  and Ba , respectively, when a sample 
belongs to X . Similarly, 12l , 22l  and 32l represent the loss for 
taking the correspondence actions when the sample belongs 
to X: . For a sample x , the expected loss associated with 
taking individual actions can be expressed as: 

 
( ) ( ) ( )1 11 12| [ ] | [ ] | [ ]R a x P X x P X xl l= + : ,  
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( ) ( ) ( )2 21 22| [ ] | [ ] | [ ]R a x P X x P X xl l= + : ,  

( ) ( ) ( )3 31 32| [ ] | [ ] | [ ]R a x P X x P X xl l= + : . 

 
The Bayesian decision procedure suggests the minimum-

risk decision rules: 
(P) If ( )| [ ]P X x g³  and ( )| [ ] ,P X x a³  then decision 

( )x POS XÎ ; 
(N) If ( )| [ ]P X x b£  and ( )| [ ] ,P X x g£  then decision 

( )x NEG XÎ ; 
(B) If ( )| [ ]P X xb a£ £ , then decide ( )x BND XÎ ; 

where
( ) ( )

12 32
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l l l l
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21 22 11 12
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- - -
,
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32 22

21 22 31 32
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-
=

- - -
. 

In many real applications, such as data analysis, attribute 
reduction, and mode identification of multi-source data with 
high dimensions, DTRS is not suitable for these cases. To 
overcome this issue, Qian et al. [33] combined MGRS and 
DTRS to propose MMG-DTRS. With respect to MGRSs, 
when the loss function is assigned, the conditional probability 
of a sample within a target concept in granular structures can 
be calculated as follows: 

 
( )( )|E P X x =                                   

( ) ( ) ( )1 2
{ | [ ] | [ ] ... | [ ] } /

mB B BP X x P X x P X x m+ + +       (7) 

 
where ( )[ ] 1

iBx i m£ £ is the equivalence class of x induced 
by iB  and ( )| [ ]

iBP X x is the conditional probability of the 
equivalent class [ ]

iBx with respect to X . The joint probability 
can be computed by the mean value of m conditional prob-
abilities. According to this idea, MMG-DTRS can be defined 
as follows. 

Definition 3 [33]. Let ( ), , ,U A C D V f= U be an IS in which 
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wherea , b are two thresholds. 

When the thresholdsa b> , the MMG-DTRS possesses the 
following decision rules: 

(MP1) If ( ) ( ) ( )1 2
{ | [ ] | [ ] ... | [ ] } / ,

mB B BP X x P X x P X x m a+ + + ³  

then decision ( )x POS XÎ ; 

(MN1) If ( ) ( ) ( )1 2
{ | [ ] | [ ] ... | [ ] } /

mB B BP X x P X x P X x m b+ + + £ , 

then decision ( )x NEG XÎ ; 

(MB1) If ( ) ( ) ( )1 2
{ | [ ] | [ ] ... | [ ] } / ,

mB B BP X x P X x P X x mb a< + + + <  
then decide ( )x BND XÎ . 

MMG-DTRS not only retains fault-tolerant ability of DTRS, 
but also realizes data analysis from multi-level view. Further-
more, it overcomes the shortcoming that constraint conditions 
of pessimistic MGRS model are excessively harsh. Thus, 
MMG-DTRS extends the wider applications such as data 
analysis and attribution reduction of multi-source information. 

 
2.3 Non-naive Bayesian classifier 

Recently, many methods have been developed for mode 
classification, such as ANN, SVM, and Dempster–Shafer 
theory (DST), etc. Nevertheless, two main disadvantages of 
the existing mode classification methods are summarized as 
follows. The huge computational burden prohibits the use of 
these methods in practice. Let N be the size of training sam-
ples, the training complexities of ANN, SVM and DST 
are ( )2O N , ( )3O N  and ( )2O N respectively. Besides, they 
ignore the dependence among features in the acquired samples 
in practical applications. Bayesian classifiers are identification 
tools on the basis of statistical theory. Among Bayesian classi-
fiers, naive Bayesian classifiers (NBCs) are a simple and effi-
cient probabilistic tool, which have been successfully applied 
to identify fault modes [34]. The classification performance of 
NBCs is obviously superior to traditional mode identification 
tools due to their structure simplicity, high computational 
efficiency, and less storage requirement. A key step in the 
classification strategy of NBCs is to estimate probability den-
sity function (PDF) from training data set. However, the 
common methods of PDF estimation are on the basis of the 
assumption that all attributes are independent and this hy-
pothesis is not suitable for many real-world applications [35]. 
To address this issue, NNBC using the optimal bandwidth 
selection was proposed to ignore the independence assump-
tion among attributes and replace marginal PDF estimation by 
joint PDF estimation [36]. The class label of a sample is de-
termined as the following: 

 

( )arg max |k
k

nw P x w
N

ì ü= =í ý
î þ
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where d is the attribute vector dimension and 
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c
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N n

=
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where c is the class number. Besides, kh is the optimal band-
width for kth class. It can be computed by the following equa-
tion: 
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where ( ) ( ) ( ){ }2 2 2

1 2,  ,  ..., k k k
k ddiag s s sé ù é ù é ùå = ë û ë û ë û . 

The Gaussian kernel function ( )k x can be calculated by 
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From Eq. (11), the class label of the sample x represents the 

probability that the sample x belongs to this class. The larger 
the class label is, the higher the probability that the sample x  
belongs to this class is. Accordingly, the class of the sam-
ple x can be determined through the maximum class label. 
Recent research demonstrates that NNBC can obtain the op-
timal classification performance among the existing NBCs. 
Moreover, it can achieve satisfactory diagnosis effectiveness 
without high time consumption and memory requirement. 

 
3. Fault diagnosis method of rolling bearings based 

on MMG-DTRS and NNBC 

3.1 Fault diagnosis framework 

MMG-DTRS retains fault-tolerant ability of DTRS, and can 
realize data analysis from multi-level view. It also overcomes 
the shortcoming that constraint conditions of pessimistic 
MGRS model are excessively harsh. Moreover, NNBC based 
on the optimal bandwidth selection ignores the independence 
assumption among attributes and replaces marginal PDF esti-
mation by joint PDF estimation. It can obtain satisfactory 
diagnosis accuracy without high time consumption and mem-
ory requirement. Therefore, we integrate MMG-DTRS with 
NNBC to propose a novel fault diagnosis method of rolling 
bearings, and the fault diagnosis framework is shown in Fig. 1. 
First, fault diagnosis features of rolling bearings in training 
samples are extracted to construct MMG-DTRS. Then, an 
attribute reduction algorithm based on MMG-DTRS is applied 
to acquire a lower dimensional condition attribute set. Finally, 
NNBC is constructed to classify rolling bearing conditions in 
test samples. 

3.2 Attribute reduction based on MMG-DTRS 

Attribute reduction of condition attribute set is a vital topic 
in data-driven fault diagnosis methods. It removes irrelevant 
or redundant condition attributes and retains the decision abil-
ity of an IS. That is, the positive region determined by condi-
tion attributes after attribute reduction is consistent with the 
one before attribute reduction. Consequently, to quantitatively 
measure the influence of condition attributes with respect to 
the decision ability of an IS, the significance degree of condi-
tion attribute in MMG-DTRS can be defined as follows: 

Definition 4. Let ( ), , ,U A C D V f= U be an IS in which 
1 2,  ,..., mB B B CÍ , then the classification quality of condition 

attribute set C with respect to decision attribute D in MMG-
DTRS is defined as 

 

( )
{ } ( )

,
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/ :  
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M
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X U D B X
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=
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Definition 5. Let ( ), , ,U A C D V f= U be an IS in which 

1 2,  ,..., mB B B CÍ and condition attribute set 1 2{ ,  ,..., },nC c c c=  
then ( )1ic C i n" Î £ £ , the significance degree of condition 
attribute ic with respect to decision attribute D in MMG-DTRS 
is defined as 

 
( ) ( ) ( ){ }, , .

ii C C cSig c C D S D S D-= -               (15) 

 
 
Fig. 1. Fault diagnosis framework of rolling bearings based on MMG-
DTRS and NNBC. 
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Definition 6. Attribute ic in condition attribute set C with re-
spect to decision attribute D in MMG-DTRS is not the lower 
approximation significant if and only if ( ), , 0iSig c C D = . 

MMG-DTRS retains fault-tolerant ability of DTRS, and 
overcomes the shortcoming of harsh constraint conditions of 
pessimistic MGRS model. Furthermore, the significance de-
gree of condition attribute in MMG-DTRS can be used to 
quantitatively measure the influence of condition attribute 
with respect to the decision ability of an IS. Therefore, an 
attribute reduction algorithm based on MMG-DTRS is pro-
posed to acquire a lower dimensional condition attribute set. 
The flowchart of the proposed algorithm is shown in Fig. 2, 
and the general procedures are summarized as follows. 

Input: An ( ), , , ,IS U A C D V f= = U  an attribute subset 
1 2,  ,..., mB B B CÍ , and loss function ( ), , 1,2,3p q p ql = . 
Output: A lower dimensional condition attribute set. 
Step 1: Calculate the thresholda according to the loss func-

tion ( ), , 1,2,3p q p ql = ; 
Step 2: Compute the classification quality ( )CS D of condi-

tion attribute set C with respect to decision attribute D in 
MMG-DTRS; 

Step 3: Calculate the significance degree ( )1, ,Sig c C D of 
condition attribute 1c with respect to decision attribute D in 
MMG-DTRS; 

Step 4: If the significance degree ( ), , 0iSig c C D = , then the 
condition attribute 1c is redundant, or else the condition attrib-
ute 1c is indispensable; 

Step 5: Repeat steps 3 and 4 to the other condition attributes, 
till the last one; 

Step 6: Remove all the redundant condition attributes and 
generate a lower dimensional condition attribute set. 

 
3.3 Classification by using NNBC 

From the definitions of NNBC, it can be observed that 
NNBC based on the optimal bandwidth selection ignores the 
independence assumption among attributes and replaces mar-
ginal PDF estimation by joint PDF estimation. From Eq. (5), it 
can be noted that the larger the class label is, the higher the 
probability that the sample x belongs to this class is. The class 
of a sample x can be determined through the maximum class 
label. Therefore, NNBC is used to classify rolling bearing 
conditions in test samples in this paper. The classification 
procedures of a test sample x by using NNBC are summarized 
as follows. 

Input: A test sample x and training samples after attribute 
reduction. 

Output: The class of the test sample x . 
Step 1: The optimal bandwidth kh for kth class and the 

Gaussian kernel function ( )k x are representatively calculated 
according to training samples by Eqs. (12) and (13); 

Step 2: Compute the class labels of the test sample x by Eq. 
(11); 

Step 3: Determine the class of the test sample x according to 
the maximum class label. 

In the process of classification by NNBC, each class of the 
test sample x represents a rolling bearing condition. The class 
label of a sample x represents the probability that the sam-
ple x belongs to corresponding rolling bearing condition. The 
larger the class label is, the higher the probability that the 
sample x belongs to corresponding rolling bearing condition is. 
Consequently, the rolling bearing condition of the test sam-
ple x is determined through the maximum class label. 

 
4. Experimental investigations 

4.1 Experimental setup 

A rolling bearing test-rig was used to evaluate the proposed 
method. The rolling bearing test-rig is illustrated in Fig. 3. A 
variable speed motor is employed to drive a rotating shaft 
supported by two rolling bearings. The rotating shaft is con-
nected with the drive motor by a coupling. The strategy re-
duces the transmission and misalignment influences. Three 
weights are used to apply radial load. One SR150M acoustic 
emission (AE) sensor is mounted on the bearing housing to 
acquire AE signals. In the experiment, there are seven rolling 
bearing conditions: normal condition (NC), an inner race fault 
with a fault sizes of 0.4 mm (IRF-0.4 mm), an inner race fault 
with a fault sizes of 0.8 mm (IRF-0.8 mm), an outer race fault 
with a fault sizes of 0.4 mm (ORF-0.4 mm), an outer race fault 
with a fault sizes of 0.8 mm (ORF-0.8 mm), and a rolling 

 
 
Fig. 2. Flowchart of the attribute reduction algorithm based on MMG-
DTRS. 
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element fault (REF), and combined fault (CF: IRF-0.8 mm 
and ORF-0.8 mm), respectively. Seven rolling bearing condi-
tions are illustrated in Fig. 4. 

Radial load was used to simulate three operation states of 
rolling bearings. The rotation speeds of the drive motor were 
adjusted to 400 rpm, 800 rpm and 1200 rpm, respectively. AE 
signals of rolling bearings were acquired at a sampling fre-
quency of 96 kHz. There were 10 samples in each rolling 
bearing operation state. Thus, 90 samples were collected for 
each bearing condition and there were a total of 630 samples. 
The AE signals of seven rolling bearing conditions are shown 
in Fig. 5. 

 
4.2 Experimental results 

By adding white noise, ensemble empirical mode decompo-
sition (EEMD) can automatically project the composed com-
ponents of a signal onto a uniform reference frame to solve 
mode mixing problem [37]. Consequently, it has been applied 
in extracting fault features of rolling bearings [38, 39]. In this 
experiment, EEMD is used to decompose the AE signals into 
several intrinsic mode functions (IMFs). Both time domain 
and frequency domain features are extracted to characterize 
rolling bearing conditions. These features contain standard 
deviation, kurtosis, shape factor and impulse factor in the time 
domain, and mean frequency, root mean square frequency, 
standard deviation frequency and spectrum peak ratio in the 

frequency domain. The first three maximum IMF values of 
each feature are regarded as fault features of rolling bearings. 
Accordingly, a total of 24 fault features are acquired to form 
condition attributes. 

To validate the performance of the proposed method, 504 
samples are regarded as training samples and 126 samples are 
used for test in this study. The ratio of training to test samples 
is 4:1. The attribute reduction algorithm based on MMG-
DTRS is applied to acquire a lower dimensional condition 
attribute set from the training samples. The thresholda is set 
to 0.7. By using principle component analysis (PCA), the scat-
ter plots of the training samples with the entire condition at-
tributes and the ones with the lower dimensional condition 
attribute set are shown in Fig. 6. It can be observed that the 
lower dimensional condition attribute set provides better sepa-
ration with a distinct clustering distribution among seven roll-
ing bearing conditions. It is because the condition attributes in 
the acquired lower dimensional condition attribute set are 

 
 
Fig. 3. Rolling bearing test-rig. 

 

 
 
Fig. 4. Seven rolling bearing conditions: (a) NC; (b) IRF-0.4 mm; (c) 
IRF-0.8 mm; (d) ORF-0.4 mm; (e) ORF-0.8 mm; (f) REF; (g) CF. 

 

 
       Time (seconds) 

 
Fig. 5. AE signals of seven rolling bearing conditions: (a) NC; (b) IRF-
0.4 mm; (c) IRF-0.8 mm; (d) ORF-0.4 mm; (e) ORF-0.8 mm; (f) REF;
(g) CF. 
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more sensitive during clustering performance, which avoids 
the interference of irrelevant or redundant condition attributes. 

NNBC is constructed to classify rolling bearing conditions 
in the test samples. Diagnosis accuracy of seven rolling bear-
ing conditions is listed in Table 1, where average accuracy is 
calculated according to all the samples of each rolling bearing 
condition. As listed in Table 1, the average accuracy of each 
condition is more than 95 %. Thus, the proposed method can 
accurately identify fault categories and fault severities of roll-
ing bearings. 

 
4.3 Comparison analyses 

Toanalyze the influence of the thresholda on average accu-
racy, the attribute reduction algorithm based on MMG-DTRS 
and the other one based on DTRS are, respectively, applied to 
acquire lower dimensional condition attribute sets. Then, roll-
ing bearing conditions in test samples are classified by using 
NNBC. Relation curves between average accuracy and the 

thresholda are depicted in Fig. 7. It can be observed that av-
erage accuracy increases first and then decreases along with 
the increase of the thresholda . It is because smaller threshold 
values will lead to constraint conditions being loose, while 
irrelevant or redundant condition attributes are probably re-
tained. Larger threshold values will lead constraint conditions 
to be harsh, while sensitive and essential condition attributes 
are probably removed. Accordingly, the best diagnostic per-
formance can be achieved by reasonable threshold value se-
lection in practical applications. Although average accuracy is 
influenced by the thresholda , the proposed method still pos-
sesses higher average accuracy than the other one based on 
DTRS. The reason is that MMG-DTRS can realize data analy-
sis from multi-level view and describe a target concept 
through fusing multiple granular structures rather than a single 
one. Therefore, the proposed method is exactly suitable to 
identify various types of rolling bearing faults. 

To further validate the effectiveness, the proposed method 
is compared to the traditional data-driven fault diagnosis 
methods (FL, SVM and DNN) using the same samples. In this 
experiment, fuzzy toolbox available in MATLAB 2016a is 
used to construct the fuzzy inference engine. Fault diagnosis 
based on SVM is performed by MATLAB SVM toolbox, 
whose penalty parameter C and Gaussian kernel parameter g  
are set to 120 and 10, respectively. A three-layer DNN is ap-
plied and the number of hidden layer nodes is set as 100. The 
ratios of training to test samples are 2:1, 3:1 and 4:1, respec-
tively. Fig. 8 illustrates diagnosis results of four methods. It 
can be noted that the average accuracy of four methods in-
creases along with the ratio enhancement. The higher the ratio 
of training to test samples is, the better the diagnosis effec-
tiveness is. Compared with the other methods, the proposed 

Table 1. Diagnosis accuracy of seven rolling bearing conditions. 
 

Condition 
Ratio of 

training to test 
samples 

Training 
accuracy (%) 

Test accuracy 
(%) 

Average 
accuracy (%) 

NC 4:1 100 77.78 95.56 

IRF-0.4 mm 4:1 100 83.33 96.67 

IRF-0.8 mm 4:1 100 88.89 97.78 

ORF-0.4 mm 4:1 100 88.89 97.78 

ORF-0.8 mm 4:1 100 94.44 98.89 

REF 4:1 100 83.33 96.67 

CF 4:1 100 88.89 97.78 

 

 
 
Fig. 6. Scatter plots of the training samples: (a) With the entire condi-
tion attributes; (b) with the lower dimensional condition attribute set. 

 

 
 
Fig. 7. Relation curves between average accuracy and the thresholda . 

 

 
 
Fig. 8. Diagnosis results of four methods. 
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method always achieves the highest average accuracy with 
three ratios. This is because more training samples possess 
more diagnosis information, which can realize more accurate 
determination of the model structure and parameters. Besides, 
the lower dimensional condition attribute set provides better 
separation with a distinct clustering distribution among rolling 
bearing conditions. In addition, NNBC ignores the independ-
ence assumption among attributes and replaces marginal PDF 
estimation by joint PDF estimation. We suggest using the 
proposed method under the following condition. A great num-
ber of vibration signals can be acquired from historical records. 
Moreover, these historical records contain various conditions 
of rolling bearings. 

 
4.4 Discussions 

(1) According to the above experimental results, the diagno-
sis accuracy of the proposed method obviously outperforms 
the traditional data-driven fault diagnosis methods. The main 
reasons are summarized as follows. The attribute reduction 
algorithm based on MMG-DTRS is applied to acquire sensi-
tive condition attributes, which can maximize classification 
separation and avoid the interference of irrelevant or redun-
dant condition attributes. Also, NNBC based on the optimal 
bandwidth selection ignores the independence assumption 
among attributes and replaces marginal PDF estimation by 
joint PDF estimation. 

(2) In the comparison analyses, the proposed method ob-
tains higher average accuracy than the other method based on 
DTRS, despite the influence of the threshold .a  The reasons 
are that MMG-DTRS retains fault-tolerant ability of DTRS, 
realizes data analysis from multi-level view, and overcomes 
the shortcoming that constraint conditions of pessimistic 
MGRS model are excessively harsh. In addition, the attribute 
reduction algorithm based on MMG-DTRS can remove re-
dundant condition attributes and decrease the number of ran-
dom variables in NNBC. Thus, the proposed method is capa-
ble of improving diagnosis accuracy and reducing computa-
tional burden. 

(3) In the experimental investigations, seven rolling bearing 
conditions covering typical fault categories and different fault 
severities are used to validate the performance of the proposed 
method. Accordingly, it is a representative case of rolling 
bearing fault diagnosis. According to the comparison analyses, 
the comparison results demonstrate the effectiveness, reliabil-
ity and generalization ability of the proposed method. Thus, 
this method is exactly suitable to identify various types of 
rolling bearing faults. 

 
5. Conclusions 

A novel fault diagnosis method of rolling bearings combin-
ing MMG-DTRS with NNBC was put forward. MGRSs, 
MMG-DTRS, and NNBC were first reviewed. Then, the fault 
diagnosis framework was illustrated. A fault diagnosis ex-

periment of rolling bearings was utilized to validate the per-
formance of this method. The comparison analyses demon-
strate that the diagnosis accuracy of this method is much supe-
rior to that of the traditional methods. Besides, the proposed 
method is capable of improving diagnosis accuracy and reduc-
ing computational burden. Therefore, it is effective and reli-
able in identifying fault categories and fault severities of roll-
ing bearings. 
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