
 
 

 
Journal of Mechanical Science and Technology 32 (10) (2018) 4871~4881 

www.springerlink.com/content/1738-494x(Print)/1976-3824(Online) 
DOI 10.1007/s12206-018-0935-9 

 

 

 

 
The application of a regularization method to the estimation of geometric errors of  

a three-axis machine tool using a double ball bar† 
Wenjie Tian1, Guang Yang1, Lina Wang2, Fuwen Yin3 and Weiguo Gao3,* 

1School of Marine Science and Technology, Tianjin University, Tianjin, China 
2School of Mechanical Engineering, Tianjin Sino-German University of Applied Sciences, Tianjin, China 

3Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin, China    
 

(Manuscript Received February 8, 2018; Revised April 22, 2018; Accepted June 29, 2018)   

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 
Geometric accuracy is crucially important for machine tools. Identification of geometric errors, especially position-dependent geomet-

ric errors, is still a challenging issue. This paper presents a systematic and fast approach to identify the geometric error components of a 
precision machine tool using double ball bar (DBB). The approach can be implemented in three steps: (1) polynomial based error model-
ing that relates the DBB radius error directly to the geometric error parameters of machine tool; (2) spatial measurement trajectory plan-
ning with a single installation of DBB in order to avoid producing extra setup errors; (3) error identification with regularization method 
that can solve the ill-posed identification problem effectively. Simulations and experiments show the accuracy and effectiveness of the 
proposed identification approach. The results of the DBB test show that, utilizing the proposed identification method, the roundness er-
rors of the three circular paths in xy-, yz- and xz-plane are reduced from 27.3 μm, 20.7 μm and 24.1 μm to 9.2 μm, 12.3 μm and 7.8 μm, 
respectively, with error compensation.  
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1. Introduction 

Geometric accuracy is crucially important for machine tools, 
especially under circumstances where relatively high precision 
is one of the basic requirements [1-3]. Assuming that suffi-
cient repeatability can be achieved via manufacturing and 
assembly process, it is well recognized that a practical and 
economical way for enhancing geometric accuracy is error 
compensation by software [4], a process by which the actual 
kinematic parameters can be estimated so as to modify the 
inverse kinematic model residing in the CNC controller.  

The error compensation process falls conventionally into 
four sequential steps: Modeling, measurement, identification 
and implementation [5]. In the past, many comprehensive 
studies and research work have been made in the area of error 
compensation, and there are two main difficulties: (1) In the 
measurement process, it is difficult to obtain the geometric 
error of the machine tool accurately and conveniently; (2) In 
the identification process, the position-dependent geometric 
errors [6] are difficult to identify, because each of them 
changes with axis position and the complicated error model 

often causes an ill-posed problem [7].  
To solve the first problem, many researchers have devel-

oped advanced or special measurement devices to detect geo-
metric errors in machines. Basically, all measurement 
schemes can be classified in two categories: direct and indirect 
methods. Direct measurements allow the measurement of 
geometric errors for a single machine axis without the in-
volvement of other axes. Laser-based measurement methods, 
such as the laser interferometer, are the most common direct 
methods, which have been widely used for error compensation 
[8-11]. However, the direct method has the disadvantage that 
the measurement time is too long to be accepted by industry. 
Indirect measurements require multi-axes motion of the ma-
chine under test. Many studies have been developed based on 
indirect method with various devices [12-17]. However, the 
advanced or special device increases the cost of measurement 
and compensation, especially when the required accuracy is 
high. In the past decades, double ball bar (DBB), an accurate 
and economic error measurement system, has been frequently 
adopted [18-23]. However, current error identification tech-
niques using DBB still have the problems of unsystematic 
approach, low modeling accuracy due to the small numbers of 
error components which can be identified, and low order error 
component models. Therefore, it is necessary to develop a 
more efficient method in terms of measurement speed and 
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identification accuracy.  
As to the second problem, when considering the position-

dependent geometric errors, complicated and nonlinear map-
ping might cause huge difference among all the geometric 
errors to be identified, which means that some errors influence 
the tool tip error greatly while others have slight influence. If 
not all components of volumetric error vector are measured, 
an ill-posed problem would be even worse because the errors 
of each axis could not be decoupled. This ill-posed problem 
even might make identification impossible considering ran-
dom measurement errors. Usually, optimization of measure-
ment points or adoption of proper algorithm can effectively 
improve the ill-posed phenomenon. We adopted a regulariza-
tion method [24-27] to handle this ill-posed problem, instead 
of choosing optimal measurement points. The solution based 
on the regularization algorithm is stable and can satisfy the 
error identification equations so that it will improve the accu-
racy of identification.  

We developed a systematic approach to identify the error 
components of a machine tool using DBB test. Since circular 
tests are performed with more than one axis motion involved 
(usually two), errors measured by a DBB are the combined 
effects of the error components rather than the errors of single 
axis. After Sec. 1 has briefly addressed current challenges in 
error measurement and identification of machine tools, Sec. 2 
establishes the volumetric error synthesis model to connect the 
measured radial errors with all the individual error compo-
nents of machine. In Sec. 3, identification equations and iden-
tifiability analysis are discussed based on the proposed DBB 
measurement scheme, and a regularization method is also 
employed to solve the ill-posed identification problem. In Sec. 
4, simulation work is realized to certify all the analyses and 
identification methods mentioned above. Through guidance 
from simulation, experiments of measurement and identifica-
tion on a precision horizontal machine tool are presented in 
Sec. 5. And the results of two verification tests show the effec-
tiveness of the proposed approach. Finally, conclusions are 
drawn in Sec. 6. 

 
2. System description and error modeling 

The experimental 3-axis horizontal machine tool with "box-
in-box" construction is shown in Fig. 1. The machine tool is 
mainly composed of three translational axes: The x-axis, 
which moves the moving column left and right, the y-axis, 
which carries the spindle box up and down, and the z-axis, 
which drives the work table in and out to the spindle. 

 
2.1 Geometric errors of machine tool 

The geometric errors of the machine tool refer to the errors 
of individual axes and those between axes, which are also 
known as position-dependent geometric errors (PDGEs) and 
position-independent geometric errors (PIGEs), respectively 
[6, 28]. 

PDGEs are the errors of the axis itself and can be modeled 
as functions of position of this axis. Each axis has six PDGEs, 
and under the rigid body assumption, the six geometric errors 
affected by the travel of one axis will not change with posi-
tions of the other two axes. Taking x-axis as an example (see 
Fig. 2), reference frame 0X xyz-  is located at origin 0X  of 
x-axis, while ideal moving frame X xyz-  is fixed on the 
moving column of x-axis and remains parallel to 0X xyz- . 
The actual position and orientation of frame X xyz-  is ex-
pressed with frame X xyz¢ - . Due to geometric inaccuracies, 
there exist six PDGEs, ( )x xd , ( )y xd , ( )z xd , ( )x xe , ( )y xe  
and ( )z xe , between frame X xyz¢ -  and X xyz- . xd , yd  
and zd  represent the translational errors, where the subscript 
represents the error direction. xe , ye  and ze  represent the 
angular errors, where the subscript represents the rotation axis 
of angular error. x, y and z are the translational motion coordi-

 
(a) 

 

 
(b) 

 
Fig. 1. The experimental 3-axis horizontal machine tool: (a) Structure 
diagram; (b) kinematic equivalent. 
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nate values of x-axis, y-axis and z-axis, respectively. For ex-
ample, ( )z xd  indicates that it is a translational error, an error 
in z-direction, and a function of the x-axis position. The 
PDGEs of x-axis can be written in twist form: 

 

( )T
( ) ( ) ( ) ( ) ( ) ( ) ( ) .x y z x y zx x x x x x xd d d e e e=E  

 
Similarly, the PDGEs of y- and z-axis can be written as 
 

( )T
( ) ( ) ( ) ( ) ( ) ( ) ( )x y z x y zy y y y y y yd d d e e e=E  

( )T
( ) ( ) ( ) ( ) ( ) ( ) ( ) .x y z x y zz z z z z z zd d d e e e=E  

 
PIGEs usually refer to the orientation errors of an axis from 

its nominal coordinate, and can be regard as constants. Theo-
retically, one axis has three orientation errors. However, in a 
real error modeling process, most of them can be neglected 
due to the reasonable selection of reference coordinate system. 
For the machine tool shown in Fig. 1, the real motion of x-axis 
is selected as the reference direction; thus x-axis has no orien-
tation errors [29]. The plane through x-axis and y-axis is se-
lected as the reference plane; thus y-axis has one orientation 
error xye , namely, the squareness error between x-axis and y-
axis. The nominal direction of z-axis is selected such that these 
three axes construct a right-hand coordinate system; thus the 
z-axis has two squareness errors, xze  and yze . The PIGEs of 
x-, y- and z-axis can also be written in twist form: 

 
( )T0 0 0 0 0 0x =E  

( )T
0 0 0 0 0y xye=E  

( )T
0 0 0 0 .z yz xze e=E  

 
There are altogether 21 geometric errors for the 3-axis hori-

zontal machine tool: Three translational errors and three angu-
lar errors associated with each axis, and one squareness error 
between every two axes. 

 
2.2 Geometric error model of the DBB-machine system 

Fig. 3(a) shows the experimental setup of DBB test on the 
machine tool. The DBB connects the spindle and the work 
table with two precision balls and two magnetic sockets. One 
end of the DBB ( WP ) is mounted on the work table, while the 

other ( SP ) is attached to the spindle. Inside the DBB there is a 
relative displacement transducer to detect the extension or 
contraction of the DBB. The machine is programmed to move 
along circular paths with a radius equal to the nominal length 
of the DBB at a certain rate. The radial errors between the 
actual travel path of the tool and its nominal path are meas-
ured and recorded by the DBB.  

The volumetric error models of points SP  and WP  need to 
be established first to connect the measured radial errors with 
all the individual geometrical errors. From the rigid body kine-
matics points of view, the spatial displacement error of one 
point on the rigid body can be considered as resultant of the 
translational motion error of the reference point and the rota-
tional motion error about the axis passing through the refer-
ence point. Therefore, the volumetric error vectors of SP  and 

WP , 
SPDr  and 

WPDr , can be expressed as 
 

SP x x y yD = +r A e A e , 
WP z zD =r A e  (1) 
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Fig. 2. Linear and angular errors of translational axis (x-axis). 

 

 
(a) 

 

 
(b) 

 
Fig. 3. Measurement setup of DBB-machine system: (a) Structure of 
DBB instrument; (b) errors of the measurement system. 
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where xe , ye  and ze  are the error vectors composed of 
PDGEs and PIGEs of each axis; xA , yA  and zA  are the 
error mapping matrices; 3I  is a unit matrix of order 3, j

ir  
denotes the position vector of point i measured in frame j; r̂  
is the skew-symmetric matrix of vector T( )x y zr r r=r , and 
can be expressed as [30] 

 
0

ˆ 0 .
0

z y

z x

y x

r r
r r
r r

é ù-
ê ú

= -ê ú
ê ú-ë û

r  

 
As shown in Fig. 3(b), without consideration of geometric 

errors, the loop closure equation gives 
 

S WP Pl = -n r r  (2) 

 
where l and n are the nominal length of the DBB and the 
nominal unit vector pointing from WP  to SP . Taking small 
perturbation on both sides of Eq. (2) yields 

 

( )S WP Pl lD + D = D - D + Dn n r r s  (3) 

 
where lD  is the DBB radius error; 

SPDr  and 
WPDr  are 

caused by the geometric errors of the machine tool itself and 
obtained in Eq. (1); ( )T

x y zs s sD = D D Ds  is induced by the 
installation error of the magnetic center mount [21]. Note that 
Ds  is a constant vector, the elements of Ds  can be seen as 
PIGEs. Taking dot products on both sides of Eq. (3) with n 
and noticing that T 0D =n n  leads to 

 

( )T .
S WP PlD = D - D - Dn r r s  (4) 

 
Substituting Eq. (1) into Eq. (4), leads to 
 

lD = he  (5) 
T

3x y zé ù= - -ë ûh n A A A I , ( )T

x y z= De e e e s  

 
where e is the geometric error vector of DBB-machine sys-
tem; h is the corresponding error mapping matrix. Several 
zero elements in e have no effect on the DBB length error lD , 
and should be eliminated, together with the corresponding 
columns of h. At different machine positions, Eq. (5) can re-
late the DBB radius error directly to the geometric error com-
ponents. 

 
3. Identification of error parameters with regulariza-

tion method 

As mentioned in Sec. 1, current error identification tech-
niques using DBB still have the problems of unsystematic 

method and low identification accuracy due to the ill-posed 
problem. Therefore, it is very necessary to develop a more 
efficient measurement scheme and a more accurate identifica-
tion algorithm. 

 
3.1 DBB measurement scheme 

Three circular paths in the xy-, yz- and zx-planes are planned 
as shown in Fig. 4. The planned measurement paths can be 
performed with only one mounting of the DBB in order to 
avoid producing extra setup errors. For the circular path in the 
xy-plane, it is possible to fully trace the circle using DBB. 
However, tests in the yz- and zx-plane cannot be performed for 
full circles due to the interference of the spindle. 

At the beginning of the DBB test, the machine tool should 
be programmed to move the spindle to the center position of 
the test [31], and the current position of the machine is defined 
as the origin of the measurement frame WP xyz- , a moving 
frame fixed on the worktable, by defining a work offset in NC 
system (see Fig. 4). For convenience, the position coordinate 
of SP , ( x, y, z ), was measured in frame WP  in this study. 

 
3.2 Identification equations 

In Sec. 2.2, the radial errors measured by DBB were related 
to machine volumetric errors by geometric calculations and 
further related to individual error components by volumetric 
model. As mentioned above, there are two types of error com-
ponents in Eq. (5): Position dependent, e.g., ( )xE , ( )yE  
and ( )zE , and position independent, e.g., xE , yE , zE  and 
Ds . The PDGEs can be described by functions of joint vari-
ables. We used the polynomial model to represent each of 
these error components. For translational PDGEs (positioning 
errors and straightness errors), we have 

 
1

,
0

( )
n

k
i ij k

k

j jd d
=

= ×å , , , ,i j x y z=  (6) 

 
where 1n  is the order of polynomials and ,ij kd  is the kth 
coefficient of the polynomial model.  

Similarly, for angular PDGEs (pitch, yaw and roll errors), 

 

x

y

z

( , , )SP x y z

(0,0,0)WP

l

180° x-z trajectary 

180° y-z trajectary 

360° x-y trajectary  
 
Fig. 4. DBB measurement paths in three coordinate planes. 
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we have 
 

2

,
0

( )
n

k
i ij k

k

j je e
=

= ×å , , , ,i j x y z=  (7) 

 
where 2n  is the order of polynomials and ,ij ke  is the kth 
coefficient of the polynomial model. 

Noticing that the DBB test is a kind of relative position 
measurement method, the geometric errors identified utilizing 
DBB measurement information are relative errors as well. Let 
values of PDGEs be zero at the origin WP , i.e., the constant 
terms of the error polynomials are set to zero. Thus, Eqs. (6) 
and (7) can be rewritten in matrix form as 

 
1

, ( ) ( )
1

( )
i i

n
k

i ij k j j
k

j j d dd d
=

= × =å M p  (8) 

12
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n
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1
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n
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i ij k j j
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j j e ee e
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= × =å M p  (9) 

22
( )i

n
j j j je é ù= ë ûM L , ( )2

T

( ) ,1 ,2 ,i j ij ij ij ne e e e=p L  

 
where ( )i jdp ( ( )i jep ) is the unknown to be identified that con-
tains the parameters of the geometric error ( )i jd  ( ( )i je ); 

( )i jdM ( ( )i jeM ) is the corresponding mapping matrix.  
Taking x-axis as an example, its PDGE vector ( )xE  can 

be rewritten using Eqs. (8) and (9) in the following form: 
 

1 2

1 2

1 1

1 2 1 2

( ) 1 1 ( )

1 ( ) 1 ( )

1 1 ( ) ( )

6 3( ) 3( ) 1

0 0
0 0

( ) .

0 0

x x

y y

z z

x n n x

n x n x

n n x x

n n n n

x

d d

d d

e e

´ ´

´ ´

´ ´

´ + + ´

é ùæ ö
ç ÷ê ú
ç ÷ê ú= ç ÷ê ú
ç ÷ê ú
ç ÷ê úë ûè ø

M p
M p

E

M p

L
L

M M O M M
L

144444244444314243

 (10) 

 
Similarly, the PDGE vectors ( )yE  and ( )zE  can be writ-

ten in the same form. Substituting ( )xE , ( )yE  and ( )zE  
into Eq. (5) leads to a vector representation of the DBB length 
error ilD  

 
i ilD = H p  (11) 

 
where p is the parameter vector of geometric errors containing 

1 29( )n n+  parameters of PDGEs, 3 squareness errors and 3 
DBB setup errors; iH  is the mapping matrix with 1 row and 

1 29( ) 6n n+ +  columns, the subscript i represents the ith 
measurement configuration; ilD  is the DBB length error of 
the ith measurement configuration. Taking all m measurement 
configurations into consideration leads to m identification 
equations. 

 
D =l Hp  (12) 

( )T

1 2 ml l lD = D D Dl L , ( )T

1 2 .m=H H H HL  

3.3 Identifiability analysis 

To identify the vector p using Eq. (12), special care must be 
taken to make the columns of matrix H linearly independent. 
Thus, all the elements of p must be independent. By means of 
column correlation analysis, there exist two kinds of correla-
tion problems: inevitable linear correlation and potential linear 
correlation.  

Inevitable linear correlation: All of the parameters to be 
identified and their coefficients are listed in Table 1. It can be 

Table 1. The parameters to be identified and their coefficients. 
 

Axis Geometric 
errors Parameters Coefficients 

,1xxd  ( )x xn ln  

,2xxd  2( )x xn ln  ( )x xd  

M  M  

( )y xd  ,yx id  ( )i
y xn ln  

( )z xd  ,zx id  ( )i
z xn ln  

( )x xe  ,xx ie  ( ) ( )
S S

X X i
y P z P xn z n y ln- +  

( )y xe  ,yx ie  ( ) ( )
S S

X Y i
x P z P xn z n x ln-  

x-axis 

( )z xe  ,zx ie  ( ) ( )
S S

X Y i
x P y P xn y n x ln- +  

( )x yd  ,xy id  ( )i
x yn ln  

( )y yd  ,yy id  ( )i
y yn ln  

( )z yd  ,zy id  ( )i
z yn ln  

( )x ye  ,xy ie  ( ) ( )
S S

Y Y i
y P z P yn z n y ln- +  

( )y ye  ,yy ie  ( ) ( )
S S

Y Y i
x P z P yn z n x ln-  

y-axis 

( )z ye  ,zy ie  ( ) ( )
S S

Y Y i
x P y P yn y n x ln- +  

( )x zd  ,xz id  ( )i
x zn ln-  

( )y zd  ,yz id  ( )i
y zn ln-  

( )z zd  ,zz id  ( )i
z zn ln-  

( )x ze  ,xz ie  ( ) ( )
W W

W Z i
y P z P zn z n y ln-  

( )y ze  ,yz ie  ( ) ( )
W W

W W i
x P z P zn z n x ln- +  

z-axis 

( )z ze  ,zz ie  ( ) ( )
W W

Z W i
x P y P zn y n x ln-  

xsD  xn-  

ysD  yn-  
DBB 
setup 
errors 

zsD  zn-  

xye  0 0

S S

Y Y
x P y Pn y n x- +  

yze  0 0

W W

Z Z
y P z Pn z n y-  

Others 

Squareness 
errors 

xze  0 0

W W

Z Z
x P z Pn z n x- +  
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seen that the parameter ,1yxd  of ( )y xd  is linearly dependent 
on the parameter ,1xyd  of ( )x yd  under all conditions. It is 
also true for the parameter ,1zxd  of ( )z xd  on the parameter 

,1xzd  of ( )x zd  and the parameter ,1zyd  of ( )z yd  on the pa-
rameter ,1yzd  of ( )y zd . Therefore, ,1yxd , ,1zxd  and ,1zyd  are 
eliminated, together with the corresponding columns of H. 

Potential linear correlation: Except the three groups of in-
evitable linear correlated geometric errors, there also exist five 
groups of potential linear correlated geometric errors that 
merit our attention. It can be found in Table 1 that ( )x xd , 

( )y xe  and ( )z xe  will be linear correlated when 0
S

Y
Px = . It 

means that the prerequisite for each of them to be identifiable 
is 0

S

Y
Px ¹ . Similarly, the other four groups of geometric 

errors and their prerequisites of linear uncorrelation are to-
gether listed in Table 2. To make each geometric error in Ta-
ble 2 identifiable, the installation position of the DBB must 
meet two requirements: (1) Ball SP  is not in the spindle axis; 
(2) ball WP  is not in the longitudinal central axis of the work-
table. 

After above-mentioned processing, there remain 
1 29( ) 3n n+ +  independent parameters in p. Therefore if the 

number of measurement configurations on the planned paths, 
dim( )m ³ p , p is identifiable theoretically. 

 
3.4 Identification algorithm based on regularization method 

Although simplified measurement scheme is proposed, it is 
also very difficult to solve the identification Eq. (12) because 
of the ill-posed problem.  

We employed the Ridge regression method to solve the ill-
posed problem, which is a kind of regularization method, and 
was presented by Hoerl [32] in 1970s. The Ridge regression 
method tries to substitute a precise solution with an approxi-
mate one. The approximate solution is supposed to keep the 
residual error of the equation low and avoid itself from diver-
gence. With this method, the measurement points can be arbi-
trarily selected, which will also bring convenience. 

The regularization solution of Ridge regression can be ex-
pressed as 

 

( ) 1T Tˆ m
-

= + Dp H H I H l  (13) 

where p̂  is the identification result of p; I is the identity 
matrix; μ is the regularization parameter (positive and finite).  

The value of μ determines how sensitive the solution p̂  is 
to the measurement noise; thus how to obtain the optimal 
value of μ becomes a key problem. Generalized cross-
validation (GCV), due to Wahba [33, 34], is an effective 
method for practical problems with discrete data and stochas-
tic noise. The GCV parameter estimate is defined by 

 

( ) 2

( )
argmin

tr ( )

m m
m

m
*

ì ü- Dï ï= í ý
é ù-ï ïë ûî þ

I A l

I A
 (14) 

 
where ( ) 1T T( )m m

-
= +A H H H I H , m denotes the number of 

measurement points; tr( )g  denotes the trace of the matrix. 
 

4. Simulations 

In this section, simulation work is realized to certify the 
identification method mentioned above. As shown in Fig. 5, 
the procedure of simulation can be summarized as follows. 

Step 1: Determine the orders of the polynomial model, 1n  
and 2n ; 

Step 2: Artificially set parameter vector p; 
Step 3: Calculate the DBB length error vector Dl  using Eq. 

(5), and then artificially add random error vector δ on Dl  to 
simulate the measurement errors; 

Step 4: Calculate the optimal μ with GCV method, and 
identify parameter vector p with Regularization method; 

Step 5: Calculate the deviation of p̂  from p, and verify the 
effectiveness of the proposed identification method. 

To determine appropriate n1 and n2, a large amount of actual 
measurement data with laser interferometer was collected, and 
the polynomial model with different orders was utilized to fit 
the normalized error curves. As listed in Table 3, two indices, 
maximum and root mean square (RMS) of the fitting errors 
were taken to evaluate the goodness of fit when the fitting 

Table 2. Potential linear correlative geometric errors and their prereq-
uisites of linear uncorrelation.  
 

Groups Geometric errors Prerequisites of  
linear uncorrelation 

1 ( )x xd , ( )y xe , ( )z xe  0
S

Y
Px ¹  

2 ( )x yd , ( )y ye , ( )z ye  0
S

Y
Px ¹  

3 ( )y yd , ( )x ye , ( )z ye  0
S

Y
Py ¹  

4 ( )x zd , ( )y ze , ( )z ze  0
W

W
Px ¹  

5 ( )z zd , ( )x ze , ( )y ze  0
W

W
Pz ¹  

 
 

 
 
Fig. 5. Simulation procedure of the Regularization method. 
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polynomial order changes from 1 to 7. With the increased 
order, the fitting errors of both translational and angular errors 
reduced at first and then increased due to Runge's phenome-
non. Based on an overall consideration of fitting accuracy and 
model complexity, 1 3n =  and 2 4n =  were selected to es-
tablish the polynomial models of Eqs. (8) and (9). 

The elements of p were artificially given, and Gaussian 
noise with standard deviation of 0.1 μm, 0.5 μm and 1.0 μm 
was added to the measurements (to the DBB readings) to 
simulate measurement noise. Table 4 gives the simulated 
identification results. The identification error is calculated as 
the 2-norm of the difference between the given parameters and 
the identified parameters. To determine the resulting error 
improvement, the workspace error after error compensation 
was simulated using the geometric error model Eq. (1). The 
workspace error was computed as the average volumetric 
error at 63 equally spaced points in the machine’s workspace. 
And the contouring error after compensation was computed as 
the root mean square error following along the planned paths 
shown in Fig. 4. The simulation results verify the effective-
ness of the error model and the identification method. 

 
5. Experiment 

5.1 Measurement 

Fig. 6 shows the horizontal machine tool under investiga-
tion and the DBB measurement system, and Fig. 7 shows the 
detailed measurement paths in three test planes. Angular over-
shoot, an arc travelled by the tip of the DBB transducer before 
and after the data capture arc, is programmed to allow the 
machine to accelerate to the required feed rate before the DBB 

passes through the data capture arc, and to decelerate before 
the feed out movement is performed. In this paper, 45º, 5º and 
5º overshoots were used in xy-, yz- and xz-plane, respectively. 

To reduce the influences of servo-following errors and 
servo mismatch on DBB measurement data, the experiment 
was performed with a relatively low feed rate of 600 mm/min. 
The machine tool was warmed up by preliminary movement 
for approximately 2 hours prior to the experiment. The ther-
mostatic room temperature was kept between 20.2 ºC and 20.8 
ºC during the experiment, and the DBB was kept in the ex-
periment room prior to the experiment to ensure thermal sta-
bility. The DBB was calibrated using the Zerodur calibrator 
provided by the supplier. The numerical resolution of DBB is 
0.1 μm. 

 
5.2 Error identification 

Each measurement path was conducted five times with a sin-
gle setup. The averaged measurement data Dl  is shown in Fig. 
8, which was used to identify the parameters in p. And then 
GCV method was used to obtain the regularization parameter. 
As shown in Fig. 9, the optimal regularization parameter is lo-

Table 3. Polynomial fitting errors of geometric errors (dimensionless). 
 

Fitting errors of 
translational errors 

(using 68 sets of error 
data in total) 

Fitting errors of 
angular errors 

(using 54 sets of error 
data in total) 

Fitting poly-
nomial order 

Max RMSE Max RMSE 

1 1.962 1.014 1.709 0.889 

2 1.633 0.879 1.566 0.806 

3 1.162 0.609 1.219 0.652 

4 1.018 0.596 1.107 0.584 

5 1.197 0.629 1.008 0.560 

6 1.387 0.730 1.298 0.681 

7 1.506 0.793 1.417 0.750 
 
Table 4. Identification simulations with regularization method. 
 

Noise (μm) 0.1 0.5 1.0 

μ* (dimensionless) 5.95×10-5 1.20×10-4 9.41×10-4 

ˆ -p p  (dimensionless) 1.74×103 1.99×103 2.07×103 

Workspace error (μm) 0.886 1.509 2.317 

Contouring error RMS (μm) 0.392 0.820 1.147 

 
 

 
Fig. 6. Horizontal machine tool and DBB measurement system. 

 

 
 
Fig. 7. Angular overshoot arcs and data capture arcs in three DBB test 
planes. 
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cated at the minimum of the GCV curve, and the optimal solu-
tion 49.4105 10m* -= ´ . Substituting m *  into Eq. (13), all of 
the parameters in p can be identified. Finally, the estimated 
PDGEs can be derived using Eqs. (8) and (9). The estimated 
PDGEs of x-, y- and z-axis are shown in Figs. 10(a)-(c), respec-
tively. In addition, three squareness errors xye , yze  and xze  
and the DBB installation error Ds  can be directly obtained 
from the identified p̂ : 25.1 μm/m,xye = -  11.8 μm/myze = - , 

10.3 μm/m,xze =  T(0.009  0.016 0.003)  mmD = -s . 
 

5.3 Experimental verification 

To evaluate the accuracy of the identification method, two 
experiments were designed and performed as follows. 

 
5.3.1 Experiment 1 (before error compensation) 

The procedure of Experiment 1 is shown as follows. 
Step 1: Select 25 verification points along a hemispherical 

helix of center (0, 0, 0) and radius 300 mm (see Fig. 11);  
Step 2: Predict the DBB length error ,i predictedlD  ( i =  

1,2, ,25L ) using the identified geometric errors;  
Step 3: Measure the real DBB length error ,i measuredlD  

( 1,2, ,25i = L ) for 5 times; 
Step 4: Compare the predicted errors and the measured er-

rors. 
Fig. 12 shows the experiment results. Red dashed line de-

notes the predicted DBB length errors, blue squares denote the 
mean values of the measured errors, and half the length of the 
error bar denotes the expanded measurement uncertainty. The 

maximum deviation between the measured and predicted 
length error is 2.8 μm, which testifies to the high accuracy of 
the proposed identification method. 

 
5.3.2 Experiment 2 (after error compensation) 

Substituting all the identified geometric errors into the error 
model, we can predict the volumetric errors of the tool relative 

 
 
Fig. 10. Identification results of PDGEs of x-, y- and z-axis (unit: μm
for translational errors and μm/m for angular errors). 
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Fig. 11. Verification points along the hemispherical helix. 

 

 
 
Fig. 8. Measured and averaged data with five repetitions in three test 
planes (1 division = 5 μm). 

 

10-6 10-4 10-2 100 102 104

10-2

10-1

100

m

G
(m

)

 

 

GCV function
m* = 0.00094105

 
 
Fig. 9. Optimal regularization parameter selection with GCV method 
(minimum at 49.4105 10m -= ´ ). 
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to the workpiece at any point in the 600×600×300 mm3 work-
space. Then the 3D error compensation was carried out with 
FANUC 31i NC system. Finally, the DBB test with the same 
paths and running parameters (see Fig. 6) was performed 
again to evaluate the special geometric accuracy of the ma-
chine tool. The results of the circular test are shown in Fig. 13. 
Compared with the test results shown in Fig. 8, the roundness 
errors of the three circular paths in xy-, yz- and xz-plane were 
reduced from 27.3 μm, 20.7 μm and 24.1 μm to 9.2 μm, 12.3 
μm and 7.8 μm, respectively, with error compensation. The 
roundness errors caused by geometric errors can be improved 
significantly, while the roundness errors caused by backlash, 
servo mismatch and machine vibration can hardly be compen-
sated. The test results verify feasibility and effectivity of the 
proposed identification method with regularization algorithm. 

 
6. Conclusions 

A new measurement scheme is proposed for machine tools, 
and geometric error identification based on regularization 
method is explored to solve the ill-posed identification prob-
lem. According to the analysis, simulation and experiment 
results, the following conclusions can be drawn. 

(1) An error model which can relate the DBB radius error 
directly to the machine tool geometric error components was 
established, and an efficient DBB measurement scheme was 
proposed, which can be performed with only one mounting of 
the DBB in order to avoid producing extra setup errors. 

(2) Polynomial based error modeling was performed for the 

geometric error components of machine tools. Then the regu-
larization method was applied for identification of the coeffi-
cients of the modeling functions, which can solve the ill-posed 
identification problem effectively. 

(3) The identifiability of the error parameters was analyzed. 
All the error parameters in the proposed error model can be 
identified, except for three linear correlated ones, ,1yxd , ,1zxd  
and ,1zyd . In addition, to make more geometric errors identifi-
able, the installation position of the DBB must meet two re-
quirements: ball SP  is not in the spindle axis; and ball WP  is 
not in the longitudinal central axis of the worktable. 

(4) Regularization method can be adopted in error identifi-
cation of machine tool, and the results are stable and credible. 
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Nomenclature------------------------------------------------------------------------ 

e : Geometric error vector of DBB-machine system 
ei : Error vector composed of PDGEs and PIGEs of i-axis 
E(i) : PDGEs of i-axis in twist form 
Ei : PIGEs of i-axis in twist form 
Hi : Mapping matrix at the ith measurement configuration 
I3 : Unit matrix of order 3 
l : Nominal length of DBB 
n : Nominal unit vector pointing from PW to PS 
p  : Parameter vector of geometric errors 
p̂  : Identification result of p 

ΔrP : Volumetric error vector of point P 
jri : Position vector of point i measured in frame j 
r̂  : Skew-symmetric matrix of vector r 
Δs : Installation error of the magnetic center mount 
tr(·) : Trace of matrix 
δj(i) : Translational error of i-axis in j-direction between frame 

X'-xyz and X-xyz 
δij,k : The kth coefficient of the polynomial model of δj(i) 
εj(i) : Angular error of i-axis in j-direction between frame X'-

xyz and X-xyz 
εij,k : The kth coefficient of the polynomial model of εj(i) 
εij : Squareness error between i-axis and j-axis 
μ : Regularization parameter 
μ* : GCV solution of regularization parameter 
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