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Abstract 
 
Conventional logarithmic spiral bevel gears (LSBGs) introduce full-conjugate surfaces (line contact) to generate teeth of the pinion 

and the gear. However, in general, these full-conjugate surfaces are constructed by spherical involute curves and it is difficult to manufac-
ture these surfaces. Therefore, this article tries to use semi-conjugate surfaces (point contact) as the tooth profiles to make they can be 
manufactured by the disc milling process and of pure-rolling contact. The design method, manufacture kinematics and stress distribution 
situations of the LSBGs with semi-conjugate surfaces are investigated. Conjugate surface theory and spatial conjugate curve meshing 
theory are both introduced to complete the analytical arguments. Finite element analysis (FEA) is introduced to evaluate the contact me-
chanical characteristics of the LSBGs under loads. From the analytical and simulated results, it is concluded that, through the disc milling 
process, the LSBGs of continuous pure-rolling contact can be manufactured and mesh correctly. Besides, the manufactured LSBGs 
maintain pure-rolling contact approximately when they are under loads.  
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1. Introduction 

Spiral bevel gears are widely used in the power transmis-
sion mechanism like vehicle axle, helicopter rotor reducer, etc. 
From the classic conjugate surface theory, much valuable 
research has been presented. Wildhaber and Baxter [1, 2] de-
velop the initial theory of designing and analyzing bevel gears 
including local synthesis method. Tsai and Chin [3] investi-
gate the tooth geometrical models of straight bevel gears and 
spiral bevel gears. Fan [4] describes the geometry of the face-
milling and face-hobbing spiral bevel gears. Gonzalez-Perez 
and Fuentes-Aznar [5] investigate the kinematic conditions of 
face-hobbing spiral bevel gears and developed an analytical 
approach to determinate the machine-tool settings of these 
gears. Simon [6, 7] proposes a method of minimizing tooth 
contact pressures and angular displacement errors by optimiz-
ing head-cutter geometry and machine tool settings. Although 
the face milling and face hobbing spiral bevel gears are used 
most widely, due that the composite manufacture motions of 
the face milling and face hobbing processes is easy to be com-
pleted on the pure-mechanical machining tools, the two type 
of spiral bevel gears also have some defects such like, exces-

sive relative sliding at the heel and toe of the tooth, erratic 
force directions of tooth surfaces, etc.  

As for the conventional spiral bevel gears, the excessive 
relative sliding at the heel and toe of the tooth means serious 
sliding contact which has a more negative influence on the 
performance of gears compared to the rolling contact, because 
it could induce more serious frictional loss, adhesive wear, 
pitting, etc [8-10]. So, recently, researchers start to develop the 
gear geometry of continuous pure-rolling contact, which 
means sliding contact would not happen in the meshing cycle 
[11-14]. However, the research mainly concentrates on the 
field of cylindrical gears. In the other side, on account of the 
erratic force direction problem of conventional spiral bevel 
gears, Huston and Coy [15, 16] argue and compare the geo-
metric kinematics of conventional spiral bevel gears and 
LSBGs which employ true spherical involute profile in theory. 
At last, they conclude that LSBGs can have better perform-
ance without regard to their manufacture convenience. Xiang 
et al. [17] investigate the variations of the output angular ve-
locity and contact force of logarithmic spiral bevel gears and 
draw a similar conclusion. Subsequently, Duan et al. [18] 
propose a type of LSBG whose normal section profile is de-
signed like that of Wildhaber-Novikov gear. Further, Alves et 
al. [19] investigates the manufacture method of LSBGs which 
employ spherical involutes as tooth surfaces by 5-axis com- 
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puter numerical control (CNC) milling machines. Recently, 
Xiang et al. [20] study the accurate modeling method of 
LSBGs and manufactured a prototype gear on the 5-axis CNC 
machine tool. Although the LSBGs have been manufactured 
by CNC milling machines in present studies, their manufac-
ture efficiency is relatively lower because ball end cutters and 
multi-axis CNC milling machines are necessary for manufac-
turing the complex spherical involute helicoid. 

A main reason which makes the LSBGs difficult to be 
manufactured is that, conventional LSBGs introduce full-
conjugate surfaces (line contact) to generate teeth. These full-
conjugate surfaces are usually spherical involute helicoids 
which hardly can be generated by disc milling cutters and 
several simple translation and rotation motions. However, in 
the gear transmission field, full-conjugate surfaces are not 
necessary for designing tooth profiles. In fact, semi-conjugate 
surfaces (point contact) are used more widely in practical 
bevel gear transmission mechanism [21]. In the other side, 
Chen et al. [22-24] propose the theory of spatial conjugate 
curve meshing. From the theory of spatial conjugate curve 
meshing, the tooth profiles of gears are semi-conjugate sur-
faces naturally.  

This article aims to develop the theory of semi-conjugate 
LSBGs to make the LSBGs can be manufactured by the disc 
milling process, which have higher manufacture efficiency 
than the ball milling process. In the other side, from spatial 
conjugate curve meshing theory, the contact points can be 
always on the pitch line, so this article also tries to make the 
LSBGs of pure-rolling contact. In this article, the kinematic 
geometry of LSBGs of pure rolling contact is investigated first 
by introducing both spatial conjugate curve meshing theory 
first. Then the manufacture principles of LSBGs of pure roll-
ing contact by disc milling process are investigated based on 
conjugate surface theory. At last, a numerical example is put 
forward to evaluate the contact mechanical characteristics of 
the proposed semi-conjugate LSBGs. 

 
2. Geometry of LSBGs 

2.1 Applied coordinate systems 

Coordinate systems in the meshing process of spiral bevels 
are shown in Fig. 1. Coordinate systems S0 and Sp are fixed in 
the absolute space. Movable coordinate systems S1 and S2 are 
attached to the pinion and gear, respectively. In this article, the 
kinematic conditions of the pinion and gear are set as below: 
The pinion and the gear only rotate about z0 and zp, respec-
tively; the shaft angle ξ between the two revolving axles is 
invariant; the velocity ratio between the pinion and gear, i21, is 
a constant. In Fig. 2, φ and ψ denote the rotational angle of the 
pinion and that of the gear respectively. ψ can be represented 
by φ and i21 through the equation f = i21φ. 

 
2.2 Spatial conjugate curve 

From spatial conjugate meshing theory, an arbitrary space 

regular curve denoted as Γ1, can be chosen as the contact path 
of the pinion. Then, from the designed contact directions 
along Γ1 and meshing condition, its conjugate curve denoted 
as Γ2 can be derived.  

Based on the gearing kinematics [25], the relative velocity 
of the gears can be represented: 

 
12 1 1 2 1
0 0 0 0 0( , ) ( , ) ( , )t t tj j j= ´ - ´v ω r ω r   (1) 

 
where ω1 represents the angular velocity vector of the pinion 
and ω2 represents that of the gear. Besides, the subscript “i” of 
the vector notations indicates the representations of the vectors 
in “Si”. 

In S1, this relative velocity can be obtained by direct coordi-
nate transform: 

 
12 12
1 10 0( , ) ( ) ( , ) .t v tj j j=v M   (2) 

 
From gear meshing theory, meshing equation is the neces-

sary condition of meshing correctly. In other word, in gear 
tooth surface design, this equation need be true: 

 
12( ) ( , ) 0 .t tj· =n v  (3) 

 
Here, n is the normal vector of the surface at a point on the 

tooth surface. As for the gears based on conjugate surface 
theory, n is the normal vector of the tooth surface. It deter-
mines the contact direction between a pair of conjugate sur-
faces. Similarly, from the idea of spatial curve meshing, an 
arbitrary normal vector of Γ1, n, can also be set as the contact 
direction between a pair of spatial curves.  

In the theory of the surface geometry, if the tooth surface is 
determined, its normal vector n is exclusive which is deter-
mined by the surface geometry. However, for the spatial curve, 
n can be an arbitrary normal vector of Γ1. Even if Γ1 is deter-
mined, its normal vector n is not exclusive and the contact 
direction is also not exclusive at a point on Γ1. So, to make the 
contact direction exclusive, the normal vector (contact direc-
tion) along Γ1 can be set as a continuously differentiable vec-
tor function. Its general equation is represented as: 

 
 
Fig. 1. Applied coordinate systems. 
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1 1
1 1 1 1 1( ) cos ( ) ( ) sin ( ) ( ) .t t t t tq q= +n β γ  (4) 

 
In Eq. (4), 1

1β  represents the principal normal vector of Γ1 
and 1

1γ  represents its binormal vector in S1. Besides, θ1 refers 
to the intersection angle between n and β1, which rotates coun-
terclockwise about α1. θ1 represents a continuously differenti-
able function about the curve parameter t. It can be found that 
from Eq. (4) there is only one normal vector of Γ1 at a point.  

In S2, the locus of Γ1 can be derived by coordinate transfor-
mation:  

 
2 1 1

2 2 0 01 1 21 1( , ) .p pt j = =r M M M r M r  (5) 

 
Then, according to Ref. [23], the mathematical representa-

tions of spatial conjugate curve Γ2 in S2 can be obtained from 
Eqs. (3) and (5): 

 

2 1

12

2 21

1

1

1 ( ) ( , ) 0
( , ) .
t t
t j

jìï
í

=ïî

· =n
r M r

v
 (6) 

 
Eq. (6) represents a spatial curve, this spatial curve is the 

conjugate curve of Γ1. It should be noted that the contact di-
rection is n1, so the relative velocity between the pair of spatial 
conjugate curves is equal to zero only in the direction of n1 at 
a contact point. 

 
2.3 Semi-conjugate tooth surface model 

From a pair of spatial conjugate curves, the semi-conjugate 
surfaces can be generated. To make the semi-conjugate sur-
faces can inherit the contact characteristics of the spatial con-
jugate curves such like contact directions, contact paths, two 
conditions are necessary. First, a semi-conjugate surface must 
contain corresponding spatial conjugate curve. Second, the 
normal vectors of the semi-conjugate surfaces must be the 
same as n1 at corresponding point. Based on the two condi-
tions above, the semi-conjugate tooth surface can be repre-
sented as a series of continuously variable plane curves named 
Γs1 on the normal plane of Γ1 as Fig. 2 shows. At each inter-
section point between Γs1 and Γ1, the principal normal vector 
of Γs1 should the same as Eq. (4) determines. Then, the normal 
vector of tooth surface constructed by the curve set of Γs1 will 
be the same as Eq. (4) represents along Γ1. At last, by the local 
coordinate systems on Γ1, this tooth surface can be represented 
in math. 

At any point of Γ1, α1, n and α1, α1×n construct a Cartesian 
coordinate system notated as S1Fr. Then, in S1Fr, arbitrary Γs1 
could be represented in this form:  

 
1 Tr

1 ( ) (0 ( ) ( ) 1) .sec
Fr u y u z u=r    (7) 

 
Therefore, through coordinate transforming, Σ1 in S1 is rep-

resented: 

1 1
1 1 1 1( , ) ( ) ( )sec

Fr Frt u t u=S M r    (8) 
 

where 
 

( )
( )
( )

1 1 1 1 1
1 1 1 1 1 1 1

1 1 1 1 1
1 1 1 1 1 1 1

1 1
1 1 1 1 1
1 1 1 1 1 1 1

1
1

, ,

, ,
( ) .

, ,

0 0 0

Fr t

æ ö· ·
ç ÷
ç ÷· ·
ç ÷=
ç ÷· ·ç ÷
ç ÷
è ø

i α i n i α n

j α j n j α n
M

k α k n k α n
r    (9) 

 
Here, the bracket denote the mixed product of the three vec-

tors in it, for example, ( ) ( )1 1 1 1
1 1 1 1 1 1, , = · ´i α n i α n . 

The process of generating Σ2 from Γ2 and Γs2 is the same as 
that of Σ1 in S1. On consideration that meshing equation is true 
only along the spatial conjugate curves, when a pair of these 
tooth surfaces mesh, only the points on Γ1 and Γ2 satisfy the 
laws of gear meshing. In other words, these tooth surfaces are 
of point contact and the contact point only moves along Γ1 and 
Γ2, respectively. These tooth surfaces are semi-conjugate. 

 
2.4 Continuous pure-rolling contact condition 

The pure-rolling contact means at the contact point, the 
magnitude of the relative velocity is equal to zero, which 
means: 

 
12
1 .=v 0    (10) 

 
For spiral bevel gears, only when the contact point locates 

at the pitch cone, Eq. (10) might be true. From above argu-
ments about semi-conjugate surfaces, Γ1 and Γ2 represent the 
contact paths of the pinion and the gear. Therefore, to make 
bevel gears pure-rolling contact, Γ1 should be a regular curve 
on the pitch cone. The pitch cone can be described as: 

 
( )Tr1

1 ( , ) sin( ) cos( ) 1 .t u up t up t u=S    (11) 
 
Here p = tan(δ) and δ is pitch cone angle of the pinion and t  

 
 
Fig. 2. Tooth surface schematic from Γ1 and Γs1. 
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is the basic circle parameter as Fig. 3 shows. 
Then, from Eq. (11), ordering u = f(t), an arbitrary conical 

spiral, Γ1, can be represented: 
 

( )

1 1
1 1

Tr

( ) ( , ( ))

( )sin( ) ( )cos( ) ( ) 1 .

t t f t

pf t t pf t t f t

=

=

r S
   (12) 

 
Synthesizing Eqs. (3) and (10), it can be observed Eq. (10) 

makes meshing equation true naturally.  
In the other hand, from Eq. (1), the relative velocity is de-

rived in S1: 
 

( )( )
( )( )

21 21

12 21 21
1

21

( ) cos cos 1 sin cos

( ) sin sin sin cos .
( )sin sin( )

0

f t p t i i

f t i t p i p

i pf t t

x x j

x j x

x j

æ ö- -
ç ÷
ç ÷+ -= ç ÷
ç ÷-
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è ø

v    (13) 

 
After Eq. (13) is substituted into Eq. (10), the condition of 

pure-rolling contact is derived: 
 

21

21

=
sin .

1 cos

t
ip

i

j
x
x

ì
ï
í =ï - +î

   (14) 

 
Then, from Eqs. (5) and (14), the spatial conjugate curve Γ2 

of Γ1 is obtained: 
 

( )
( )

2 1
2 21 1

21

21

( ) ( ) ( )

( )sin ( cos sin )
( )cos ( cos sin )

.
( )(cos sin )

1

t t t

f t i t p
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f t p

x x
x x

x x

=

æ ö-
ç ÷

-ç ÷= ç ÷+
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è ø

r M r

   (15) 

 
Just from previous derivations of this section, it can be 

found that the function f(t) is not restricted. Therefore, Γ1 can 
be an arbitrary regular curve on the pitch cone. So, a conical 
helix of the pitch cone can be set as Γ1. In the other hand, Γ1 is 
also the tooth trace of generated bevel gears (Γ1 is the intersec-
tion curve between the tooth surface and the pitch cone), so 
LSBG can be generated based on spatial curve meshing theory 
from Γ1.  

 
2.5 Mathematical model of conical helixes 

As for the LSBG, the key geometric characteristic is that its 
tooth line is a conical helix. For a conical helix, the intersec-
tion angle between its tangent vector and the basic cone gen-
erator at any point keep constant which means the magnitudes 
of βk keep constant (see Fig. 3). To make the semi-conjugate 
tooth surfaces of the LSBGs satisfy the continuous pure-
rolling contact condition, a conical helix on the pitch cone of 

the pinion is set as Γ1. It can be represented by the equations: 

 

( )1
1 ( ) sin( ) cos( ) 1

Trmt mt mtt ne t ne t be=r    (16) 

 
where sin( ),n d= sin( )cot( ),km d b=  cos( )b d= .  

Comparing Eqs. (12) and (16), the function f(t) is obtained: 

 
( )

/ .

mtf t be
p n b

ì =ï
í

=ïî
   (17) 

 
After Eq. (17) are substituted into Eq. (15), the spatial con-

jugate curve of Γ1, Γ2 is obtained:  
 

( )
( )

21

2 21
2

sin ( cos sin )
cos ( cos sin )

( ) .
( cos sin )

1

mt

mt

mt

e i t n b
e i t n b

t
e b n

x x
x x

x x

æ ö-
ç ÷

-ç ÷= ç ÷+
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è ø

r    (18) 

 
Observing Eq. (18), it can be found, Γ2 is also the conical 

helix on the gear's pitch cone. Therefore, from Γ2, another 
LSBG can be generated. 

 
3. Manufacture method LSBGs by disc milling process 

3.1 Manufacture coordinate systems 

Applied coordinate systems are represented in Fig. 4 in the 
process of investigating the disc milling process. S0 is fixed in 
the absolute space. S1 is connected to the workpiece. Sm and Sc 
are connected to the milling tool. The original points of Sm and 
Sc, Om and Oc locate at the same point P which is the 
intersection point between the pitch line and Γ1. In Sm, ym-axis 
share the same direction with the pitch line between the pinion 
and the gear. In Sc, yc-axis share the same direction with the 
tangential direction of Γ1. So the intersection angle between 
ym-axis and yc-axis is βk. Besides, the direction of zc-axis is the 
same with that of zm-axis and it is perpendicular to the plane 
which is constructed by yc-axis and ym-axis. The tool revolving 
axis is in the zc-xc plane and the distance between tool  

 
 
Fig. 3. Diagram of an arbitrary conical spiral. 
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revolving axis and xc-axis is the difference between half the 
outer diameter of cutter and the dedendum of the gear, namely 
da0/2-hfm. Then the velocity direction of the tool generating 
surface at P will be the same as yc-axis. In the process of mill-
ing, Sm and Sc will move with the point P along the ym-axis. 

 
3.2 Kinematic model of disc milling process 

From the arguments in Sec. 2, it can be found that for the 
manufactured LSBG of pure rolling contact, the necessary 
condition of meshing correctly is that the two designed conical 
helixes which are also spatial meshing curves, located on the 
manufactured tooth surfaces. On consideration that the pinion 
and the gear are both the LSBGs of pure rolling contact in Sec. 
2, only the disc milling process of the pinion is descripted and 
that of the gear is similar.  

To make the manufactured tooth surfaces contain the de-
signed conical helixes, the kinematics conditions of the disc 
milling process are set: 1. The rotation angle of the pinion 
workpiece is the same as the basic circle angular parameter in 
Sec. 2, namely, t; 2. The intersection angle between the tool 
swivel axis and the workpiece swivel axis is 90°-βk; 3. A lin-
ear movement of the tool exists and its direction is along the 
ym-axis. The linear displacements of the milling cutter can be 
resolved into two components along y0 axis and x0 axis, re-
spectively: 

 

0 1

0 1

sin

cos .

mt
y

mt
z

U e

U e

d

d

ì =ï
í

=ïî
   (19) 

 
Then, on consideration that n/b = i21 = p, the locus of the 

point P on the generating surface of the milling cutter in S1, 
will form the designed conical helix Γ1. 

 

( )
1 1

sin(

( )(0 0 0 1

) cos( ) 1 .

)P

Trmt

Tr

mt mt

c

ne t ne be

t

t

=

=

r M
   (20) 

 
Subsequently, it will be demonstrated that the locus of the 

point P of the milling cutter generating surface in S1 is also on 

the manufactured tooth surface. Then, based on the arguments 
in Sec. 2.3, if the designed conical helixes are regarded as a 
pair of spatial conjugate curves, the manufactured tooth sur-
faces will satisfy the first condition of semi-conjugate surfaces 
which can inherit the contact characteristics of the conical 
helixes. 

 
3.3 Tooth surfaces of manufactured gears 

Based on the arguments in Sec. 2, it can be found that for 
the manufactured LSBG of pure rolling contact, a necessary 
condition of meshing correctly is that the two designed conical 
helixes which are also spatial meshing curves, located on the 
manufactured tooth surfaces.  

From gearing theory, the tooth surface of the manufactured 
gear can be derived from conjugate surface theory [25]. We 
denote the blade of the tool as Γb and use the position vector 
rb(u) to represent Γb just as Fig. 6 shows. Then, the generating 
surface of the milling cutter is produced by the locus of Γb in 
Sc. From Fig. 6, the tooth surface equation of the generating 
surface is obtained: 

 
1 0 0 0 0 0
0 cos( ) sin( ) 0 0 0

( , ) ( )
0 sin( ) cos( ) 0
0 0 0 1 0 0

g b
c c

c c

u u
R R

h h
h

h h

æ öæ ö æ ö
ç ÷ç ÷ ç ÷-ç ÷ç ÷ ç ÷= + -ç ÷ç ÷ ç ÷
ç ÷ç ÷ ç ÷ç ÷ç ÷ ç ÷
è øè ø è ø

S r  

 (21) 
 

where η refers to the rotation angle of Γb from the original  

 
 
Fig. 4. Isometric project view of the disc milling process of LSBG. 

 

 
 
Fig. 5. Front view of the disc milling process of LSBG. 
 

 
 
Fig. 6. Schematic of the blade. 
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location about the tool swivel axis and u refers to the curve 
parameter of Γb. Here, let the position vector of P in Sc is that: 
 

((0,0) 0 0 0 1) .g
c

Tr=S    (22) 
 
Then, the locus of the generating surface of the milling 

cutter in S1 is obtained: 
 

1 1( , , ) ( ) ( , ) .g g
c ct u t uh h=S M S    (23) 

 
From Eq. (23), the relative velocity between the generating 

surface and manufactured gear is derived: 
 

1
1 1( ) d ( )( , , ) ' ( , )

d
g gcr

c cc

tt u t uth h
j

=
Mv SM    (24) 

 
where the notation 't  refers to time derivative of t. 

At P, synthesizing Eqs. (22) and (24), the relative velocity is 
obtained: 
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On consideration that sin( )cot( )km d b=  p = tan(δ) and 

Eqs. (4) and (25) will be simplified as: 
 

( )1 ' cot cos sin sin0 0 0 .mt
k k

TrgP
kc t ne b b b d= +v    (26) 

 
As for the generating surface, its normal vector in S1 is 

represented as: 
 

1 1

( , ) ( , )( , , ) ( ) .
g g

g c c
c
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u

h hh
h

æ ö¶ ¶
= ´ç ÷¶ ¶è ø
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Because the normal vectors on the surface of the milling 

cutter point to the tool swivel axis, the normal vector at P can 
be represented as: 

 

( )0 0 .
TrgP gP gP

c c cn n=n    (28) 

 
From Eqs. (24) and (27), the meshing equation between the 

generating surface and the manufactured gear is represented: 

 
1 1

1 1( , , ) 0 .g g g g
c cf t uh = = =n v n vg g    (29) 

From the conjugate surface theory, the manufactured gear 
tooth surface by the generating surface can be obtained from 
Eqs. (23) and (29). Namely, the mathematical representation 
of the manufactured tooth surface is: 

 

1 1( , , ) ( ) ( , )
( , , ) 0 .

g g
c ct u t u

f t u
h h
h
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í

=ïî

S M S
   (30) 

 
At P, from Eqs. (26) and (28), it can be observed that the 

meshing equation between the workpiece and the milling cut-
ter at P is always true: 

 
1 1( ,0,0) 0 .gP g c gP g c

c cf t · = ·= =n v n v    (31) 
 
Therefore, from Eqs. (30) and (31), it can be indicated that 

1 ( ,0,0)g tS  is a curve on the manufactured tooth surface, this 
curve can be represented as: 

 

( )
1 1( ,0,0) ( ) (0,0)

sin( ) cos( ) 1 .

g g
c c
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=

=
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It can be found that Eqs. (16), (20) and (32) represent the 

same curve. Therefore, it is concluded that through disc mill-
ing processing with proposed associated linear motion and 
revolving motion, the designed conical helix can be contained 
on the manufactured tooth surface.  

 
3.4 Tool geometry 

In Sec. 3.3, the first necessary condition of semi-conjugate 
surfaces has been demonstrated that it can be satisfied by disc 
milling process. Then from Sec. 2.3, second necessary condi-
tion of semi-conjugate is that the normal vectors of the semi-
conjugate surface must be the same as the designed contact 
direction at corresponding point.  

From gearing theory, at P, the normal vector of a manufac-
tured tooth surface is the same with that of corresponding 
generating surface of the milling cutter. So, a method that 
make second necessary condition true is that let the two gen-
erating surfaces be tangent at P and their common normal 
vector be ngP at P. On consideration that ngP is on the zc-xc 
plane, which is also the normal plane of Γ1 just as Fig. 4 
shows, ngP can be regarded as the designed contact direction 
in Sec. 2.2. Then, the normal vectors of the manufactured 
tooth surfaces are the same as ngP at P. The second condition 
is satisfied. 

Then according to the geometry of formatting milling cut-
ters of involute gears, the disc milling cutter can be designed 
as Fig. 8 shows. 

To make the two generating surfaces be tangent at P and 
their common normal vector be ngP at P, the profile curves of 
the blade can be designed to be tangent at P and their principal 
normal vectors are in the same direction with ngP. Here, the  
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profiles of the blade with double-arc curves are proposed just 
as Fig. 7 shows. There are several reasons that introduce this 
double-arc curve as the profile of a blade in this article. First, 
due to the difference of the curvatures of the two curve on the 
blade, the contact point can be easily controlled on the pitch 
line. Second, the concave curves at the dedendum part can 
enlarge the thickness of gear teeth at roots, so this shape of a 
cross-section curve contributes to decrease- the bending stress 
of gears. At last, this profile makes the blades manufacturing 
the pinion or gear have the same shapes, so one cutter can be 
used to manufacture both the pinion and gear.  

 
3.5 Example 

Based on previous arguments, the tooth surfaces of LSBGs 
of continuous pure-rolling contact can be obtained. The geo-
metrical parameters of the pinion and the gear are set as Table 
1. The arc radius of the blades are set as, R1 = 6 mm, R2 = 
10 mm. The mainly geometrical parameters of the pinion and 
the gear are shown in Table 2. Then, from the disc milling 
processing model in section 3, the tooth surfaces of manufac-
tured gears are obtained (see Fig. 9). 

 
4. Loaded tooth contact analysis 

In this section, the loaded tooth contact analysis of the 
manufactured LSBGs in Sec. 3 is completed by finite element 
analysis. Through this analysis, the mechanical characteristics 
of the LSBG are evaluated. 

From the solid model as Fig. 9 shows, a 3-pair-of-teeth fi-
nite element model is built (see Fig. 10). In this model, first 
eight-node order elements, whose max length size is set as 
2 mm, are used to generate the finite element model. Flexible 

surface-to-surface contact elements are superposed on the 
tooth surfaces. On consideration of the intensive stress varia-
tions, the max length size of the elements attached to tooth 
surfaces is set as 0.2 mm. To apply rotation and torque on the 
pinion and the gear, two pairs of rigid surfaces are built as Fig. 
10 shows. The material is set as gear steel whose Young’s 
Modulus is 2.05×105 MPa and Poisson’s ratio 0.3. Then, after 
the calculations of the solver for the finite element model, the 
stress distributions about these spiral bevel gears under loads 
are obtained.  

Fig. 11 shows the stress distributions when the contact point 

 
 
Fig. 7. The geometry of blades. 
 

 
 
Fig. 8. Shape of the disc milling cutter. 

 

Table 1. Geometrical parameters for a pair of LSBGs. 
 

Terms Pinion Gear 

Number of teeth 8 24 

Spiral angle 35° 35° 

Pitch angle 18.435° 71.565° 

Addendum 1.8 mm 1.8 mm 

Dedendum 2.8 mm 2.8 mm 

Outside pitch diameter 54 mm 162 mm 

Hand of spiral LH RH 

Face width 30 mm 

gear ratio 1:3 

Shaft angle 90° 

Pressure angle 20° 

 
Table 2. Geometrical parameters for the disc cutter. 
 

Terms Magnitudes 

Pressure angle 20° 

Radius of blade curve R1 = 6 mm, R2 = 10 mm 

Outer diameter 105 mm 

 

 
 
Fig. 9. Assemble model of the manufactured pinion and gear. 

 

 
 
Fig. 10. Finite element model. 
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located at the center of the middle tooth surface. Based on 
Hertz contact theory, the contact pattern of theoretical contact 
point expands to an ellipse due to the elastic deformation of 
the tooth. Fig. 12 shows the variations of max contact stresses 
on the central pair of teeth in a meshing cycle. It can be ob-
served the magnitude of the max contact stress varies 
smoothly and its maximum is 1100 MPa. This situation means 
that for this LSBG, no serious stress concentration such like 
edge contact stress concentration occurred. 

In Hertz theory, the max contact pressure should locate at 
the theoretical contact point for two elastic solids under loads. 
Figs. 13 and 14 show these deviations of max contact pressure 
points in Hertz theory and FEA results. The deviations can be 

interpreted by the two factors: First, in Hertz contact model, 
the influence of tooth bending deformations on the tooth sur-
face geometry is not introduced; second, the continuous geo-
metric models are converted into discrete models in the proc-
ess of FEA. Due that the magnitudes of the deviations of max 
contact pressure points in Hertz theory and FEA results are 
small (less than 0.62 mm), these errors can be attributed to the 
influence of elastic deformations of teeth and deviations be-
tween continuum elastic model and finite element model. 
Because that interference usually can induce large deviations 
of the positions of the contact points from theoretical locations 
(see Fig. 15), it is concluded that the pinion and gear in Sec. 3 
mesh correctly and no interference exists between them. Be-
cause these teeth of the pinion and the gear are generated by 
the same disc milling cutter with double-arc blades, it is also 
concluded that the double-arc curve can be used as the profile 
of the blade and both the pinion and the gear of LSBGs can be 
manufactured by one cutter with double-arc blade. What’s 
more, from the results of FEA, based on the calculated contact 
points with max contact stresses, the slip ratios between the 
pinion and gear at the real max contact pressure point can also 
been derived. Fig. 16 shows the slip ratios between the pinion 
and gear at the real max contact pressure points. It can be 
found their magnitudes are still small as the maximum is 
0.0063 which means the pinion and the gear are still of ap-
proximate pure-rolling contact. 

 
5. Conclusions 

From conjugate surface theory and spatial conjugate curve 
theory, the disc milling processing model of LSBGs of con-
tinuous pure-rolling contact is argued in this paper. Besides, 
based on these arguments, a pair of manufactured LSBGs 

 
 
Fig. 11. Stress distributions of the pinion in the mesh cycle. 

 

 
 
Fig. 12. Max contact stresses of the gears on the middle tooth. 

 

 
 
Fig. 13. The deviation distance between theoretical and real locations 
with max contact pressure. 

 

 
 
Fig. 14. Theoretical contact path and real contact path on the tooth 
surface. 

 

 
 
Fig. 15. The position deviations of contact point that are induced by (a) 
elastic deformation; (b) curvature interference. 

 
 

 
 
Fig. 16. Slip ratio at the points with max contact pressure. 
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have been built and FEA is applied for them. From the argu-
ments and FEA results, following conclusions can be drawn: 

(1) The LSBGs of continuous pure-rolling contact can be 
manufactured by proposed disc milling process. The manufac-
tured pinion and gear can mesh correctly and no interference 
exists between them.  

(2) The disc milling processing can be completed by a re-
volving motion of the workpiece and corresponding transla-
tional motion of the cutter. So the minimum of linkage axis 
can be reduced to two.  

(3) The double-arc curve can be used as the profile of the 
blade. When this shape of blade curve is used, both the pinion 
and the gear of LSBGs can be manufactured by one cutter. 

(4) When a pair of the LSBGs meshing under loads, al-
though the deviations between the theoretical and real points 
with max contact pressure exist, the magnitudes of the slip 
ratios are still small. So the pinion and the gear can be of ap-
proximate pure-rolling contact when they are under loads. 
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Nomenclature------------------------------------------------------------------------ 

E     : (Effective) work potential    
Si : Coordinate systems fixed to tool (i = c, i = m), pinion 

(i = 1), gear (i = 2) 
Sj : Coordinate systems fixed to absolute space corre-

sponding to pinion (j = 0), gear (j = p), and tool (i = 
c0) 

Γ1 : The spatial contact curve on the pinion 
Γ2 : The spatial contact curve on the gear 
Σi : Tooth surface (i = 1 for pinion and i = 2 for gear)  
ξ  : Shaft angle 
φ  : Pinion's revolving angle  
ϕ  : Gear's revolving angle 
η  : Tool's revolving angle 
δ  : Cone angle 
i21 : Gear ratio between the pinion and the gear 
Rc : The turning radius of the milling cutter from the ref-

erence point P to its revival axis 
Mij : Coordinate transformation matrix from Sj to Si 
n : Common normal vector of Σ1 and Σ2 at contact posi-

tion 
r j
i  : Position vector of designed spatial curve(j = 1) and 

corresponding spatial conjugate curve(j = 2) in Si 
S j

i  : Position vector of tooth surface(j = 1 for pinion and i 
= 2 for gear) in Si 
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