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Abstract 
 
The evaluation of the variation in aerodynamic load on a wing under the effect of elastic deformations requires solving the problem of 

wing deformation when wings are subjected to distributed aerodynamic load. This paper presents the calculation of coupling the aeroe-
lastic system for 3D wings. The aerodynamic problem was solved by the doublet–source method for 3D wings, with wing thickness con-
sidered. The problem of elastic deformation was solved by the finite element method for hollow 3D wings, with beams arranged inside. 
Results concerning aerodynamic load on the wing were considered input parameters for the calculation concerning the problem of wing 
deformation, and those about the deformed wing geometry were deemed input parameters for the calculation regarding the problem of 
wing aerodynamics for the second calculation. The calculations concerning these problems were repeated until the wing twist angle con-
verged. Analyses and comparisons were performed on the distributions of aerodynamic loads on the rigid and deformed wings to exam-
ine the change of the aerodynamic load depending on the structure (aerodynamic loads being functions of the external geometry of the 
wing, the incidence angle, and the velocity at infinity are solutions of the pure aerodynamic problem). Results regarding wing twists and 
stress distributions for hollow wings with and without beams inside were presented to assess the cause of changes in aerodynamic load 
and wing static durability. Aeroelastic calculations were formulated with different velocities at infinity to indicate the need for a suitable 
structural solution when the aerodynamic load is expected to reach a high value.  
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1. Introduction 

The external shape of a wing is designed to meet the criteria 
of aerodynamic quality. In the subsonic flow range (free Mach 
number M¥ < 0.65), the aerodynamic profile has a blunt lead-
ing edge, and the wing has a large aspect ratio. The airplane 
wing is considered thin when the wing thickness is signifi-
cantly smaller than the chord length and wingspan, and thus, 
the wing is deformed when subjected to large aerodynamic 
forces, which the wing encounters because of its function of 
lifting the entire weight of the aircraft. In terms of structure, 
the wing is required to be lightweight and yet have high firm-
ness and elasticity; therefore, the wing commonly has a hol-
low structure with internal beams. In the elastic deformation 
problem, the wing is treated as a hollow bar clumped to the 
fuselage at the wing root, in relation to which the wing may be 
bent or twisted. When a deformation causes the wing to twist, 
the local incidence angle is altered. This variation results in a 
change in aerodynamic load distribution on the wing, given 

that the aerodynamic force depends on the incidence angle. 
As an industrial product, the wing needs to meet aerody-

namic and structural criteria. These two sets of criteria repre-
sent highly different fields of mechanics in terms of differen-
tial equation systems that describe physical phenomena and 
solutions to these equation systems. Several studies have at-
tempted to solve the issues of combining aerodynamic and 
structural criteria. The reliable prediction of physical phenom-
ena likely leads to a reduction in the time and cost of experi-
mentation, fabrication, and testing. Yoon et al. analyzed the 
effect of control reversal and torsional divergence on a high-
aspect-ratio wing by using a two-step process involving a two-
dimensional (2D) cross-sectional analysis and a one-
dimensional (1D) beam analysis combined with a 2D simple 
aerodynamic model [1]. To optimize the shape of wind turbine 
blades in the presence of aeroelastic deformation effect, Yu et 
al. [2] used a method coupling computational fluid dynamics 
and computational solid dynamics solvers for the aeroelastic 
problem of solid wings. Sectional shape optimization based on 
2D calculation can lead to non-uniform wings threaded from 
sections (profiles). To receive static aeroelastic responses, a 
previous work [3] constructed an aeroelastic coupling between 
the vortex lattice method (for calculating aerodynamics of 
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potential flows on the lift surface of wings without wing 
thickness) and the finite element method (FEM; for computing 
deformations of a straight wing with an airfoil cross section 
modeled as a clamped beam). To study the optimum wing 
shape of a highly flexible morphing aircraft, a study [4] used a 
coupling of two calculations of wing deformation and aerody-
namics. The wing was considered to be a strain-based geomet-
rically nonlinear solid beam, and a study of unsteady aerody-
namic loads based on the 2D finite-state inflow was used in 
the aerodynamic problem. Aeroelastic calculations typically 
focus on solving the elasticity problem, whereas fixed values 
are used for aerodynamic forces or are solved using simple 
methods.  

The current research is also geared toward programming 
codes for solving the aerodynamic and structural problems. 
The aerodynamic code implementing the doublet–source 
method (DSM) can obtain the characteristics of a potential 
subsonic flow for 3D wings (rectangular and trapezoidal) ac-
counting for wing thickness [5]. The structural code using 
FEM can determine the structure responses for hollow 3D 
wings with beams and ribs inside. 

For analyzing structural and flow problems of ultralight air-
craft wings, an article [6] applied the commercial software 
ANSYS Fluent to wings with spars and ribs. The use of 
ANSYS Fluent can solve dynamic aeroelastic problems [7]. 
Other methods for coupling aeroelastic systems adopt such 
commercial software as FLUENT-ABAQUS [8] and 
FLUENT-MSC/NASTRAN [9-11]. In general, commercial 
software are multifunctional and can solve a wide range of 
problems due to their capability to cover several systems of 
differential equations and boundary conditions. These soft-
ware thus require a large memory capacity and long running 
time. Meanwhile, changing input parameters is often time 
consuming and thus cannot be performed automatically, 
thereby leading to the redrawing of the geometry and rebuild-
ing of the grid. In addition, proper meshing requires experi-
ence in handling numerical data and knowledge of physics. 
Physical results must be compared to verify the steps in run-
ning a software. With the development of a professional com-
puter program for coupling DSM and FEM, the running time, 
memory capacity, possibility to change the grid, and input 
parameters automatically are improved within certain defini-
tions of research. 

 
2. Aerodynamic problem  

2.1 Mathematical formulation and numerical method  

Distributed doublets and sources on wing surface elements 
were used for the aerodynamic problem in this work. This 
singularity method can solve the flow around a 3D wing while 
considering the latter’s thickness. The upper and lower sur-
faces of the wing are divided into panels, and each panel (area 
A) has a source of constant distributed strength s and a doublet 
of constant distributed strength m, as shown in Fig. 1(a). The 
induced velocity potential j at an arbitrary point P(x,y,z) is 

the sum of the velocity potentials induced from the doublet jD 
and the source jS. The velocity potentials jD and jS are de-
termined by the following formulas [12]: 
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The velocity components (u, v, w) induced from the singu-

larities of the source and the doublet are determined from the 
derivatives of the velocity potential j. 
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The velocity components u and v are continuing at any 

point, but the normal velocity component w is discontinuing 
when z®0: wS(z = 0±) = ±s/2; wD(z = 0±) = ±m/2. The prob-
lem uses the Dirichlet conditions for the internal potential ji: 
ji = (j+j¥)i = const. The numbers of points discretized on the 
profile contour and wingspan are n and m, respectively; N = 
n´m sliding conditions and m Joukowski conditions are pre-
sent at the trailing edge. We obtain (n+1)´m equations with 
(n+1)´m doublet unknowns of vector m. 

 
-Aμ = Bs , (4) 

 
where A and B are square matrices with elements aij and bij 
being coefficients of influence from doublets and sources. 
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and s denotes a vector of (n´m) sources . ¥=s n q  (q¥ indi-
cates the dynamic pressure.). The conditions at the trailing 
edge are as follows: 
 

wk( ) 0uk lkm m m- + = with 1k m= ¸ , (6) 
 
where mu and ml represent the upper and lower panel doublet 
strengths at the trailing edge, respectively, and mw is the con-
stant strength wake doublet element (Fig. 1(b)). 

The solution of Eq. (4) determines doublets m and hence ve-

 
Fig. 1. (a) Wing surface grid; (b) doublet strength of trailing edge 
upper and lower panel and corresponding wake doublet strength. 
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locities, pressures, and load (from differences of pressures on 
the lower and upper surfaces of the wing). 

 
2.2 Experiment results and validation of program 

Experiments were performed to measure the pressure distri-
bution on 3D wings in an open-return wind tunnel with the 
test section dimension (400 mm × 500 mm) and thus validate 
the built code. Flow velocities in a wind tunnel with M £ 0.15 
were created by an exhaust axial fan. Static pressures on the 
wing surface were measured using a high-quality digital ma-
nometer (tolerance: ±0.15 % of full scale ±1digit = (±3±1) Pa).  

Wings used in the experiment were rectangular and had the 
profiles NACA 4412 and NACA 0012 (half of the wingspan 
was 300 mm, and the chord length was 100 mm.). To avoid 
disturbance of the flow around the wing, all flexible tubes 
connecting the gage holes with the digital manometer were 
completely arranged in the wing. Thus, the wing should be 
processed within the hollow. A total of 240 holes (in 12 rows, 
as shown in Fig. 2(a)) with 0.4 mm diameter were drilled on 
the upper and lower surfaces of the wing (with a wing-half 

clamped into the test chamber at the wing root). The wings 
were constructed from Dural and processed using a CNC mill-
ing machine, and pressure gage holes were treated using a 
CNC–EDM machine (electrical discharge machine). For each 
pressure measurement value, the number of sampling times 
was set as 30000 to reduce the random error. With precision in 
the machining of the model wing and use of high-accuracy 
measuring devices (digital manometer and Pitot tube), the 
results of pressure measurement were highly accurate. Ex-
perimental results for the NACA 0012 3D wing are shown in 
Ref. [13]. This paper presents only experimental results ob-
tained under incidence angle a = 2° for the NACA 4412 3D 
wing and a comparison between the experimental and numeri-
cal results of the built aerodynamic code. Fig. 2 presents the 
pressure coefficient Cp, which is determined as follows: 
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where r is the air density (at T = 30 °C, r = 1.14 kg/m3) and 
V¥ denotes the velocity in the wind tunnel. The difference of 
pressures p − p¥ was shown on the digital manometer and 
computer screens (p and p¥ represent the pressures at the gage 
hole and were obtained by the Pitot tube.). 

Fig. 2 compares the present experimental and numerical re-
sults regarding the pressure coefficients distributed on a wing-
half with the incidence angle a = 2°. The experimental and 
numerical results have considerably small differences. Fig. 3 
presents the lift coefficients depending on the incidence angle 
for the NACA 4412 3D wing, with a comparison of numerical 
results from the present 3D code, the present 3D experimental 
results, numerical results from 3D viscous Fluent (For verifi-
cation of the running steps of the software, see Ref. [14].), 
Pinkerton’s 2D experimental results [15], and 2D numerical 
results from the full potential equation (FPE) code [14]. The 
FPE code was programmed by the solution of the FPE (and 
the code solving Euler’s equations) to calculate the character-
istics of transonic and subsonic flows [14].  

Fig. 3 shows that with incidence angles a £ 12°, the lift co-
efficients of the present 3D code, 3D experiments, and 3D 
viscous Fluent are similar. For incidence angles a > 12°, lift 
coefficients calculated by potential flow equations (inviscid 
flow) and real flow equations (viscous flow) are different due 
to the separation phenomenon of flow. Thus, with incidence 
angles that are not excessively large (a £ 12°) and Mach 
numbers M¥ < 0.65, the present 3D aerodynamic code ensures 
the required accuracy. Fig. 3 also illustrates a large difference 
between the results for the 3D wing and the 2D profile, par-
ticularly when the wing aspect ratio is small. 

 
3. Elastic deformation problem  

3.1 Mathematical formulation and numerical method  

The equilibrium equations of a solid determine the relation-
ship between stress and external force. The relationship be-

 
 
Fig. 2. (a) Wing model with rows of holes; (b) pressure coefficients on 
three sections: 10, 7 and 2; (c) 3D representation of pressure coeffi-
cients on 10 sections (10 rows of holes).  
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tween stress and strain is written as follows [16]: 
 
σ = Dε , (8) 
 

where s is the stress vector: s = [sx sy sz txy tyz tzx]T. D indi-
cates a matrix of material characteristics depending on the 
modulus of elasticity E and the Poisson coefficient u. e repre-
sents the strain vector e = [ex ey ez gxy gyz gzx]T. The relationship 
between the displacement and strain is as follows: 
 

¶ε = u , (9) 
 

where u denotes the displacement vector: u = [u v w]T. Nor-
mal strains are ex = ¶u/¶x, ey = ¶v/¶y and ez = ¶w/¶z. Shear 
strains include gxy = ¶u/¶y+¶v/¶x, gxz = ¶w/¶x+¶u/¶z and gyz = 
¶w/¶y+¶v/¶z. 

To solve the elasticity problem, the principle of minimum 
total potential energy is applied. The total potential energy P 
is presented as follows: 
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where fi is the point force at the node i with the displacement 
ui; fv and fs refer to the vectors of volume and area forces, 
respectively; and V and S represent the volume and cross-
sectional area of the object, respectively.  

Wings were discretized into hexahedral elements and ap-
proximated by FEM. The wing was a hollow tube structure 
with a thin shell thickness, so a reduction by a degree of free-
dom (from 6 DoF to 5 DoF at each node) was feasible (Fig. 
4(a)). 

In the degenerate 3D model, the displacement vector defini-
tion at node k of the discrete element is as follows: 

 
1 2 3 1 2[ ]k u u u q q=q .  (11) 

 
2D shape function N(x,h) and 1D shape function H(x) were 

used to define the coordinate system (x,h,z) that describes the 
parameters in each point (Figs. 4(b) and (c)). Shape functions 
Nk and Hk are as follows: 
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where z* indicates the position of the reference of the surface 
and is valued from −1 to 1; z* = 0 denotes the mid-surface; 
indices t and b stand for the upper and lower surfaces of the 
shell, respectively; and i = 1,2,3. The position at k is repre-
sented by using shape functions. 
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with the unit vector V3i

k = [(xi
k)t-(xi

k)b ]/||(xi
k)t-(xi

k)b||. 
Displacements at k are as follows:  
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The relationship between displacements q and deformations 

are as follows: 
 
ε = Bq ,  (16) 
 

where B is a matrix that transforms the degrees of freedom via 
the shape function.  

By considering the discrete element e, the potential energy 
of deformation of the element is as follows (Ve is the volume 
of the element.): 

 
0.5 T

e e e edV= òU σ ε .  (17) 
 
The stiffness matrix of the element is defined as  
 

T
e e e edV= òK B DB .  (18) 

 
Then,  
 

0.5 T
e e e e=U q K q ,  (19) 

 
and the total potential energy is defined as follows: 

 
 
Fig. 3. Lift coefficient depending on incidence angle. 

 

 
 
Fig. 4. (a) Degrees of freedom at k; (b) 1D shape function H(z); (c) 2D 
shape function N(x,h).   
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1
2

T T
e e e e eP = -q K q q f ,  (20) 

 
where fe is the node force vector of the element. The principle 
of minimum total potential energy ¶P/¶q = 0 was applied, and 
matrix transplantation was performed for matrices Ke and fe to 
determine the displacement q and stress s. The stress in each 
element is determined by the von Mises standard. 
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3.2 Comparison of results and validation of program 

Fig. 5(a) shows a rectangular plate that is clamped at the left 
end. A force F = 105 N acts at point B. This force is equivalent 
to the force F located at the midpoint of the segment BC and a 
moment Mx = bF/2. The plate material has a modulus of elas-
ticity (Young’s modulus) E = 8.1010 N/m2 and Poisson’s ratio 
u = 0.3. The displacement y(x) and twist angle a(x) of this 
plate are defined as follows: 
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where Jy = b3h/12 is the second moment of the area, G denotes 
the shear module G = 0.5E/(1+u) and b = 0.333 (with b/h = 
10). Displacements of segments AB and CD are y(x)AB = 
y(x)+0.5bsina(x) and y(x)CD = y(x)–0.5bsina(x), respectively. 
Figs. 5(b)-(d) present the results of the calculation of twist 
angles and displacements of the plate performed using the 
analytical formulas and the built code. The analytical and nu-
merical findings are similar, with differences being 1.63 % 
and 1.81 % for the maximum displacements at B and C, re-
spectively, and 2.71 % for the maximum twist angle.  

The present structural code (for 3D hollow wings) was used 
to calculate a problem posed by Liu [17] (Fig. 6). Liu per-
formed calculations of the wing structure subjected to a point 
force and a torque using FEM and MSC/NASTRAN. Liu’s 
model wing has the following parameters: trapezoidal wing 
with wingspan of 192 in; 4 beams and 10 ribs distributed 
evenly; root chord cr = 72 in; tip chord ct = 36 in; NACA 0015 
and NACA 0006 root and tip profiles, respectively; skin 
thickness t1 = 0.118 in; flange thickness t2 = 0.197 in; web 
thickness t3 = t2; rib thickness t4 = 0.058 in; flange width t5 = 
0.373 in; E = 1025.104 lb/in2; and u = 0.3. The wing was sub-
jected to two forces: one torque F = 1 lbf at the ends of beams 
1 and 4 and one point force F = 1 lbf at the end of beam 3 (Fig. 
6). The figure also shows the results on displacements of the 
leading and trailing edges, with a comparison between the 
results calculated from the present code and Liu’s results cal-
culated by FEM and MSC/NASTRAN. Similar results with 
differences of less than 5 % were indicated for the methods. 
An evaluation of the difference in displacement of the leading 
and trailing edges revealed a significant wing twisting caused 
by the cases of point force and torque. However, in Liu’s work, 
specialized research was conducted on the wing dynamic 
structure; hence, no question concerning wing aerodynamic 
properties was raised. 

 
4. Results and discussion  

The grid generation of the aerodynamic and structure prob-
lems is different. Therefore, aerodynamic load interpolation 
must be performed from the aerodynamic mesh to the struc-
ture mesh. Fig. 7 presents a diagram of the DSM–FEM cou-
pling procedure. 

 
4.1 Distribution of pressure and lift coefficients  

An assessment was performed on a rectangular wing with 
span-half b = 5 C, profile NACA 0012, C = 1 m, and inci-
dence angle a = 4°. In terms of aerodynamics, the variable 

 
 
Fig. 5. Twist angles (q) and displacements. 

 

 
 
Fig. 6. Displacements of wing leading and trailing edges subjected to 
torque and point force (comparison of results). 
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parameter was the free Mach number (M¥ = 0.3 and M¥ = 0.6). 
Regarding the wing structure, the variable factor was the 
number of beams arranged inside the hollow wing.  

Fig. 8 shows the 3D distribution of pressure coefficients on 
the wing for the case of the hollow wing without beams and 
M¥ = 0.6. The calculation of aeroelastic coupling was repeated 
three times. In the first calculation (Fig. 8(a)), the distribution 
of the pressure coefficient on the rigid wing (i.e., the solution 
of the pure aerodynamic problem) was obtained. Fig. 8(b) 
presents the wing pressure coefficient distribution when the 
wing was considered to be rigid and deformed due to the ef-
fect of aerodynamic loads. Fig. 8(c) illustrates the pressure 
coefficient distribution for the deformed wing obtained from 
the third calculation.  

The differences between the results of the second and third 
calculations were small enough, and thus, the result of the 
third calculation (Fig. 8(c)) was selected as the solution to the 
problem concerning the elastic deformation effect of the wing. 
Large differences were observed in the values and the law of 

pressure distributions between the rigid and deformed wings. 
These differences are also indicated in Fig. 9, showing the lift 
coefficients for the case of M¥ = 0.6 and wing without beams. 
Specifically, the lift coefficients were considerably larger for 
the deformed wing than the rigid wing. 

The lift coefficients on a wing-half, presented in Fig. 9, in-
dicated that the lift coefficients in the cases where M¥ = 0.6 
were higher than in the cases where M¥ = 0.3 and were thus 
deformed more than were the latter. In the three cases where 
the hollow wing had no beam, one beam, and two beams, the 
lift coefficients of the wings with one beam were nearly un-
changed because the wings were almost untwisted. The wings 
with two beams had larger wing twist angles than the wings 
with one beam. However, the stress was smaller for the wings 
with two beams than the wings without beams and with one 
beam. The total lift coefficients presented in Fig. 10 show the 
variations in lift when the wing was considered to be rigid or 
flexible (with the internal structure without beams, with one 
and two beams, and M¥ = 0.6). 

 
 
Fig. 7. Diagram of DSM–FEM coupling procedure. 

 

 
Fig. 8. 3D distribution of pressure coefficients on wing-half: (a) Rigid 
wing; (b) flexible wing (2nd iteration); (c) flexible wing (3rd iteration). 

 
 
Fig. 9. Lift coefficients on wing-half (M¥ = 0.6, M¥ = 0.3 – wings 
without beams, with one beam, and with two beams).  

 
 

 
 
Fig. 10. Total lift coefficients for rigid and flexible wings (without 
beams, with one beam, with two beams, and M¥ = 0.6). 
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4.2 Twist angle of wing   

The wing with the aerodynamic parameters described in 
Sec. 4.1 (b/C = 5, C = 1 m, NACA 0012, and a = 4°) were 
considered, and wing weights were ignored. The structural 
parameters of the wing were as follows: Skin thickness t1 = 
0.002 m; flange thickness t2 = 0.01 m; web thickness t3 = 0.01 
m; rib thickness t4 = 0.008 m; flange width t5 = 0.02 C; depth 
h determined by beam position (Fig. 11), E = 7.1010 N/m2, u = 
0.33; and allowable stress (based on yield strength) sallow = 
14.107 N/m2 [18, 19]. Two beams (or one beam) and 15 ribs 
were distributed evenly. The positions of beams 1 and 2 were 
25 % C and 65 % C, respectively, from the leading edge. 

Fig. 12 shows the results of wing twist angles when M¥ = 
0.6 and M¥ = 0.3 in three structural cases: without beams, 
with one beam, and with two beams. With M¥ = 0.6, the wing 
twist angles were remarkably large (up to approximately 1° at 
the wing tip for the wing without beams). With M¥ = 0.3 and 
wing without beams, the maximum twist angle was 0.18°. 
However, in both cases (M¥ = 0.6 and M¥ = 0.3), for the 
wings with one beam, the wing twist was remarkably small. 
This result agreed with the theory of the divergence speed on 
the basis of the 2D hypothesis of the model section in that 
with the wing with one beam at 25 % C, the distance between 
the aerodynamic and twist centers was equal to zero. Hence, 
the wing structure was safe on the torsion divergence, i.e., the 
wing was stable at all speeds [1, 16].  

The wing twist angle was larger for the wing with two 
beams than that for the wing with one beam. However, in-
creasing the number of beams reduced wing bending and thus 
also minimized the stress intensity on the wing. This case is 
analyzed in Sec. 4.3. 

 
4.3 Stress distribution  

Fig. 13 presents the results from the third calculation with 
M¥ = 0.6 for the bending and stress distribution on the wing 
upper surface for the wings without beams and with two 
beams. The bending and maximum stress of the wing with 
two beams were significantly smaller than those of the wing 
without beams. The maximum stress was found in the root 
section of the wing. 

Fig. 14 shows the stress distributions on the upper and 
lower sides of the wing root section for the rigid and flexible 
wings (M¥ = 0.6). Remarkably high values of the maximum 
stresses (on upper and lower sides) were seen for the wing 
without beams. The maximum stress of the deformed wing 

increased by more than 20 % compared with that of the rigid 
wing. For the wings with two beams, the maximum stresses 
reduced by four times compared with those of the wing with-
out beams. In addition, highly similar stresses were observed 
for the rigid and flexible wings. As shown in Fig. 14, local 
plastic deformations with respect to the allowable stress could 
be observed in several places when maximum stress was M¥ = 
0.6. Therefore, with the wing structure in this assessment, M¥ 
= 0.6 was inappropriate. For M¥ = 0.3, a substantial reduction 
in the maximum stress was observed, as indicated in Fig. 15. 

 
 
Fig. 11. Definitions of beams, ribs, and skin. 

 

 
Fig. 12. Twist angles on wingspan-half (M¥ = 0.6 and M¥ = 0.3 –
wings without beams, with one beam, and with two beams). 

 
 

 
 
Fig. 13. Displacement and maximal stress on upper surface of flexible 
wings without beams and with two beams (M¥ = 0.6). 
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4.4 Total lift coefficient and maximum stress 

The stress distribution on the wing root profile in Fig. 15 
shows that at M¥ = 0.3, for the wing with one or two beams, 
the stresses of the wings before and after deformation re-
mained within the elastic limit. As the velocity changed, the 
law of stress distribution and maximum stress position on the 
upper and lower wing surfaces varied considerably. Fig. 16 

shows the 3D distribution of stresses on the flexible wing with 
two beams at M¥ = 0.3. Fig. 17 presents the total lift coeffi-
cients when M¥ = 0.3. In the case of rigid wings, the same 
total lift value was obtained for the wings without beams, with 
one beam, and with two beams. The number of beams influ-
enced only the total lift coefficient for the flexible wings.  

A qualitative similarity was observed between the results 
shown in Fig. 17 and the results for the total lift coefficient at 
M¥ = 0.6 in Fig. 10. That is, when the wing had one beam, the 
wing twist was remarkably small, and thus, the aerodynamic 
forces were nearly the same for the rigid and flexible wings. 
Notably, for the wing with two beams, the wing twist angle 
was slightly larger, and the aerodynamic load slightly in-
creased after deformation compared with the wing with one 
beam. However, the bending of the wing with two beams was 
smaller than that of the wing with one beam, which resulted in 
smaller stresses. Therefore, the wing with two beams had a 
higher strength than the wing with one beam.  

The elastic deformation of wings is extremely common. 
The arrangement of additional beams inside a wing increases 
the strength of the wing and stabilizes aerodynamic loads but 
also increases the weight of the wing and the manufacturing 
cost. Therefore, to select the appropriate wing in real situa-
tions, the strength of the wing, wing load, and wing fabrica-
tion cost need to be considered in wing design. 

A comparison of the total lift coefficient at M¥ = 0.3 in Fig. 
17 with the results in Fig. 10 at M¥ = 0.6 shows that the lift 
coefficient in the first case was substantially smaller than that 
in the second case. However, in the first case with M¥ = 0.3, 
the strength of the wing was maintained when the wing was 
subjected to long-term aerodynamic loads. To increase speed 
while maintaining an aerodynamic shape, a durable structural 
solution, such as the arrangement of beams inside the wing, is 

 
 
Fig. 14. von Mises stresses in root section of wings without beams and 
with two beams (rigid and flexible wings, M¥ = 0.6). 

 

 
 
Fig. 15. von Mises stresses in root section of wings without beams, with 
one beam, and with two beams (rigid and flexible wings, M¥ = 0.3). 

 

 
 
Fig. 16. von Mises stress distribution (3D) on upper and lower surfaces 
of flexible wing with two beams (M¥ = 0.3). 

 

 
 
Fig. 17. Total lift coefficients for rigid and flexible wings (without 
beams, with one beam, and with two beams, M¥ = 0.3). 
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necessary. Aerodynamic and structural compromises should 
also be set to match the technological and financial capabili-
ties. 

 
5. Conclusions  

Our findings show that aerodynamic force is altered from 
the aerodynamic design of rigid wings due to elastic wing 
deformation. These alterations are inevitable. Therefore, the 
level of wing deformation and the variation in aerodynamic 
load due to wing deformation must be determined. 

The assessments in the current study are a novel implemen-
tation of the algorithm coupling the aeroelastic problem from 
the built aerodynamic code for 3D wings, which considers 
wing thickness and the built elastic code for 3D hollow wings 
with beams allocated inside. Within certain definitions of re-
search, these codes allow reductions in running time and 
memory capacity requirement, the possibility to change the 
grid automatically, and the convenience of changing the input 
parameters in selecting the optimal solution. The results of the 
assessments indicate potentially remarkable changes of the 
aerodynamic load on the wing when the effect of elastic de-
formation is considered. Although the aerodynamic force de-
pends solely on the external shape of the wing, structural op-
tions need to be accounted for in an attempt to ensure wing 
durability and predict the aerodynamic load accurately when 
considering the elastic deformation effect. 
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