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Abstract 
 
On the basis of an overview of the global responses of a nonlinear Jeffcott rotor/stator contact model, the system reliability was evalu-

ated subject to mixed aleatory-epistemic uncertainty. We used a likelihood-based approach for reliability modeling and analysis. In the 
context of uncertainty quantification, some advanced Bayesian techniques were adopted to reduce the computation cost in traditional 
Monte Carlo method. The parameters’ effects on reliability were studied, incorporating both rotor physical background and inherent 
uncertain factors. This framework could be applied in the field of industrial manufacturing & mounting, risk assessment, product main-
taining and benefit rotary machines from design phase to operation stage.  
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1. Introduction 

Motivated by the requirements in many mission-critical in-
dustries, e.g., infrastructure, aviation manufacturing and high-
level national security, the design speed of rotary machinery 
keeps climbing. On the other hand, the clearance between 
rotor and stator is reduced to enhance the efficiency. In the 
context of operation safety, the rotor/stator unexpected rub-
bing may significantly degrade the machine performance, 
even leading to devastating consequences, which is not rare in 
practical engineering. The demand for reliability analysis for a 
rotating machine product in its design process is urgent. 

Since Black [1] explored the dynamics of rub-related phe-
nomena for rotor/stator contact systems in 1968, sufficient 
attention has been paid on the study of response of rotor/stator 
coupled system in deterministic scenario. Researchers try to 
capture its nonlinear nature through experimental investiga-
tions. A huge amount of rotor/stator dynamic behaviors with 
different features have been observed, such as the jump phe-
nomenon and the synchronous full annular rubs [2-4], the 
partial rubs in sub- and super-synchronous whirl [5-7], the 
partial rubs in quasi-periodic whirl [8], the chaotic motion [9-
11] as well as dry whip [12-14] for different parameter set-
tings. Possessing the advantages of rapidly growing computer-
aided techniques, it is desirable to discover the possible rela-

tionship between the multiple system responses and the speci-
fied parameters settings in an analytical way. Jiang et al. [15, 
16] analytically derived an overall picture of the global re-
sponse characteristics for a modified Jeffcott rotor, and the 
results are consistent with the experiment mentioned above. 

Getting deep insights into practical engineering, the various 
uncertain factors induced in design process or in manufactur-
ing stage are inevitable, and their influence on system re-
sponse should not be overlooked. This problem has been real-
ized in recent years and addressed in a series of publications 
[17-19]. These research works have made profound contribu-
tions to the rotor-related research field considering parameter 
uncertainty [20-23]. However, most of these works only focus 
on the study of mathematical representations of uncertain 
parameters (probability & fuzzy [24-26], fuzzy & interval [27], 
probability & interval [28-30]) while paying less attention to 
its further application to reliability engineering. Limited ex-
ceptions are the works from Refs. [31-35]. Not many exam-
ples can be found in the field of reliability engineering for 
rotor/stator contact system subject to mixed aleatory-epistemic 
uncertainty. The issue of reliability analysis for a nonlinear 
rotor/stator coupled system has not been sufficiently addressed 
yet. 

To fill the research gap and establish a more generic frame-
work, we tried to obtain a global reliability analysis result of a 
Jeffcott rotor/stator contact model in an analytical way, which 
serves as a simplified model for most engineering rotor de-
vices. Special attention has been paid to the reliability criteria 

*Corresponding author. Tel.: +86 10 6233 3868 
E-mail address: yanglechang@126.com  

† Recommended by Associate Editor Byeng Dong Youn 
© KSME & Springer 2018 



4090 L. Yang et al. / Journal of Mechanical Science and Technology 32 (9) (2018) 4089~4101 
 

 

for nonlinear systems, and a novel statistical method is 
adopted to deal with the possible mixed uncertainty in practi-
cal engineering. 

This paper is organized as follows. The physical model of 
the selected rotor/stator contact system and its governing 
equations are presented in Sec. 2, along with the analyses of 
system response under ideal circumstance (deterministic) in 
Sec. 3. Sec. 4 illustrates the adopted reliability techniques and 
some notations of the proposed approach. The effects of pa-
rameters on system reliability are particularly focused in Sec. 
5. Sec. 6 discusses the benefits of this work and some notes. 
Finally, some concluding remarks are drawn in Sec. 7. 

 
2. Rotor-stator contact model and governing equation  

We examined a typical Jeffcott rotor-stator coupled system, 
which consists of an eccentric rotor and a rigidly fixed stator 
with elastic surface (see Fig. 1). The stator, which is rigidly 
fixed, has an elastic contact surface and is modeled as the 
radial springs with stiffness ks. The rotor, which is divided into 
a massless shaft with stiffness kr and a disk with mass m, ro-
tates inside the stator at speed ω. Subject to out-of-balance 
mass, the rotor may make intermittent contacts with the stator 
during operation, resulting in complex dynamic behavior. 
Given the rotor eccentricity e, external damping c , friction 
coefficient fc and gap between rotor and stator r0, the motion 
equation is expressed as Eq. (1), neglecting the stator inertia 
and gyroscopic effect. 

The motion equation is given as 
 

( )( )

( )( )

0

2

0

2

2 2
0

2 2
0

1

cos
,

1

sin

0,

1,

r s rel c

r s rel c

rmx cx k x k x sign v f y
r

me t
rmy cy k y k sign v f x y
r

me t

x y r

x y r

q

w w

q

w w

q

ì æ ö+ + + - -ï ç ÷
è øï

ï=ï
í

æ öï + + + - +ç ÷ï è øï
=ïî
ì + <ï= í

+ >ïî

&& &

&& &  (1) 

 
where the relv represents the relative velocity between the 
rotor and stator at the contact point, indicating the sign func-
tion ( ) 1relsign v =  when the rotor whirls forward, otherwise, 

( ) 1relsign v = - . For mathematical convenience, it could be 
rewritten in matrix form as  
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Through a non-dimensional transformation, Eq. (2) is re-

formulated as  
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The non-dimensional variables are defined as  
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where ω2 is the natural frequency of the elastic contact surface. 
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Fig. 1. (a) Schematic diagram of the rotor/stator system; (b) applied 
forces of rotor during whirling. 
 



 L. Yang et al. / Journal of Mechanical Science and Technology 32 (9) (2018) 4089~4101 4091 
 

  

Eq. (3) is piecewise smooth depending on the value of outer 
sign function ( )sign R  and inner sign function ( )relsign V . 
Note that a new time scale 2tt w=  was introduced and the 
differentiation in Eq. (3) is with respect to the new time vari-
able τ. 

 
3. Deterministic system response and stability analy-

sis  

There are multi-types of system responses, which are gov-
erned by different phase of the piecewise smooth equation. 
Since our goal was to assess the system reliability on whole 
parameter plane and determine the safe domain for rotor 
proper operation, it is desirable to derive an overview picture 
of the system global response analytically. 

 
3.1 No-rub synchronous motion  

The periodic solution of Eq. (3) has the following general 
form  
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If the gap between rotor and stator is less than initial clear-

ance, no contact occurs: ( ) 0sign R = . Thus, the governing 
equation is simplified to be linear; the amplitude and phase 
angle can be obtained by substituting Eq. (4) into Eq. (3) as 
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This solution is only physically valid when the steady am-

plitude R is less than clearance R0. Let 0R R£ , the parameter 
boundary condition for no-rub synchronous solution is derived 
as Eq. (6). 
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Since the solution is always stable for a linear case, the two 

real roots lW  and uW , solved from Eq. (6), can be used to 
determine the parameter boundary of no-rub motion. 

 
3.2 Synchronous full annular rub 

However, as the rotation speed keeps increasing, the time-
varying gap will exceed a threshold, leading continuous rub-
bing. The rotor gets engaged with the stator, and the motion 
equation becomes nonlinear. In this circumstance, the rotor-
stator coupled system exhibits complex dynamic behavior. For 
nonlinear scenario ( ( ) 1sign R = ), after substituting Eq. (4) 
into Eq. (3) and some simplification, we have 
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Noting that Eq. (7) is valid for all non-dimensional time 
variable τ, let 0t yW + = and 2t y pW + =  respectively, so 
we have 
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Using mathematical transformation to eliminate phase angle 

ψ, a polynomial about amplitude R is derived. 
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Since only the steady-state periodic solution is of interest, 

we differentiate Eq. (9) with respect to amplitude R, and set 
0 0d R R = . It is derived as 2

1 0 24 0a a a- = , namely, 
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Eq. (10) is the so-called saddle-node bifurcation condition 

(or turning point), while the nonlinear solutions are called full 
annular rub solutions, when the amplitudes satisfy 0R R> . 
Fig. 2 shows a typical rotor orbit for synchronous full annular 
rub solution of the rotor-stator coupled system. The schematic 
diagram of applied force analysis is referred to for better un-
derstanding. 

 
3.3 Quasi-period partial rub 

Quasi-periodic partial rub is a type of response that the rotor 
contacts the stator intermittently. For the partial rub, both lin-

 
 
Fig. 2. Rotor orbit for typical synchronous full annular rub. 
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ear and nonlinear equations should be considered. Since the 
synchronous full annular rub bifurcates into partial rub 
through Hopf bifurcation, the Hopf bifurcation condition 
serves as the boundary between synchronous full annular rub 
and partial rub. 

According to the Hopf bifurcation theory, there should be 
one pair of conjugate purely imaginary eigenvalues for the 
Jacobian matrix. By substituting λ = iω (or λ = -iω) into the 
characteristic equation Eq. (11)  
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Eq. (12) is derived as 
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Rewriting Eq. (12) in a polynomial of amplitude R as  
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After eliminating R, a twelve-order polynomial of rotation 

speed Ω is also obtained and the boundary of Hopf bifurcation 
can be numerically solved. Fig. 3 shows a typical rotor orbit 
for quasi-periodic partial rub solution of the rotor-stator cou-
pled system.  

 
4. Reliability analysis subjected to mixed aleatory-

epistemic uncertainties  

In the previous section, the multiple responses of a ro-
tor/stator contact system were analytically investigated for 
deterministic scenario. However, in practical engineering, a 
huge amount of uncertain factors will be introduced in the 
phase of design, manufacturing, mounting etc. Addressing its 
reliability, a likelihood-based uncertainty quantification ap-
proach is proposed, which enables the reliability analysis to 
perform in the context of mixed aleatory-epistemic uncertain-
ties. 

4.1 Notation  

4.1.1 Mixed aleatory-epistemic uncertainty 
According to the well-accepted uncertainty theory [36, 37], 

the various uncertainties (model uncertainty, parameter uncer-
tainty etc.) in practice can be classified into aleatory uncer-
tainty and epistemic uncertainty from a mathematical perspec-
tive.  

Aleatory uncertainty comes from the stochastic nature of 
one problem and is usually thought to be irreducible. Epis-
temic uncertainty is induced either by a lack of knowledge or 
a bias of existing judgment, which can be reduced when new 
information becomes available. Aleatory uncertainty is usually 
represented in the probability distribution form, while epis-
temic uncertainty has more complicated mathematical forms, 
such as interval variable or a coexistence of probability and 
interval. In this study, we considered both aleatory and epis-
temic uncertainties. 

 
4.1.2 Reliability  

Reliability is defined as the probability that one device will 
perform its intended function within a specified period of time 
(the time before system response exceeds a predefined thresh-
old). It can be calculated as the integration of the joint prob-
ability density function (PDF) over the entire safe region as Eq. 
(14) 
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where Z denotes the random system response of interest, and 
( )f Z corresponds to the joint PDF of random variable Z.  
For the specified rotor/stator contact system, if the clearance 

between rotor and stator is used to build state function, the 
limit state function can be generally presented as  
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When the clearance is less than the initial clearance R0, the 

 
 
Fig. 3. Rotor orbit for typical quasi-period partial rub. 

 



 L. Yang et al. / Journal of Mechanical Science and Technology 32 (9) (2018) 4089~4101 4093 
 

  

rotor will not contact with the stator, and the device is as-
sumed to be working normally. However, if the clearance is 
greater than R0, the rotor will get engaged with the stator. In 
certain circumstance, the rotor may rub the stator surface 
heavily, which leads to a catastrophic failure of the whole 
machine. These two scenarios can be simply expressed as Eq. 
(16) and intuitively shown in Fig. 4.  
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The challenges that we are facing are twofold: First, the tra-

ditional reliability theory is constructed in the field of prob-
ability; thus a comprehensive reliability analysis is hard to 
perform, taking mixed uncertainty (including sparse data point 
and interval variable) into consideration. Secondly, due to its 
strong nonlinearity, the reliability criteria are not simple and 
clear since there may be multiple steady system responses 
coexisting (e.g. a coexistence of no-rub synchronous motion 
and full annular rub). 

We deal with the first issue by adopting a likelihood-based 
uncertainty quantification approach, which enables the reli-
ability analysis to be performed in a unified way. The second 
issue will be discussed in Sec. 5, since the criteria should be 
case-based determined.  

 
4.2 Likelihood-based uncertainty quantification approach  

4.2.1 Construction likelihood for non-probabilistic information 
Consider a stochastic variable X that follows one specific 

distribution (e.g. Normal) with a series of sparse data, and its 
probability density function (PDF) is denoted as ( )|p x Q  
where Θ is the parameter set. The likelihood function 
( )|L xQ  is defined as the probability of the observation of 

given data set, which is conditioned on the distribution pa-
rameter Θ. Strictly speaking, the probability value for any 
discrete point data is zero for a continuous density function, so 
the likelihood function is derived by considering the probabil-
ity of an infinitesimally small interval around xi on the basis of 
the mean value theorem as Eq. (17) for practical use. 
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A similar idea can be extended to bounded interval dat; thus 

the expression for likelihood of the parameters Θ for interval 
[a, b] is  
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It is the cumulative density function (CDF) ( )XF  rather 

than PDF ( )Xp  that would be used. For multiple input in-
terval information, the combined likelihood function is ex-
pressed as  
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4.2.2 Representation of epistemic uncertainty with pure in-

terval data 
This subsection presents an approach to deal with pure in-

terval uncertainty. To begin with, a sole interval [a, b] is as-
signed to the uncertain variable X, namely, ,X a bÎé ùë û . From 
the probabilistic perspective, it can be interpreted as 

( )~ ,X U a b  since the chance that variable X takes any value 
within the range of [a, b] is equal. It can be interpreted as an 
optimization problem as follows:  
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The solved PDF f(x) is the corresponding probabilistic de-

scription for the given interval [a, b].  
There may be multiple interval information available for a 

specified variable X in practical engineering, which occurs 
when information are collected from different (independent) 
sources, (e.g., judgments from expert system). To deal with 
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Fig. 4. The limit state function and corresponding safe region (failure 
region). 
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where subject (1) and (2) come from the probability axiom 
and (3) is an additional constraint that makes the generated 
probability distribution proportional to the given multi-
intervals. To balance the contribution of each interval, a mass 
function M(x) is assigned. To analytically solve this optimiza-
tion problem, the main steps of the developed algorithm are 
presented in Table 1. 

Note that the constructed PDF is a 2N-1 piecewise function 
and usually cannot be expressed in parametric form. 

 
4.2.3 Representation of epistemic uncertainty with additional 

probabilistic information 
We discuss next the uncertainty quantification method 

when both interval and probabilistic information are available: 
A scenario with mixed uncertainties. This situation comes true 
when knowledge is obtained through different means. For 
instance, the rotor eccentricity e for a batch of rotary machine 
may be estimated by a series of intervals based on expert judg-
ment. On the other hand, considering the design and manufac-
turing process, the source of uncertainty in eccentricity e is 
understood as the error/deviation accumulated during the pro-
cedure of assembling, mounting, etc., which generally follows 
the normal distribution. 

If variable X is supposed to follow one specific distribution, 
the combined likelihood function can be expressed as Eq. (20). 
The distribution parameter Θ can be evaluated by maximizing 
the right hand side of Eq. (20) (popularly known as the maxi-
mum likelihood estimate, MLE). However, this calculation 
may be cumbersome because the cumulative density function 
of variable X is not always in analytical form (e.g., the CDF of 
normal distribution). Instead of computing statistics parameter 
Θ by maximizing the likelihood, we adopted some Bayesian-
based techniques to estimate the full likelihood. Barnard et al. 
[38] emphasized the idea that the entire likelihood function 
should be used for inference rather than merely its maximiza-
tion. 
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Assigning an appropriate prior distribution, the parameter Θ 

is estimated as Eq. (21) by adopting Bayesian rule 
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where π(Θ) denotes the joint prior distribution of parameter 
vector Θ, while ( )|p DΘ  is the estimated probability distri-
bution of Θ. ( )|l DΘ  is the combined likelihood function 
which has the same form as Eq. (20). 

The parameter Θ estimated with the Bayesian method is a 
probability distribution, compared with a deterministic value 
by MLE method. Hence, a family of conditioned probability 
distributions for X is derived due to the uncertainty within the 
statistics parameter θ. A double loop Monte Carlo (or called as 
second-order Monte Carlo) method (Table 2) can be adopted 
for analysis, but this method may not be affordable for some 
complicated cases. To illustrate, suppose M samples of θ are 
generated in the outer loop, each of which corresponds to a 
distribution of p(θ), and N samples of X are drawn for each 
sample θ in the inner loop, and the computation cost is total 
M×N. To get a satisfactory result, 104 samples are usually 
required for M and N; thus the number of total samples is too 
large for a general routine program. 

Considering this, we discard the double loop sampling ap-
proach and construct the PDF of variable X as Eq. (22) to re-
place the family of distribution for ( )|p X q  with a unique 
distribution ( )p X  

 
( ) ( ) ( )| .p X p X p d= ò Θ Θ Θ  (22) 

 
The unconditional PDF ( )p X  can be calculated by inte-

grating the conditional PDF ( )|p X Θ  over the entire pa-
rameter space of Θ. 

 
4.3 Reliability method  

The aforementioned likelihood-based approach was adopted 
to deal with the mixed aleatory-epistemic uncertainty, by 
which all non-probabilistic information is incorporated in a 
unified way; thus the reliability analysis is able to be per-
formed. In Refs. [31, 32], the reliability of a rotor/stator sys-

Table 1. Algorithm for representation of pure interval uncertainty.  
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Table 2. Traditional double loop Monte Carlo method. 
 

Suppose the model output Y is given by a deterministic function of 
Y=f(X) 

To get an estimated result of Y: 
Outer loop: 
M samples of parameter θ are generated from p(θ) 
Inner loop: 
For a given θ 
N samples of X generated from p(X|θ) 
End loop 
Output Y is calculated as Y=f(X) for a family of distributions of variable 

X 
End loop 
The PDF of model output Y is estimated based on the M×N samples 

(such as kernel density estimate) 
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tem is examined by applying a statistical fourth moment 
method, but the physical model is not sufficiently addressed. 
From an engineering perspective, it is of interest the fluctua-
tion of reliability surface and the safe domain in parameter 
space rather than a reliability calculation result of certain pa-
rameter combinations. So we transform the concerned reliabil-
ity problem into the following optimization problem and em-
ploy a second moment method substituting for the fourth mo-
ment method.  

Object: 
2

1

min i

i

n
i X

i X

x m
b

s=

æ ö-
= = = ç ÷ç ÷

è ø
åTy y y  

Subject: ( )1 2, ,..., 0X ng x x x =  
 

where ( )1 2, ,...,X ng x x x  is the limit state function which is 
determined by a specified rotor/stator system. β is the so-
called reliability index, and it has a one-to-one mapping rela-
tionship with the reliability (probability). The limit state func-
tion in Eq. (15) can be approximated by its first-order Taylor 
series at mean value point as 

 

( ) ( ) ( )
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= ...
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And the reliability index β can be calculated as Eq. (24) tak-

ing the geometric interpretation of β into account (the reliabil-
ity index β could be interpreted as the distance from coordi-
nate origin to limit state surface, see in Fig. 4), if the basic 
variables are both normally distributed. 
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where the first and second moment of Zl are expressed as  
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Here *x  is the so-called expansion point, which satisfies 
the constraint of limit state function, namely, ( 1,Xg x  

)2 ,..., 0nx x = . 
Eq. (24) is only valid when the basic variables follow nor-

mal distribution. Considering the possible situation with 
mixed aleatory-epistemic uncertainty, if the basic random 
variables in vector *X  are given as interval data or through a 
collection of samples, Eq. (24) is not able to be directly ap-
plied. To deal with this, the transformation of non-
probabilistic into probability distribution has been discussed in 
a previous subsection, and for a series of discrete points, the 
kernel density estimator (KDE) was adopted to visualize the 
resulting distributions and to facilitate the computation of the 
reliability. A KDE is an approximation to the probability den-
sity function (PDF) of a source of values; it is computed based 
on n data points.  

To establish a normal distribution, the Gaussian kernel is 
used and has the following form: 

 

( ) ( )22
1

1 1 1ˆ exp .
22

n

s i
i

f s s s
n ep e=

é ù= - -ê úë û
å  (25) 

 
Thus the probabilistic characterization of S is an approxima-

tion to its PDF that uses the kernel density estimator (KDE). 
As the index β is determined, the probability of failure and 

reliability is therefore calculated as Eq. (26), respectively. 
 

( )
( )

fP
R

b
b

ì = F -ï
í = Fïî

 (26) 

 
where F  is the CDF of a standard normal distribution. 

 
5. Reliability of nonlinear rotor/stator contact system  

5.1 Mixed aleatory-epistemic uncertainty quantification  

To illustrate and verify the mixed uncertainty quantification 
method proposed above, the likelihood-based approach is 
applied to rotor/stator contact system with governing equation 
of Eq. (3). We consider the uncertainty in three parameters 
( 0, ,cf RW ) by setting other parameters as fixed value 
( 0.05, 0.04z b= = ). Specially, the rotation speed is set as a 
random variable, which follows a normal distribution as 

Table 3. Available information and data collection for case study. 
 

 Uncertainty Available information 

Rotation speed Ω Aleatory  Complete probability distribution ~ ( , )N m sW WW  

Friction coefficient fc Epistemic  Multiple input intervals 
Source 1 : 0.05,0.1é ùë û , Source 2: 0.1,0.15é ùë û  

Source 3 0.15,0.2é ùë û , Source 4: 0.2,0.3é ùë û  

Clearance R0 Epistemic  Probability distribution with uncertainty 
parameters and Multiple input intervals 

0 00 ~ ( , )R RR N m s  Source 1 : 1.5,1.8é ùë û  

Source 2: 2,2.2é ùë û Source 3 1.7,2.1é ùë û  

sparse point data: 1.75, 1.89, 2.13 

 



4096 L. Yang et al. / Journal of Mechanical Science and Technology 32 (9) (2018) 4089~4101 
 

 

( )~ ,N m sW WW , while the available information for clearance 
R0 and friction coefficient cf  are given in mixed sparse-data 
and interval form as Table 3 shows. 

The rotation speed Ω is given in a stochastic form, so there 
is no need for further transformation. For the friction coeffi-
cient cf , it is the case of multiple input intervals without 
probabilistic information, and the algorithm in Table 1 is 
adopted to build the transformed PDF.  

The converted PDF is constructed as  
 

10 3 0.05,0.1
25 3 0.1,0.15

5 0.15,0.2
5 3 0.2,0.3

f
f

p
f
f

ì Îé ùë ûï
Îé ùï ë û= í Îé ùë ûï

ï Îé ùë ûî

. 

 
The joint PDF is constructed as Eq. (27) and shown in Fig. 

5, since the rotation speed and friction coefficient are assumed 
to be independent. 

 
( ) ( ) ( ), | | | .c cp f p p fW Q = W Q Q  (27) 

 
The clearance R0, is assumed to follow a normal distribution, 

but the statistic parameters (μ and σ) are unknown. The avail-
able interval and sparse data are used to evaluate unknown 
distribution parameters. By adopting Bayesian rule, the likeli-
hood of unknown parameters μ and σ is constructed as Eq. 
(28) 
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where ( )Xf ×  and ( )XF ×  denote the PDF and CDF of normal 
distribution respectively. Θ is the parameter vector, and for 
this case ( ), , 3m nm s= = =Θ . 

Since there is no additional available information, the non-
informative prior is assigned as ( )~ , ,Uniform a bm mm  

( )~ ,Uniform a bs ss . Thus prior ( )p Θ  can be taken out of 
integration and the posterior joint PDF is reduced to  
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 (29) 

 
There is usually no analytical solution for Eq. (29), so the 

posterior joint PDF is numerically solved. The marginal dis-
tributions of the parameter μ and σ are depicted in Figs. 6(a) 
and (b). 

The unconditional PDF is obtained by integrating over the 
space of parameters Θ as  

 
( ) ( ) ( )0 0| | | .p R data p R p data d= Q Q Qò  (30) 

 
Fig. 6(c) presents the unconditioned posterior PDF of vari-

able R0. 
Even if the variable R0 is assumed to follow a particular 

type of a parametric distribution (e.g. normal), the uncondi-
tional density after the integration in Eq. (30) is non-
parametric, so the resultant probability distribution is not of 
the same type and cannot be classified as normal. See in Fig. 
6(c). 

Now all non-probabilistic information has been converted 
to the corresponding probability distribution, where the uncer-
tainty quantification approach proposed in previous section is 
applied. Since our goal was not only to calculate the reliability 
for certain given parameters but to derive an overview picture 
of the reliability surface of whole rotor/stator contact system, 
we will further discover the effects of concerned parameters 
on system reliability by adjusting their distribution (hy-
per)parameters. The non-linearity characteristics incorporated 
in the limit state equation will be discussed in detail. 

 
5.2 The effects of rotation speed & friction coefficient on 

system reliability  

To begin with, the clearance is first set as a fixed value as 
1.05, while the mean values of probability distributions (given 
or transformed) of rotation speed and friction coefficient vary. 
As mentioned, the rotor/stator coupled system is supposed to 
be reliable if no rubbing occurs. The boundary condition for 
deterministic scenario is given as  

 
( ) ( )
( ) ( )
( )

2 4 2 2 2 2 2 2
0 0 0 0

22 2 2

2 2 2
0

2 2
1 1 2 3 0 3 1 3

1 4 2 4 0

4 2 1

1 0

0, 0
c c

R R R R

f f R R

b b b b b b b b

z b z b

z b

b

- W + - W - W + ³

W W + - + +

+ + W - - - =

- + = >

 (31) 

 
where the coefficients b0~b3 are given as  

 
 
Fig. 5. Transformed joint PDF in Ω - fc parameter plane. 
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The first equation of Eq. (31) corresponds to the parameter 

boundary condition of no-rub synchronous motion, while the 
other two constraints are boundary conditions induced by 
saddle node bifurcation and Hopf bifurcation, respectively.  

Since it is the parameter space of no-rub solution that of in-
terest, we investigated the safe domain of the rotor/stator sys-
tem by determining the boundary of each system response. In 
Fig. 7(a) the parameter space of the no-rub solution (region 1) 
is separated by the region of annular solution (region 2), 
which is bounded as the lower limit Ωl and upper limit Ωu. 
When the rotation speed either rises across the lower bound or 
falls across the upper bound, the deflection exceeds the initial 
clearance, so the rotor contacts with the stator. Noting that the 
full annular rub bifurcates into partial rub (region 3) through 
Hopf bifurcation and the saddle node bifurcation condition 
gives the boundary between no-rub and full annular rub, the 
existence region of periodic solution is determined. However, 
due to the inherent nonlinear nature of the rotor/stator system, 
there may be a coexistence of multiple system response. For 
instance, both no-rub solution and full annular rub solution 
exist in region 1+2. The dry whirl or dry whip will be trig-
gered after the full annular rub of the rotor/stator system loses 
its stability through Hopf bifurcation; thus no-rub and back-
ward whirling coexists in region 1+3. Taking the parameter 
uncertainty into consideration, the true safe region for ro-
tor/stator system should be the parameter space where only the 
no-rub solution is valid. Fig. 7(c) shows the fluctuation of 
reliability for different parameter combinations in the cfW -  
parameter plane. For better presentation, its two-dimensional 
top view is also depicted in Fig. 7(b), which shows a corre-
spondence with the safe region in deterministic scenario but 
narrower area. 

Fig. 8(a) shows the parameter contour lines and reliability 
surface of the case that non-dimensional clearance has in-
creased to 2. There is no surprise that the safe region is 
enlarged due to the increasing of clearance. Regarding the 

 
                      (a)                                    (b)                                   (c) 
 
Fig. 6. (a) PDF of mean μ; (b) PDF of standard deviation σ; (c) unconditional PDF of R0 . 
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Fig. 7. Safety domain in Ω - fc parameter plane: (a) In deterministic 
scenario; (b) with mixed uncertainty; (c) reliability surface 
( 0 1.05R = ). 
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shape, the parameter space of full annular rub solution (region 
2) significantly shrinks, which is mainly attributed to the 
change of saddle node bifurcation boundary. The left bound-
ary of the safe region in lower right corner is now determined 
by the saddle node bifurcation boundary condition (see Fig. 
8(b)). The three-dimensional reliability surface for the case of 

0 2R =  is also presented in Fig. 8(c). 

 
5.3 The Effects of rotation speed and clearance on system 

reliability  

The influence of rotation speed together with clearance on 

the system reliability is examined below. To carry out this 
study, the friction coefficient was first set as 0.15. It is noted 
that the curve indicating lower bound of full annular rub sola-
tion (region 2) interacts with the curve indicating upper bound 
at the point of R0 = 2.06, which suggests that there will be no 
full annular rub solution existing when the clearance is greater 
than 2.06. Since the synchronous full annular rub bifurcates 
into partial rub (region 3) through Hopf bifurcation, only the 
parameter plane on the left side of the vertical dashed line 
(which stands for the Hopf bifurcation) would possible be the 
safe region. Virtually, the safe domain in Fig. 9(a) is deter-
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1+3
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3

11+2
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(b) 

 

 
(c) 

 
Fig. 8. Safety domain in Ω - fc parameter plane: (a) In deterministic 
scenario; (b) with mixed uncertainty; (c) reliability surface ( 0 2R = ). 
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Fig. 9. Safety domain in Ω - R0 parameter plane: (a) In deterministic 
scenario; (b) with mixed uncertainty; (c) reliability surface (friction 
coefficient 0.15cf = ). 
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mined based on the contributions of linear governing equation 
condition, saddle node bifurcation condition and the Hopf 
bifurcation condition together. Fig. 9(b) shows the corre-
sponding safe domain taking uncertainty into account, and the 
three-dimensional reliability surface is depicted in Fig. 9(c). 

To discover the effects of rotation speed and clearance on 
system reliability for other fixed value of friction coefficient, 
the contour lines for constraints in Eq. (6) are redrawn for 

0.3cf =  in the 0RW -  parameter plane in Fig. 10(a). Com-
pared with the case for 0.15,cf =  the Hopf bifurcation 
boundary moves leftward, leading to a narrower safe domain 

(see in Fig. 10(b)). Since the boundary of no-rub solution and 
saddle node bifurcation lies outside of the area bounded by the 
Hopf bifurcation, the safe region is shaped as a rectangle, 
which is purely determined by the vertical dashed line (Hopf 
bifurcation) in this scenario (see in Fig. 10(c)). 

 
6. Discussion  

The reason for addressing the reliability issue of a Jeff-
cott rotor is that it serves as the basic model for many prac-
tical rotor systems, though it is quite simple compared with 
many complicated rotor/stator coupled systems. The reli-
ability analysis result has profound significance for new 
products in the early design and prototyping stage, and also 
benefits rotary machines already installed in the operation 
safety. For instance, to meet the reliability requirement, the 
safe domain derived is quite different with that in a deter-
ministic scenario, which could be a meaningful reference to 
practical rotors. In the context of uncertain dynamics analy-
sis, the adopted reliability method sufficiently addresses its 
nonlinear characteristics, namely, the reliability criterion is 
case-based, in which the physical model is considered. Fur-
thermore, the developed framework deals with mixed alea-
tory-epistemic uncertainty in a unified way, which is flexi-
ble and allows simultaneous processing of probability dis-
tribution and interval estimates, indicating successful in-
formation aggregation and data fusion. Also, some system 
responses, such as dry whirl or dry whip, in practice are not 
considered since they are irrelevant to the reliability of the 
rotor/stator contact system. 

 
7. Conclusions 

The reliability of a typical Jeffcott rotor/stator system sub-
jected to mixed aleatory-epistemic uncertainty was studied. 
An overall picture of the system global responses was derived 
analytically. The effects of parameters on reliability were stud-
ied incorporating both rotor physical characteristics and inher-
ent uncertain factors. A likelihood-based approach addressing 
multiple inputs was developed, which enables a comprehen-
sive reliability analysis of the rotor/stator system incorporating 
all available information (sparse point data, probabilistic dis-
tribution and intervals). Some Bayesian techniques were 
adopted to reduce the computation cost in traditional double 
loop Monte Carlo method. Since the uncertain factors induced 
either in manufacturing phase or in assembling stage are inevi-
table in practical engineering, the developed approach can be 
applied in industrial manufacturing & mounting, risk assess-
ment, product maintaining etc. and benefits rotary machines 
from design phase to operation stage. 
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