
 
 

 
Journal of Mechanical Science and Technology 32 (8) (2018) 3537~3545 

www.springerlink.com/content/1738-494x(Print)/1976-3824(Online) 
DOI 10.1007/s12206-018-0704-9 

 

 

 

 
Calculation of time dependent mesh stiffness of helical planetary gear system using 

analytical approach† 
Mohsen Rezaei, Mehrdad Poursina*, Shahram Hadian Jazi and Farhad Haji Aboutalebi 

Department of Mechanical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, 81744-73441, Iran    
 

(Manuscript Received October 14, 2017; Revised December 19, 2017; Accepted April 18, 2018)   

---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 

Abstract 
 
Time-dependent mesh stiffness is a most important reason of vibration and dynamic excitation in gear sets. In this research, analytical 

formulas of the helical gear set and the planetary gear system are combined to calculate the time-dependent mesh stiffness of the helical 
planetary gear system. For this purpose, at the first step, the analytical equations are derived for the spur gear pair. Then by dividing a 
helical tooth into the several independent thin spur tooth slices, the helical gear pair mesh stiffness is extracted. Finally, these equations 
are extended to the helical planetary gear system. The suggested analytical results and those which obtained by the finite element method 
(FEM) are compared and are in good agreement when the helix angle is less than 15 degrees. Also, the helical planetary gear system 
mesh stiffness in different cases such as fixed carrier, fixed sun gear and fixed ring gears is calculated. These results show that the value 
of mesh frequency ratio in each case scales the mesh stiffness shapes in the rotation angle direction. In other words, mesh frequency ratio 
parameter determines the number of meshing period in each rotation of planets.  
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1. Introduction 

Planetary gear systems are generally used in precise and 
sensitive applications in industries due to their compaction and 
high torque transmission ability at low weight [1]. Time-
dependent mesh stiffness in planetary gear system reveals the 
variation in the stiffness because of the change in the number 
of tooth pairs in contact and change in their contact positions. 

Finite element, experimental and analytical approaches 
were generally used to calculate the gears mesh stiffness by 
previous researchers. 

Wang and Howard estimated the spur gear set stiffness us-
ing the FEM [2]. Liang et al. [3] have proposed three new 
models in the FEM for the evaluation of standard involute 
spur gear mesh stiffness. They compared the results of their 
new proposed models with the existing models. Also, the 
FEM is used to model the systems and to evaluate the results 
obtained from analytical models in Refs. [4-8].  

The major difficulty of the FEM is taking much time. If the 
FEM is used to evaluate the series of gear pairs mesh stiffness, 
each condition has to be modeled and it is difficult to express 
the effect of changes in results due to changes in system pa-
rameters. Also, the FEM results are so dependent on mesh 

density and the kinds of elements. 
Pandya and Parey [9] and Raghuwanshi and Parey [10] in-

vestigated the spur gears mesh stiffness using photoelasticity 
technique. They used stress intensity factor and energy release 
rate on the stress contours in the gear bodies to obtain the 
gears’ mesh stiffness. 

Yang and Lin [11] offered potential energy method to com-
pute the mesh stiffness suitably and excellently. In this method, 
the relative contribution of different components, such as 
shear, bending and Hertzian contact stiffness, considered sepa-
rately [12]. 

Yang and Lin [13] estimated the external– external spur 
gear mesh stiffness by the potential energy method. They con-
sidered axial, bending and Hertzian energy corresponding to 
axial, bending and Hertzian contact stiffness respectively. 

Sainsot et al. [14] studied the gear body deflection and ob-
tained an equation to determine the gear body stiffness due to 
the force between gears that applied to the gear tooth. Most 
researchers use their equation to import the effect of gear body 
deflection on the gear pair mesh stiffness. 

Wan et al. [15] estimated the helical gear pair mesh stiffness 
by the method that they denominate to accumulated integral 
potential energy. They considered the helical tooth such as the 
series of independent spur teeth with the small width. They 
validate their results with finite element method. Marques et al. 
[16] have also proposed a different process to calculate the 
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load sharing and mesh stiffness of spur and helical gear pairs 
analytically. 

Liang et al. [17] studied the spur planetary gear system and 
obtained the external-external and internal-external spur gear 
pairs mesh stiffness using the potential energy method. 

On the other hand, dynamic models of some helical and 
double helical planetary systems have been studied by re-
searchers. Eritenel and Parker [18] studied the modal proper-
ties of a helical planetary gear system in the three-dimensional 
formulation. They used constant values for sun-planet and 
ring-planet translational and tilting mesh stiffness in their 
study. Khoozani et al. [19] have also used constant mesh stiff-
ness in their research. 

Prashant and Kahraman [20, 21] have studied the dynamic 
modeling of the double-helical planetary gear system. They 
used time-invariant dynamic model at first and then investi-
gated the influence of gyroscopic and time-varying mesh 
stiffness effects on it. They considered the time-varying mesh 
stiffness as constant values and cosine Fourier series form 
whose amplitudes and phase angles are obtained from static 
transmission error. 

Mbarek et al. [22] studied the effects of load and meshing 
stiffness variation on modal properties of spur planetary gear 
system. They used spur sun-planet and ring-planet time-
varying mesh stiffness in their model. 

By studying the available literature in this field, it is ob-
served that prior studies generally focused on the mesh stiff-
ness calculation of one stage spur and helical gear pairs and 
spur planetary gear systems and there is no research directed 
on the analytical calculation of the helical planetary gear sys-
tem mesh stiffness. Moreover, the studies on dynamic model-
ing of the helical planetary gear system focused on constant or 
approximate mesh stiffness values. 

In this research, at first, analytical calculation of spur gear 
mesh stiffness and mesh stiffness attainment of the helical 
gear from the spur gear is explained. Then, the meshing of 
external-external and internal-external gear pairs is described. 
The mesh stiffness of each pair in the helical planetary gear 
system is obtained using the relations between the mesh stiff-
ness of each pair in the planetary gear system. The results of 
the proposed method are validated by the FEM results. Then, 
the results of single stiffness and mesh stiffness of the helical 
sun-planet and ring-planet gear pairs are illustrated. Finally, 
the mesh stiffness of each pair in the helical planetary system 
in three cases, including fixed carrier, fixed ring gear, and 
fixed sun gear is demonstrated. 

 
2. Analytical calculation of mesh stiffness 

In this section, analytical calculation of helical planetary 
gear system mesh stiffness is described using a combination of 
helical and planetary exist theories of mesh stiffness calcula-
tion. 

According to the potential energy method [23] the spur gear 
tooth is considered as a beam and then axial, bending and 

shear stiffness of that beam can be calculated analytically. 
Also the gear body as that beam foundation has a stiffness 
known as fillet-foundation stiffness, then the spur gear mesh 
stiffness is analytically computed by considering nine parts; 
axial, bending, shear and fillet-foundation stiffness for each 
gear and Hertzian stiffness of their contact [15, 24]. A beam 
model of a single tooth is shown in Fig. 1. 

In the helical gears pair the contact zone started from zero 
length at the time that teeth come into contact and then gradu-
ally increase to a maximum and then decrease to zero at the 
end of their contact. This type of entering and leaving the con-
tact of the helical gears causes different vibration characteris-
tics with respect to the spur gears. Also, the calculation of the 
helical gears mesh stiffness isn't like that of the spur gears. 

Nevertheless, when the helical tooth as Fig. 2(a) is divided 
into several independent thin slices with thickness dL  as Fig. 
2(b), helical tooth can be considered as several consecutive 
spur teeth that came in contact one after one with a certain 
rotational distance that can be computed with respect to the 
tooth helix angle and the number of slices. Also, the slices are 
considered with no connections between them which are neg-
ligible for the gears with thin faces and low helix angles [25]. 

The helical gear stiffness can be obtained by summing stiff-
ness of all spur gear slices as Fig. 3. If the helical tooth slices 
are very few, the curve of the helical tooth stiffness against 
rotation angle isn't smooth. To solve this problem, the number 
of slices must be increased enough, Fig. 3(b). 

 
2.1 External- external gear pair meshing 

In the planetary gear set, sun-planet gear pair meshing is an 
example of external-external gear pair meshing which is 
shown in Fig. 4. In sun and planet gears the most important 
parameters such as root radius, dr , freedom radius, fr , and 

 
 
Fig. 1. A single tooth parameters. 

 

 
                     (a)               (b) 
 
Fig. 2. (a) Helical tooth; (b) sliced thin spur teeth. 
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addendum radius, ar , are calculated from Eqs. (1)-(3), respec-
tively. 

 
( )* *

d ar r h c m= - +  (1) 
*

f ar r h m= -  (2) 
*

a ar r h m= +  (3) 
 

where *, ar h  and *C  are the pitch radius, the addendum 
coefficient and the tip clearance coefficient, respectively. 

As shown in Fig. 1, the coordinates of any point on the in-
volute region are given by Eqs. (4) and (5) [26]: 

 
( ) ( ) ( ) ( )sin cosm b m b m mx ra a q a aé ù= + +ë û  (4) 

( ) ( ) ( ) ( )cos sinm b m b m mh ra a q a aé ù= + -ë û  (5) 

 
where br  is the base radius that is calculated in all kind of 
gears by ( )cosbr r a=  and a  is pressure angle of gear, ma  
is the variable angle of the contact force in each point with 
respect to the root circle of gear, and bq  is the half angle of a 
tooth measured on the base circle, which is calculated from Eq. 
(6): 

( )
2b inv

N
pq a= +  (6) 

 
where ( )inv a  is the involute function of the pressure angle, 
a  which is calculated by Eq. (7): 
 

( ) ( )tan .inv a a a= -  (7) 

 
For modeling of the sun and planet teeth, it is important to 

find the angles that show the start point and the end point of 
the tooth involute profile and meshing. As it is known, the 
involute curve starts from the gear base circle and ended at the 
addendum, but when the base radius is smaller than the root 
radius, the involute curve starts from the root circle and the 
angle that involute curve starts, 0a  satisfied Eq. (8). When 
the base radius is greater than the root radius, 0a  is equal to 
zero. 

 
( ) ( ) ( )0 0 0sin cos 0 .b b dr ra q a aé ù+ + - =ë û  (8) 

 
It is clear that the meshing path of each tooth is from the 

freedom circle to the addendum, and related angle that mesh-
ing is started, 1a , satisfied Eq. (9). But if the base radius is 
bigger than the freedom radius, meshing starts from the base 
circle and. 1a  is equal to zero.  

 
( ) ( ) ( )1 1 1sin cos 0 .b b fr ra q a aé ù+ + - =ë û  (9) 

 
Also, the angle that the meshing and the involute curve are 

ended, 2a  satisfied Eq. (10): 
 

( ) ( ) ( )2 2 2sin cos 0 .b b ar ra q a aé ù+ + - =ë û  (10) 

 
Numerical methods such as Bisection method can be used 

to obtain three angles 0a , 1a  and 2a . 
 

2.2 Internal-external gear pair meshing 

In Planetary gear system, the meshing of the ring and the 
planet gears is an example of external-internal gear pair mesh-
ing that is shown in Fig. 5. In the ring gear some important 
parameters such as the root radius, dr , the freedom radius, 

fr , and the addendum radius, ar , are calculated from Eqs. 
(11)-(13): 

 

( )* *
d ar r h c m= + +  (11) 

*
f ar r h m= +  (12) 

* .a ar r h m= -  (13) 

 
The coordinates of any point on the involute region of the 

ring gear are given by Eqs. (14) and (15): 

 
                (a)                        (b) 
 
Fig. 3. (a) Stiffness of thin spur gear teeth; (b) stiffness of helical gear 
tooth calculated by summation of thin spur gear teeth stiffness. 

 
 

 
 
Fig. 4. The meshing of sun- planet pairs. 
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( ) ( ) ( ) ( )sin cosm b m b m mx ra a q a aé ù= + +ë û  (14) 

( ) ( ) ( ) ( )cos sin 2 .m b m b m m ph r ha a q a aé ùé ù= + - -ë ûë û  (15) 

 
In which ma  is the variable angle of the contact force at 

each point with respect to the root circle of the tooth and ph  
is the half of tooth thickness on the pitch circle which is 
calculated from Eq. (16): 

 

( ) ( ) ( )cos sinp b p b p ph r a q a aé ù= + -ë û  (16) 

 
where pa  is the perpendicular line angle on the involute 
curve at the pitch point, which satisfies Eq. (17): 
 

( ) ( ) ( )sin cos 0 .b p b p pr ra q a aé ù+ + - =ë û  (17) 

 
To model the ring teeth, it is important to find the angles 

that show the start and the end point of the tooth involute pro-
file and the meshing of gears. As it is known the involute 
curve starts from the base circle and ended at the root of the 
tooth in the internal gears. While the teeth number of the ring 
gear is greater than 42, the involute curve starts from the root 
circle because of the smaller amount of the base radius. In this 
situation the angle that the involute curve and the meshing are 
started, 2a  is given by Eq. (18): 

 
( ) ( ) ( )2 2 2sin cos 0 .b b ar ra q a aé ù+ + - =ë û  (18) 

 
When the base radius is smaller than the freedom radius, the 

meshing length of the tooth starts from the freedom circle and 
continues to the addendum circle. In the end of contact angle, 

1a  can be calculated from Eq. (19): 
 

( ) ( ) ( )1 1 1sin cos 0 .b b fr ra q a aé ù+ + - =ë û  (19) 

 
Also, the end angle of the involute curve, 0a , is obtained 

by Eq. (20): 
 

( ) ( ) ( )0 0 0sin cos 0 .b b dr ra q a aé ù+ + - =ë û  (20) 

2.3 Planetary gear system mesh stiffness 

A planetary gear system contains a sun gear, a ring gear, a 
carrier that one of them has to be fixed and two others can 
connect to input and output shafts, and several planets gears 
that rotate between the sun and ring gear. There are three cases 
in the planetary system include fixed carrier, fixed sun gear, 
and fixed ring gear. When the carrier is fixed, all meshing 
between sun, ring, and planets in the system are considered as 
they actually are as gear pairs with immobile centers. Then the 
mesh stiffness of each pair, in this case, is equal to that of 
fixed center gears. Also in the planetary gear system, at the 
same time, there are in the number of planets, sun-planet and 
ring-planet pairs that are in meshing. The mesh stiffness of 
each planet with the sun or ring gear is the same, but with a 
phase difference [27]. 

There is no difference between the meshing regions of each 
pair of gears in the planetary gear system, whether the carrier 
is fixed or rotating. That means shapes and values of the mesh 
stiffness of each case are the same. The only thing that 
changed in each case is the mesh period. In fixed sun gear and 
fixed ring gear cases a parameter l  is defined as mesh fre-
quency ratio to scale the mesh stiffness by multiplying in 
planet gear rotation angle [17]. 

 
3. Results validation by FEM 

The power transmission of the gear systems is due to the ro-
tation and the meshing of the gear teeth. ABAQUS commer-
cial software is used for the finite element simulation of the 
helical planetary gear system to obtain the mesh stiffness. In 
quasi-static FE models, a torque will be applied to the planet 
gear to run the model. This torque makes the planet to rotate 
and makes contact with fixed gear (sun or ring). For modeling 
sun, planet and ring gear, 52600, 69000 and 63300 tetrahedral 
elements with the quadratic order are used respectively. From 
ABAQUS results, the angular displacement caused by this 
input torque is obtained. Eq. (21) is given the torsional stiff-
ness of the gear, TK , at a specific position [28]. 

 

i
T

TK
q

=  (21) 

 
where iT  is the applied torque to pinion and q  is the angu-
lar displacement of the pinion. 

Linear gear mesh stiffness, LK , expressed the coupling be-
tween torsional and transverse motions in the system. Linear 
mesh stiffness calculated from the torsional mesh stiffness 
with the relationship shown in Eq. (22).  

 

2 .T
L

p

KK
R

=  (22) 

 
In Eq. (22) pR  is the pitch radius of pinion. 
Now, in order to validate the analytical results, the linear 

mesh stiffness that obtained from FE simulation is compared 

 
 
Fig. 5. The meshing of ring- planet pairs. 

 
 



 M. Rezaei et al. / Journal of Mechanical Science and Technology 32 (8) (2018) 3537~3545 3541 
 

  

with analytical results. Gear system parameters that are used 
to model the system in FE software and the analytical method, 
are presented in Table 1. 

 
3.1 Results of external-external gear pair 

In this section, at first, a pair of external- external helical 
gear is modeled in ABAQUS software. Then by changing the 
position of the gears in different situation of mesh, the angular 
displacement of the pinion gear caused by input torque at the 
pitch point is extracted. Finally, according to Eqs. (21) and 
(22) the single stiffness of the helical gear pair is calculated at 
the desired position of the mesh. This process is started from 
the beginning of contact and continues to the end of the con-
tact of the gear pair. 

Comparison of two methods for sun-planet mesh stiffness is 
shown in Fig. 6. As it is shown in Fig. 6, the trend of the ana-
lytical and FE results are similar and in good agreement. The 
difference between the two methods is acceptable. These dif-
ferences are due to limitations that should be considered in the 
selection of the mesh size. Because, in the FE model with a 
very small size of the elements, the computational time is 
increased significantly.  

 
3.2 Results of external-internal gear pair 

Comparison of analytical and the FEM mesh stiffness re-

sults of the ring-planet pair that shown in Fig. 7 illustrated that 
the trend of analytical and the FEM results are similar and the 
results are on the same scale. Also, the difference between the 
two methods is in an acceptable range. As mentioned before, 
this difference is due to the limitation of the selection in the 
size of the element in the FEM method. In addition, the stiff-
ness of the outer body of the ring gear in the analytical method 
is ignored.  

 
4. Results and discussion 

The results of this research are presented in four subsections. 
Planetary system parameters which are used for calculation 
and obtain results are presented in Table 2. 

 
4.1 Single stiffness and mesh stiffness of helical sun-planet 

and ring-planet pair 

Single tooth stiffness of the helical sun-planet gear pair is 
shown in Fig. 8. In the helical gear pairs the contact length 
starts from zero at the beginning of contact and then gradually 
increases to a maximum value, remains constant for a while 
and then slowly decreases to zero. Therefore, the single tooth 
mesh stiffness in helical gears has started from zero at the 
point (A) and increases until the point (B). Has a constant 

Table 1. Helical planetary gear system parameters. 
 

Parameter Value 

Normal module (mm) 1 

Normal pressure angle (deg.) 20 

Helix angle (deg.) 15 

Teeth number of planet gears 16 

Teeth number of sun gear 16 

Teeth number of ring gear 48 

Shaft radius of planets (mm) 2 

Shaft radius of sun (mm) 2 

Face width (mm) 5 

Module of elasticity (GPa) 207 

Poison ratio 0.3 

 

 
 
Fig. 6. AM and FEM results of helical sun-planet mesh stiffness. 

 

Table 2. Parameters of helical planetary gear system. 
  

Parameter Value 

Normal module (mm) 2 

Normal pressure angle (deg.) 20 

Helix angle (deg.) 15 

Teeth number of planet gears 40 

Teeth number of sun gear 20 

Teeth number of ring gear 100 

Number of planet 3 

Shaft radius of planets (mm) 10 

Shaft radius of sun (mm) 5 

Face width (mm) 30 

Module of elasticity (GPa) 207 

Poison ratio 0.3 

Pinion rotation direction CCW 

 

 
 
Fig. 7. AM and FEM results of helical ring-planet mesh stiffness. 
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contact length between the points (B) and (C). Then the value 
of the single mesh stiffness decreases from the point (C) to the 
point (D) because of reduction in the contact length.  

Fig. 9 shows a mesh cycle of the helical sun-planet pair 
mesh stiffness. In this figure, the region from the point (B) to 
the point (C) represents two or more pair of teeth meshing, 
while the area from the point (D) to the point (E) represents a 
pair of teeth meshing. 

Single tooth stiffness of the helical ring-planet pair is shown 
in Fig. 10. Similar to the Fig. 8, in this state also contact of 
two helical teeth started from zero at the point (A) and contin-
ues to complete contact in whole tooth width at the point (B). 
Has a constant contact length between the points (B) and (C). 
Then their contact is started to decrease at the point (C) and 
ended at the point (D). 

A mesh cycle of helical ring-planet pair mesh stiffness is il-
lustrated in Fig. 11. Often more than a pair of teeth is in con-
tact in ring-planet gears meshing, because of the high contact 
ratio of this kind of gears pair. Therefore, the area from the 
point (C) to the point (D) represents the meshing of three or 
more pair of teeth, while the area from the point (A) to the 
point (B) represents the meshing of two pairs of teeth as can 
be seen in this figure. 

4.2 Helical sun-planet and ring-planet gear pair mesh stiff-
ness in the case of fixed carrier 

Figs. 12 and 13 show the helical sun- planet and ring- planet 
gear pairs mesh stiffness in the half rotation of the planet gear 
when the carrier is fixed, respectively. As it is shown in Table 
3, the planet gear has 40 teeth, then in half rotation of the 
planet gear, each of sun- planet and ring- planet gears pairs 
survive 20 mesh period. The point A′ in Figs. 12(a) and 13(a) 
corresponds to the initial meshing point of sun- planet and 
ring- planet gear pairs. The starting points for 2,3spk  in Figs. 
12(b) and (c) and 2,3rpk  in Figs. 13(b) and (c) are dissimilar 
due to the phase differences between the second and third 
pairs relative to the first pair. 

 
4.3 Helical sun-planet and ring-planet gear pair mesh stiff-

ness in the case of fixed ring gear 

Figs. 14 and 15 show the helical sun- planet and ring- planet 
gear pairs mesh stiffness in half rotation of the planet gear in 
the case of fixed ring gear, respectively. In the case of fixed 
ring gear, sun- planet and ring- planet gear pairs will survive 
20 rl´  (Approximately 16.6) mesh period in the half rotation 

 
 
Fig. 8. Single tooth stiffness of helical sun-planet gear pair. 

 
 

 
 
Fig. 9. A mesh cycle of helical sun-planet gear pair mesh stiffness. 

 

 
 
Fig. 10. Single tooth stiffness of helical ring-planet gear pair. 

 
 

 
 
Fig. 11. A mesh cycle of helical ring-planet gear pair mesh stiffness. 
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of the planet gear. Similar to the fixed carrier case, change in 
the starting point A′ for 2,3spk  and 2,3rpk  are due to phase 
differences between the second and the third pairs relative to 
the first pair. 

 
4.4 Helical sun-planet and ring-planet gear pair mesh stiff-

ness in the case of fixed sun gear 

Figs. 16 and 17 show the helical sun- planet and ring- planet 
gear pairs mesh stiffness in half rotation of planet gear in the 
case of fixed sun gear, respectively. As in this case the sun 
gear is fixed, in half rotation of planet gear, each gear pair will 
experience 20 sl´  (approximately 3.3) times tooth meshing. 
Similar to the fixed carrier and the fixed ring gear states, 
change in the starting point A′ for 2,3spk  and 2,3rpk  are due to 
the phase differences between the second and the third pairs 

relative to the first pair. 

 
5. Conclusion 

In this research, analytical formulas of the helical gear and 
the planetary gear system mesh stiffness are combined to cal-
culate the time-dependent mesh stiffness of the helical plane-
tary gear system. For this purpose, at first step, the analytical 
equations were derived for the spur gear pair. Then by divid-
ing the helical tooth into the several independent thin spur 
tooth slices, the helical gear pair mesh stiffness was extracted. 
Finally, these equations were extended to the helical planetary 
gear system. Results obtained from the analytical model for a 
sample of helical planetary gear system are compared with 
FEM results to validate the analytical method. Comparison of 
results shows that, when the helix angle is low, usually less 

 
 
Fig. 12. Helical sun- planet gears mesh stiffness - fixed carrier: (a) 
First pair; (b) second pair; (c) third pair. 

 

 
 
Fig. 13. Helical ring- planet gears mesh stiffness - fixed carrier: (a) 
First pair; (b) second pair; (c) third pair. 

 

 
 
Fig. 14. Helical sun- planet gears mesh stiffness - fixed ring gear: (a) 
First pair; (b) second pair; (c) third pair. 

 

 
 
Fig. 15. Helical ring- planet gears mesh stiffness - fixed ring gear: (a) 
First pair; (b) second pair; (c) third pair. 
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than 15 degrees, dividing helical teeth to the series of spur 
teeth and using the potential energy method to calculate mesh 
stiffness in external and internal gears such as those used in 
planetary gear systems produce fairly correct results. Also, the 
helical planetary gear system mesh stiffness in different cases 
such as fixed carrier, fixed sun gear and fixed ring gears is 
calculated. These results show that the value of mesh fre-
quency ratio in each case scales the mesh stiffness shapes in 
the rotation angle direction. In the other word, mesh frequency 
ratio parameter determines the number of meshing period in 
each rotation of planets. 

This method can be used to calculate the mesh stiffness of a 
helical planetary system directly in dynamic modeling and 
simulations, instead of using constant or approximate values, 
and also for modeling tooth crack or spall in helical planetary 
gear systems. 
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