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Abstract 
 
The assembly process for planar closed-loop mechanisms is full of complexity and uncertainty due to joint clearance, link coupling 

and probable redundant constraint. In order to ensure assembly precision, an algorithm of predicting accuracy for planar closed-loop 
mechanisms in view of joint clearance and redundant constraint is proposed. Firstly by analyzing the assembly process of a planar five-
bar closed-loop mechanism, three components of single-fixed, two-connected and redundant-inserted links are proposed to describe the 
assembly process of arbitrary planar closed-loop mechanisms which is regarded as successive stacking of those components. Then error 
models of those components are established based on the linear kinematics and principle of virtual work. Subsequently, an algorithm of 
precision prediction for planar closed-loop mechanisms is constructed by combining those error models. Finally the extendible support 
structure of the SAR antenna is used as the numerical example to verify the validity and generality of the proposed algorithm.   
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1. Introduction 

In high precision tasks, accuracy is always of the utmost 
importance. As for planar closed-loop mechanisms, manufac-
turing tolerance, constraint deviation and joint clearance inevi-
tably lead to position errors of the terminal vertexes of links 
during the assembly process, resulting in degeneration of the 
final accuracy of the mechanism [1]. Therefore from the per-
spective of improving the geometrical precision and imple-
menting accurate assembling adjustment, an effective method 
of predicting the assembly accuracy is especially critical for 
planar closed-loop mechanisms to guarantee the assembly 
quality and performance. 

However, planar closed-loop mechanisms possess such 
complex constraints and interactive couplings that accuracy 
modeling is more difficult than open-loop mechanisms. And 
inherent randomness of the joint clearance brings about as-
sembly precision has uncertainty [2-5]. In addition there are 
two kinds of planar closed-loop mechanisms which are deter-
minate and indeterminate, respectively. Indeterminate closed-
loop mechanisms may produce deformation if geometric error 
exists which leads to the coordinate problem between defor-
mation and geometric error [6]. Hence there are three signifi-

cant questions to necessarily answer before conducting accu-
racy prediction for planar closed-loop mechanisms: (1) How 
to reveal the impact of the complicated coupling among loops 
on the assembly accuracy; (2) how to analyze the error uncer-
tainty caused by the joint clearance; (3) how to deal with the 
deformation-error coordinating problem resulted from the 
geometric errors in the indeterminate closed-loop mechanisms. 

Many researchers have been devoted to investigating the ef-
fect of manufacturing tolerance and joint clearance on the 
accuracy of closed-loop mechanisms. Tsai et al. [7] explained 
why the accuracy of multi-loop linkages is difficult to analyze 
and they used screw theory to solve the problem. Similarly, 
Kumaraswamy et al. [8] successfully applied the screw theory 
to the position error analysis of planar mechanism with con-
sidering the joint clearance and link length imperfection. Li et 
al. [9] studied the angular errors of a multi-loop structure sys-
tematically, establishing the explicit solutions of the angular 
errors with joint clearance and simplifying the extreme error 
to be an optimization problems based on the invariant rota-
tability of single-loop linkages. Chebbi et al. [10] developed 
an analytical predictive model of the pose error for a 3-UPU 
parallel robot due to joint clearance based on the kinetostatic 
analysis, and this method can obtain a deterministic result as 
long as the external force is known. Briot et al. [11] presented 
the local maximum orientation and position errors of a 3-DOF 
planar parallel robots considering the input bias according to 
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the interval analysis method. Chen [12] proposed a general 
method of accuracy analysis for planar parallel mechanisms 
subjected to errors from the input uncertainties and joints 
clearance. Besides, plenty of researchers also have studied the 
kinematic accuracy affected by the joint clearance [13-15] and 
link imperfection [16, 17]. And a lot of methods are used to 
deal with the precision problems by the interval approach [18], 
the matrix method [19], Lie group and Lie algebra method 
[20], the direct linearization method [21], the level set method 
[22] and the method based on the generalized kinematic map-
ping of constrained plane motions [23]. But in contrast fewer 
literatures [24, 25] involve in the accuracy analysis for closed-
loop mechanisms with considering redundant constraints.  

It can be seen from above literatures that the previous re-
searches with respect to the accuracy analysis of closed-loop 
mechanisms focus mostly on the influence of manufacturing 
errors, joint clearance or input uncertainty on the pose devia-
tion of the end-manipulator or the platform, which still be-
longs to the field of kinematic accuracy rather than assembly 
precision. And the common deficiency of methods reviewed 
above is that they wholly didn’t take account of the manufac-
turing deviation, joint clearance and redundant constraints 
simultaneously and meanwhile neglect the indeterminate 
mechanisms. Many researchers didn’t perform a deep analysis 
on the deformation-error coordinating problem derived from 
the redundant constraints so that most methods were only 
applied to the statically determinate mechanism. As a result 
many methods of accuracy analysis mentioned above lack 
generality and are only available for specific mechanisms. 
Most importantly, few researchers systematically and clearly 
answered those three key questions about assembly precision 
prediction for planar closed-loop mechanism. 

Therefore, this paper proposes a method of assembly preci-
sion prediction for planar closed-loop mechanisms in view of 

the joint clearance and redundant constraints. Compared with 
the conventional methods, this method not only takes the joint 
clearance and redundant constraint into consideration simulta-
neously but also solves the complex problem of deformation 
compatibility, which is usually neglected for simplicity in past, 
by a comparatively simple and intuitive way based on the 
kinetostatic analysis. And importantly, this method is appro-
priate for the error modeling of arbitrary planar closed-loop 
mechanisms regardless of whether the mechanism is indeter-
minate rather than being only applied to a given closed-loop 
mechanism. 

The contents of this paper are arranged as follows. In Sec. 2, 
three assembly components are introduced and accordingly 
their error models are established according to the linear 
kinematics and principle of virtual work. In Sec. 3, the algo-
rithm of precision prediction for arbitrary planar closed-loop 
mechanisms is constructed by combining those three error 
models. In Sec. 4, the proposed method and algorithm are 
verified by a numerical example of the extendible support 
structure (ESS) of the SAR antenna which is a three-loop ten-
bar mechanism. Finally conclusions and future works are pre-
sented in Sec. 5. 

 
2. Error modeling  

2.1 Description of assembly process  

Assembling planar closed-loop mechanisms is a process of 
jointing the links, substantially “generating new vertexes”. Fig. 
1 illustrates the assembly process of a simply but typical sin-
gle-loop five-bar mechanism whose DOF is 2, needing two 
constraints to keep statically determinate. It can be seen from 
Figs. 1(a)-(c) that the assembly process mainly contains two 
operations after the reference bar AB is ensured: 1) Create a 
new vertex by fixing a single bar; 2) generate a new vertex by 

 
 
Fig. 1. Assembly process of the planar single-loop five-bar mechanism: (a) Two constraints near the base AB; (b) two constraints away from the 
base AB; (c) one constraint near the base while the other away from the base; (d) inserting a redundant bar KM.  
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connecting two bars. Those two operations is just subjected to 
the determinate mechanism. Those two operation are available 
for all planar closed-loop mechanisms. Besides, the determi-
nate configuration will become indeterminate if adding more 
constraints or redundant bars to the mechanism as shown in 
Fig. 1(d). Therefore the conclusion can be drawn that assem-
bly process of arbitrary planar closed-loop mechanisms is 
realized by fixing single bar, connecting two bars and insert-
ing redundant bar. As a result, the error models of those three 
assembly operations must be obtained before establishing the 
assembly prediction algorithm. 

 
2.2 Single-link fixed component 

2.2.1 Without assembly deviation 
Fig. 2 presents the model of single-link fixed component 

without considering the assembly deviation. In order to obtain 
the pose errors of bar BC, the first work is to compute the 
position error of points B and C. It is readily known that the 
position error of B results from the base A and the joint clear-
ance between A and B. Therefore the position error of point B 
can be given by 

 
T T T
B A AB= +δ δ Γ   (1) 

 
where Bδ  and Aδ  are respectively the position error of B 
and A, ABΓ  represents the joint clearance vector [7] and  

 
B
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where the module of ABΓ  is not more than the value of the 
joint clearance. In addition the position misalignment of C is 
derived from B and the manufacturing error of BC, formulated 
as 

 
T T T
C B BCl j= + Dδ δ Φ   (3) 

 
where BClD  is the length error of BC, [cos ,sin ]j j j=Φ  
and j  is the nominal assembly angle. Substituting Eq. (1) 
into Eq. (3) gets 

.T T T T
C A AB BCl j= + + Dδ δ Γ Φ   (4) 

 
2.2.2 With assembly deviation 

Fixing a bar can be divided into two steps when considering 
the assembly error as depicted in Fig. 3: Firstly assembly BC 
at the ideal constrained angle j  to create point C; then rotate 
BC by J  (J  is the assembly angle error and very small) to 
produce the final point C1. Note that the position error of C1 
rather than B is affected by the assembly deviation which is 
expressed as 
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  (5) 

 
where the first term of /2J j+Φ , sin( / 2 )J j± + , is positive 
when J > 0 and otherwise is negative. 

 
2.3 Two-link connected component 

As shown in Fig. 4, A1 and B1 are the bases of AC and BD. 
Suppose C and D are ideally coincident after connecting AC 
and BD by initially neglecting the joint clearance between C 
and D, and the coincident point is denoted as E. Firstly, ac-
cording to Eq. (1) the position error of A and B can be derived 
readily as 

 
 
Fig. 2. Single-link assembly component (without considering assembly 
deviation). 

 

 
 
Fig. 3. Single-link assembly component (considering assembly error). 

 

 
 
Fig. 4. Schematic sketch for calculating /E Ax x¶ ¶  and /E Ay x¶ ¶  in 
two-link assembly component. 
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δ δ Γ

  (6) 

 
Then the position deviation of E comes from the base im-

perfection of A and B and link length errors of AC and BD in 
terms of Fig. 4, interpreted by 

 
1 2 3

T T T T
E l A B= + +δ λ Δ λ δ λ δ   (7) 

 
where [ , ]l AC BDl l= D DΔ  and 1λ , 2λ , 3λ  are the Jacobian 
matrixes defined as 
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Therefore 1λ , 2λ , 3λ  should be evaluated before solving 

Eq. (7). As presented in Fig. 4, point E will rotate around point 
B by a radius of BD if Ax  produces a perturbation Ax¶  
while the rest variables keep invariant. Under this circum-
stances, treat the perturbation Ax¶  as a velocity variable and 
then we have 
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where a , b  and g  are interior angles of the triangle 
formed by the two bars and the base structure, detailedly dis-
played in Fig. 4, and e  is originally the actual angle between 
the positive direction of axis x and the connecting line of A 
and B but for simplicity, here e  is the included angle of 
positive direction of axis x and the base structure of A1 and B1. 
Consequently, /E Ax x¶ ¶  and /E Ay x¶ ¶  are 
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By making use of the similar mechanisms like Fig. 4, the 
other independent variables with respect to the position error 
of E can be figured out as well. Accordingly Jacobian ma-
trixes 1λ , 2λ , 3λ  are identified as 
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Then the introduction of 1λ , 2λ  and 3λ  into Eq. (7) can 

yield the position error of the concurrent point E.  
Nevertheless in fact, C and D maybe not hold together with 

great probability due to the existence of joint clearance and 
they will deviate from the concurrent E as shown in Fig. 5. 
Hence uniting Eqs. (1) and (7), the actual position errors of C 
and D are given by   

 
T T T
C E CE
T T T
D E DE

ì = +ï
í
= +ïî

δ δ Γ
δ δ Γ

  (16) 

 
where CEΓ  and DEΓ  are the offset vectors of C and D rela-
tive to E. Because of the mating constraint between the shaft 
and bearing, CEΓ  and DEΓ  must satisfy 
 

CE DE cr- £Γ Γ   (17) 

 
where cr  is the magnitude of joint clearance and g  repre-
sents the vector norm. 

 
2.4 Redundant-link inserted component 

In general, two cases exist in assembling redundant link. On 
the one hand, the length of redundant link equals the distance 

 
       (a) Ideal statement         (b) Actual statement  
 
Fig. 5. Actual position of endpoints when connecting two bars. 
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between two bases and the mechanism keeps stable without 
deformation; on the other hand, the redundant link has devia-
tion comparing with the two connected bases, unfortunately 
resulting in deformation inside the bars after inserting it. In 
this paper the latter case illustrated in Fig. 6 is taken into ac-
count and discussed sequentially.  

Before solving the problem of inserting redundant bar, the 
following assumption is given: All bars except the redundant 
one don’t generate deformation when installing it, namely 
implying the base structure is thought of as a rigid body. 
Firstly, because the offset between the length of the inserted 
bar and fixed bases is so small that deformation of the redun-
dant bar can’t produce great force on the base structure; on the 
other hand, the stiffness of the base structure is much bigger in 
contrast with the redundant bar, indicating the base structure 
exerted by small force from the redundant bar hardly appear 
deformation. Therefore the above hypothesis can be truly ac-
cessible for practical engineering. 

In term of the hypothesis, inserting redundant bar with de-
viation rlD  can be identified with implementing forces 2Df  
and 2-Df  on the base structure as shown in Fig. 7. The mag-
nitude of 2Df  is 

 
*

2 rk lD = Df   (18) 

 
which can be rewritten by a vector form for sequent discus-
sion as 

 
2 2 2[ , ] .T

x yf fD = D Df   (19) 
 

It should be noted that rl
*D  doesn’t equal rlD  since the 

position of the base points will change under the force. 
Equally important, the imposing orders of 2Df  and 2-Df  
distinguishes in assembly process. As the one end of the re-
dundant link is jointed to the one fixed base, the force 2Df  is 
exerted on this base point. And then jcf  and j-cf , the con-
tact forces of the shaft and bearing of the joint as shown in Fig. 
8, appear under the action of 2Df  and accordingly the 

mechanism maintains static equilibrium by those forces. Sub-
sequently 2-Df  acts on the other base point and the whole 
base structure still keeps original equilibrium configuration. In 
terms of the above analysis, determining the position errors of 
the endpoints of links when inserting the redundant bar is in 
essence to obtain the displacement bias under the external 
force 2Df  (if 2-Df  is applied first, here the external force is 

2-Df ).  
The actual joint generally has clearance but here let the joint 

be clearance-free. According to the static equilibrium, the 
contact force in the jth joint is 

 
2=j jDcf s f   (20) 

 
where 2= Df f  and js  is a 2×2 matrix whose elements only 
depend on the mechanism configuration and 2Df . Next based 
on the Principle of Virtual work the mechanism of restoring 
equilibrium satisfies the following equation 

 
0.d =åf rg   (21) 

 
Accordingly applying the principle to the base structure free 

of joint clearance in Fig. 7 can obtain 
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+ -
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where jxcf  and jycf  are the contact forces of the jth joint, 

ajxcpd , ajxcpd , bjxcpd  and bjxcpd  are the virtual displace-
ments of the two contact points a and b as presented in Fig. 8 
along the directions of axis x and y, respectively. Rewrite Eq. 
(22) by the vector format as 

 
2( ) 0 .j aj j bj fd d d- + D =cf cp cf cp f r   (23) 

 
It’s readily known from Fig. 8 that 

 
 
Fig. 6. Actual sketch of inserting a redundant bar. 

 
 

 
Fig. 7. Equivalent sketch of inserting a redundant bar. 
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.j aj bjd d d= -cp cp cp   (24) 

 
Then substituting Eqs. (20) and (24) into Eq. (23) gets 
 

2 2 0 .j jd dD + D =f Γ s f cpg g   (25) 

 
Simplify the above equation as 
 

j jd d= -Γ s cpg   (26) 

 
where 

 

.j
j j

j

cpd d=
cf
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cf

  (27) 

 
It is seen from Eq. (27) that the influence of joint clearance 

on the position error of the acting point is not relevant with the 
magnitude of the force. Given the base structure owns more 
than one joint, the position error of the acting point 
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where n is the joint number. Substitute Eq. (27) into Eq. (28) 
and we obtain 
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Generally speaking, the joint clearance can be treated as in-

finitesimal because it is much smaller relative to the nominal 
length of bars, consequently 
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j j cj
j

rd = D =
cf

cp cp
cf

  (30) 

 
where cjr  is the value of the jth joint clearance. Then the 
introduction of Eq. (30) into Eq. (29) leads to the equation 
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In the meantime considering the two forces respectively ap-

plied on the shaft and bearing are reaction, the virtual dis-
placements of their centers equal but possess opposite direc-
tions, which signifies 

 
.aj bjd d= -cp cp   (32) 

 
Uniting Eqs. (24), (30) and (32) generates 

1 1 .
2 2

j
aj bj ab cj

j

rD = -D = D =
cf

cp cp cp
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  (33) 

 
Accordingly the position errors of the endpoints, i.e. the 

 
 
Fig. 8. Sketch of virtual displacement of the jth joint clearance as the 
mechanism applied by 2Df . 
 

 
 
Fig. 9. Open-chain generalized link. 

 

 
 
Fig. 10. Algorithm of assembly precision prediction for planar closed-
loop mechanisms. 
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centers of the shaft and bearing, can be calculated by Eqs. (33) 
and (31) when assembling a redundant link. Then the actual 
assembly errors of links are able to be obtained by superposi-
tion with the original error of the base structure before insert-
ing the redundant bar. But it should be noted that the men-
tioned ‘original error’ above should be evaluated without tak-

ing account of the joint clearance. 

 
2.5 Generalized link 

Three abovementioned assembly components all involve in 
‘single link’. This ‘single link’ is defined as a generalized link 
which represents not only the actual single bar but also multi-
bar subassembly. Thus the generalized link probably pos-
sesses ‘length deviation’ due to the manufacturing imperfec-
tion, joint clearance and assembly error as well. 

Fig. 9 shows a simply generalized bar consisted of two bars. 
Without considering the joint clearance, the length of equiva-
lent link is 

 
2 2

0 1 2 1 22 cos( )el l l l l q q= + - - D   (34) 

 
where 1l  and 2l  is the actual length, qD  is the constraint 
error between two bars. 

The clearance vector can rotate by 360 degrees. Therefore 
translate the clearance vector to the end of equivalent link 
according to the parallelogram rule and as a result the actual 
length of the equivalent link with clearance is expressed as 

 
2 2
0 02 cose e c e cl l r l r V= + -   (35) 

 
where V  is the angle of clearance vector in the local frame 
and cr  is the joint clearance. Thus the minimum and maxi-
mum value respectively are  
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max .
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e e c
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By parity of reasoning, The minimum and maximum 

equivalent length of a n-bar open-chain generalized bar can be 
derived from Eq. (36) as 

 

min 1 2
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Table 1. Structure parameters of the ESS. 
 

Bars Nominal value (mm) Deviation (mm) 

AF 212 1.10 

DF 93 -0.75 

ED 218.71 0.94 

FI 210 -1.26 

DI 229.67 -0.86 

AB 125 0.94 

BD 214.4 1.03 

AE 14 -0.35 

 
Table 2. Errors of 90- and 180-degree locked joints.  
 

Antenna panels  Angle error (º) Local angle (º) 

AF (inner panel) -1.26 -210 

FI (outer panel) 0.95 60 

 

 
 
Fig. 11. The ESS of the planar SAR antenna (planar three-loop mecha-
nism with ten bars). 

 

 
 
Fig. 12. Assembly process of over-constrained ESS. 
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3. Algorithm of assembly precision prediction 

In Sec. 2, error models for three assembly components of 
planar closed-loop mechanisms have been established. At 
present, we are ready to use those three models within a whole 
algorithm so as to calculate the position errors generated dur-
ing the assembly process. This algorithm depicted in Fig. 10 
are divided into four steps: 

Step 1: Determine the base bar to be the reference of the 
whole mechanism in assembly process; 

Step 2: Judge the operation type of this assembly sequence 
and then conduct the proper calculations of the position error 
in term of those three models; 

Step 3: Implement the next-sequence assembling operation 
and continue to repeat the step 2; 

Step 4: Recycle the steps 2 and 3 until the mechanism is as-
sembly completely and all the position errors of the points are 
obtained. 

 
4. Results and discussion 

The ESS of the SAR antenna (a planar three-loop mecha-
nism with ten bars), whose structure is presented in Fig. 11, 
will be the numerical example to demonstrate the utility of the 
above algorithm. In general the ESS is a structure with redun-
dant constraint in actual assembly process. However for low-
ering the analysis difficulty, the over-constraint ESS was ever-
simplified to a statically determinate structure [9]. Now with-
out loss of generality, those two cases both are to be analyzed 
in this paper. 

 
4.1 Over-constraint ESS 

In Fig. 11, joints C, G and H are all 180-degree locked 

joints which will guarantee the angle between the two bars 
connected by them being 180 degrees after locked completely 
and accordingly there are three generalized links BD, DI and 
DF. Meanwhile joint A is a 90-degree locked joint which at-
taches the antenna panel AF to the load cabin and two antenna 
panels are associated with the 180-degree locked joint F. The 
whole ESS is over-constraint because the constraints are more 
than the DOFs ( the ESS has 5 constraints and 3 DOFs ). The 
concrete structure parameters are presented in Table 1. It 
should be noted that for simplicity the equivalent lengths and 
deviations of three generalized bars, which can be evaluated 
by the Sec. 2.5, are directly given in Table 1. And Table 2 
gives the locked angle errors (assembly errors) and the rota-
tion angles of clearance vectors of joints A and F in local 
framework (note that the rotation angle in local framework is a 
constant after the joint is locked). Besides all the joint clear-
ances are 0.5 mm. 

In the shop floor, the load cabin AB is the reference base 
and the practical assembly sequences of over-constraint ESS 
are shown in Fig. 12.  

 
Sequence 1: Assembly the single bar A1F (the inner panel) 

attached to the load cabin by a 90-degree locked joint; 
Sequence 2: Connect the generalized bar B1D (generated by 

B1C and C1D) and the single bar E1D1; 
Sequence 3: Insert the redundant generalized bar F1D2 

(formed by F1G1 and GD2); 
Sequence 4: Fix single bar F2I (the outer panel)； 
Sequence 5: Install the redundant generalized bar I1D3 

(formed by I1H1 and H1D3). 
According to the precision prediction algorithm presented 

in Fig. 10, the assembling position errors of the endpoints of 
all links in every aforesaid assembly sequences can be readily 
evaluated. Note that there is a two-bar connected operation in 
Sequence 2 and based on the Sec. 2.3, the Jacobian matrixes 
are 

 

1

1.739 1.781
0.471 0.269

-é ù
= ê ú
ë û

λ   (38) 

2

0.260 1.720
0.07 0.465
é ù
= ê ú-ë û

λ   (39) 

3

0.465 1.720
.

0.07 0.259
-é ù

= ê ú-ë û
λ   (40) 

 
 

 
 
Fig. 14. Assembly process of statically determinate ESS. 

 

 
 
Fig. 13. Equivalent diagram of inserting generalized bars F1D2 and I1D3. 
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In Sequences 3 and 5, two redundant generalized bars are 
inserted and Fig. 13 gives the equivalent schematic diagram. 
According to Sec. 2.4, the contact-force matrixes of clearance-
free joints B, E and D applied by 1f  are  

 

1

1

1

1.611 0
0 0.243

1.611 0
0 0.757

0 0
.

0 1

B

E

D

ì -é ù
=ï ê ú
ë ûï

ï é ùï =í ê ú
ë ûï

ï é ùï = ê úï ë ûî

s

s

s

  (41) 

 
And at the same time the contact-force matrixes exerted by 

2f  are calculated as  
 

2

2

2

1.44 0
0 0.51

0.44 0
0 0.49

0.92 0
.

0 0.39

B

E

D

ì -é ù
=ï ê ú
ë ûï

ï é ùï =í ê ú
ë ûï

ï é ùï = ê úï ë ûî

s

s

s

  (42) 

 
Substitute those Jacobian matrixes, contact-force matrixes 

and the related parameters into the error models and accord-
ingly the precision can be predicted in assembly process so as 
to guide the workers to adjust the accuracy in assembly shop 
of the ESS. In addition the results of all position errors are 
presented in Table 3.  

 
4.2 Statically determinate ESS 

Different from the over-constrained ESS, the 90- and 180-
degree locked joints of A and F of the statically determine 
ESS as shown in Fig. 14 become free for the purpose of sim-
plicity. The assembly sequences for the statically determine 
ESS shown in Fig. 14 are elaborated as following:  

Sequence 1: Let the inner panel A1F be the base bar and 
connect the generalized bar D2F2 (formed by D2G and G1F2) 
and D2E, generating a closed-chain generalized bar A1D2; 

Sequence 2: Joint generalized links A1D2 and B1D (fixed by 
B1C and C1D); 

Sequence 3: Associate generalized bar D3I1 (locked by D3H 
and H1I1) and the outer panel F1I. 

It’s obviously seen that the assembly process of statically 
determine ESS differs from the over-constrained one and just 
involves in the equivalence of generalized links in Sec. 2.5 
and two-bar connecting in Sec. 2.3. Similarly the assembling 
errors can be calculated according to the precision prediction 
algorithm. And because how to evaluate the position errors 
has been demonstrated entirely in Sec. 4.1, the concrete error 
calculating for statically determine ESS will not be displayed 
once again in case of repetition.  

 
5. Conclusions 

Assembly precision prediction for planar closed-loop 
mechanisms in view of joint clearance and redundant con-
straints is investigated systematically in this paper. Firstly the 
assembly process of arbitrary planar closed-loop mechanisms 
is described by successive stack of three proposed assembly 
components, which are single-link fixed, two-link connected 
and redundant-link inserted components. Then the error mod-
els of those three components are established and chief of 
among them, the most difficult problem of assembling preci-
sion with redundant constraints is solved based on the princi-
ple of virtual work. Subsequently the prediction algorithm of 
the assembly precision is derived from the combination of the 
abovementioned error models and moreover calculating the 
position errors of each assembling sequence is realized for 
planar closed-loop mechanisms by this algorithm. Finally the 
prediction algorithm is verified by evaluating the assembly 
error of the ESS of the SAR antenna. 

Compared with the previous methods of accuracy analysis, 
the advantages of the algorithm proposed in this paper is not 
only considering all factors influencing the precision including 
manufacturing deviation, joint clearance and redundant con-
straints but also available to all planar closed-loop mecha-
nisms. Furthermore the modeling procedures and relevant 
methods can be expanded to accuracy analysis of spatial 
closed-loop mechanisms. Therefore our subsequent research 
will focus more on exploring the algorithm of precision pre-
diction for spatial closed-loop mechanisms.  

But meanwhile it should be noted that the assumption in 
Sec. 2.4 for solving the problem of inserting a redundant link 
is adequately true only when the components in the mecha-
nism possess good stiffness, indicating the obtained results of 
position errors based on the above assumption will become 
inaccurate if stiffness of the links is too small. Hence, for ut-
most exactitude and covering all closed-loop mechanisms 
with different flexibility, our follow-up work will also concen-
trate on the error-deformation coordination problem in view of 

Table 3. Assembly position errors of over-constrained ESS. 
 

Endpoints  Position error (mm) 

A (0,0) 

A1 (0.433,0.250) 

B (0,1.100) 

B1 (-0.989,1.249) 

D (-0.658,1.930) 

D1 (-0.388,3.083) 

E (-0.631,0.456) 

E1 (-1.536,-0..033) 

F (-4.019,-0.173) 

F1 (-3.769,0.606) 

I (0.790,0.730) 
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deformation existing in all bars apart from extending the 
methods of this paper to the spatial mechanisms. 
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