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Abstract 
 
In the previous research, shaft torsional flexibility was only considered in the wind turbine drivetrain. However, if shaft is longer and 

thinner than other parts, two components which are connected by shaft affect each other by rotation about bending axis. It means that 
there are deflections of shaft about not only torsional direction but also bending direction. In this research, we introduced spherical joint 
which have 3 spring stiffness about all rotational axis to define shaft. And we analyzed that how shaft bending affect drivetrain rotation, 
translation motion and gear mesh contact force. To do these processes, we simulated the 3-dimensional wind turbine drive train model 
which has bearing stiffness, gear mesh stiffness, and shaft flexibility. The gear mesh stiffness was defined by Fourier series. And the 
equation of motion was acquired by Lagrange equation and kinematical constraints to represent shaft flexibility. About numerical analy-
sis, the Newmark method was used to get results. Lastly, fast Fourier transform which converts results from time domain to frequency 
was used.  
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1. Introduction 

In the energy crisis, many countries have been researched 
alternative energy. The republic of Korea is investigating off-
shore wind turbine installation and developing lots of efficient 
ways. The wind turbine is composed of blades, nacelle, hub, 
and tower. In the wind industry, developing more light and 
stable structure have considered significantly, especially 
blades. However, the most important characteristic is rotation. 
From rotation of rotor, the drive train delivers torque to pro-
duce electricity. From this fact, we can guess that the power 
production is directly connected to the characteristic of drive 
train. Lots of effect have been devoted to study the vibration 
mechanisms of the pitch, yaw and drivetrain systems [1-3]. 

In this research, we considered the 3-dimensional drive train 
which has gear mesh, bearing and shaft bending effect to see 
influences. In the previous research, the torsional model which 
has gear mesh [4] and more detailed 3-dimensional model 
which considered location and stiffness of bearing [5] were 

modeled. The common concept of two researches is analyzing 
the vibrational results from gear mesh. If there is external 
torque, gear contact will take place repeatedly. So, the main 
characteristic of rotation can be determined by contact force. 
The two researches showed contact force in time and fre-
quency domain. However, these just defined shaft as rigid 
component except rotational direction. It means that there is 
no coupled motion between two components which are con-
nected by shaft.  

Actually, the rotation can affect not only itself but also rela-
tive component because of the bearing. This phenomenon will 
be frequently happen if defects of gear teeth, eccentricities 
exist. As a result, degree of freedom about bending direction 
should be defined to express precious mathematical model [6]. 

To represent detailed shaft, we used the Timoshenko beam 
theory which can define torsional, translational, and bending 
deflection by stiffness in the beam including the tower, blade, 
and shaft. From this stiffness, we established the mathematical 
wind turbine model and compared the results to torsional drive 
train model to see how gear mesh, bearing, and shaft bending 
affect the whole system. *Corresponding author. Tel.: +86 411 8470 6652 
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2. Mathematical model  

2.1 Gear mesh 

In the drivetrain, each component rotates according relative 
angular velocity. This phenomenon is determined by the gear 
mesh. The gear mesh was modeled by spring stiffness. Gener-
ally, the spring has constant stiffness and offer reaction force 
by relative displacement of two contact point. However, it can 
be represented as periodic change in the gear. According ma-
chine components design, the gear mesh stiffness is deter-
mined by angle of attack and contact ratios. Through this fact, 
we defined the gear mesh stiffness using gear angular velocity 
and contact ratio [4, 7]. In this research, we used rotor’s angu-
lar velocity, 6 rpm, as reference. And we didn’t consider 
damping and clearance nonlinearity. According reference, 
velocities of other components are determined automatically. 
So, the average angular velocity in the planetary stage and 
parallel stages were defined by Eqs. (1)-(3). We defined these 
angular velocities as the gear mesh frequencies. The gear 
mesh frequency is represented in the frequency domain. It can 
give the evidence of gear failures, eccentric gears, gear-mesh 
wear, and improper backlash.  
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And using the Fourier series, we established the gear mesh 

stiffness. Eqs. (4) and (5) are gear mesh stiffness of planetary 
gear stage and Fig. 1 is plot of equations. 
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ksp and krp are reference values [5].  
The coefficients in Eqs. (4) and (5) are:   
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Without loss of generality, it can be accepted that mesh 

phasing γi is 0. We defined 4 gear mesh model which are fif-
teenth order Fourier series. The general processes of establish-
ing gear mesh are same in the planetary gear stage and parallel 
gear stage. But, different gear mesh frequencies and contact 

ratios values should be considered.  
 

2.2 Equation of motion using multi-body dynamics 

As shown in Fig. 2, the wind turbine drivetrain was defined 
into rotor, carrier, planetary stage, parallel stages, and genera-
tor [8-15]. Each component was considered as rigid body.  

There are three main shafts which exist between rotor and 
carrier, sun gear and gear 1, gear 3 and generator. The system 
properties including moment of inertia, mass and stiffness 
were used from previous research [4]. The equation of motion 
was represented by mass, stiffness, and damping matrix. Es-
pecially, mass, stiffness matrix is related to each moment of 
inertia, mass and relative displacement of two points which 
are connected by spring stiffness.  

In case of shaft, it was modeled as connection of two rigid 
bodies which have 5 degree freedom including bending, tor-
sional displacement. In other words, the spherical joint con-
cept was used to define shaft deflection including torsion, 
bend. The spherical joint permit 3 generalized coordinates 
including rotation about x, y, z axis. For example, the manipu-
lators, which are connected by links and spherical joints, con-
sequently deflect same motion as beam without extension in 
the robotics. In the drive train system, the extension about z-
axis of shaft can be negligible compared to rotational deflec-
tion. Using this concept, we defined shaft as 2 links which are 
connected by spherical joints in the center of links. Also we 
designated 3 springs about spherical generalized coordinates 
to express shaft torsional, bending deflection using the Ti-
moshenko beam theory [16, 17]. 

Eqs. (10) and (11) show the Timoshenko beam’s potential 
energy using elastic continuum and spring potential energy 
defined as beam model. In Eq. (11), δ is number of beam divi-
sion, and ky is spring stiffness. If we assumed that these poten-
tial energies are same, we can get the spring-beam model. 

 
 
Fig. 1. Gear mesh stiffness. 
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Using this theory and reference properties including torsional 
stiffness, we defined the bending stiffness of shafts. 
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In gear part, the gear mesh stiffness was established and 

composed in stiffness matrix. Not like shaft stiffness, the gear 
mesh stiffness is always changing according time. About gear 
force relations, two contact points meet and fall away by giv-
ing contact force. Through this contact force, gear will rotate. 
In dynamics, the potential energy of spring is expressed by 
relative displacement of two points and stiffness.  

To derive the equation of motion, Lagrange’s equation 
method was used [18, 19]. It is more efficient using La-
grange’s equation in the constrained system. In defining sys-
tem properties, gear mesh stiffness changes in every time. So 
we reflected these changes in stiffness matrix. About relative 
displacement, we showed examples of displacements related 
to rotation about z-axis in Eqs. (12)-(18). 

 
LSS rotor carrierf f f= -   (12) 

planet sun carrier carrier planet planet sun sunr r rd f f f- = - + +   (13) 
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Eqs. (13) and (14) are total kinetic, potential energy in the 
system. In Eq. (13), eccentricities in kinetic energy term was 
included by using radius, a1, b1, c1, d1, e1, f1, g1, h1. These ec-
centricities terms were from theory that center of mass can be 
expressed by distance from rotation axis, and cosine, sine 
according rotational displacement, if there is mismatch of 
center of mass and rotation axis. 

If center of mass is not equal body fixed frame, there is dis-
tance and can be handled as radius. But, in this research, all 
radius terms are zero to see effects of shaft bending clearly. 

In Eq. (20), all terms were multiplied by stiffness and rela-
tive displacements. As you can see, kLSSx, kLSSy, kLSSz are LSS 
bending, torsional stiffness. These variable expressions are 
same in IS, HSS. krp, ksp, kg12, kg34 are gear mesh stiffness. And 
kb is bearing stiffness. These variables are defined, expressed 
in Table 1. 
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Fig. 2. Mathematical model of wind turbine drive-train. 
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Using these kinetic, potential energy terms, we derived La-

grange’s equation and equation of motion. Eqs. (21)-(23) are 
the process of deriving equation of motion. Q vector is gener-
alized forces including gravity and external force. 
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2.3 Simulation 

Table 1 shows basic information about the drivetrain. Ex-
cept bending stiffness of shaft, all properties are referred from 
Ref. [5]. About bending stiffness of shaft, we derived spring 
stiffness by the Timoshenko beam theory which assumes that 
the potential energy and spring potential energy have same 
magnitude [16]. Its derivation was explained in Eqs. (10) and 
(11). 

About the environment, it was assumed that the aerody-
namic torque is Taero = 15000 N·m, and electromagnetic torque 
is -30 % of aerodynamic torque which corresponds 30 % wind 
turbine efficiency. The rotor was exited with the angular ve-
locity of 6 rpm. About numerical method, the Newmark inte-
gration method was used [20, 21]. 

3. Results and discussion  

3.1 Angular displacement comparison between torsional 
model and 3-dimensional model 

The biggest difference between torsional and 3-dimensional 
model is that rotation and translation motion are coupled. In 
torsional model, we just thought about each rotation occurred 
by shaft stiffness and gear mesh which is related only rotation 
coordinates. However, rotation and translation are totally cou-
pled by bearing, shaft in the 3-dimensional model. 

Table 1. Data for the drivetrain configuration presented in this work. 
 

Jrz – inertia of the rotor (kg·m2) 4.18·106 

Jcz – inertia of the carrier (kg·m2) 57.72 

Jpz – inertia of the planet (kg·m2) 1.12 

Jsz – inertia of the sun (kg·m2) 0.86 

Jg1z – inertia of the gear 1 (kg·m2) 14.32 

Jg2z – inertia of the gear 2 (kg·m2) 1.62 

Jg3z – inertia of the gear 3 (kg·m2) 0.20 

JGNz – inertia of the generator (kg·m2) 93.22 

kLSSx – bending stiffness about x-axis of the LSS 
(Nm/rad) 1.34·108 

kLSSy – bending stiffness about y-axis of the LSS 
(Nm/rad) 1.34·108 

kLSSz – torsional stiffness about z-axis of the LSS 
(Nm/rad) 7.19·107 

kISx – bending stiffness about x-axis stiffness of the IS 
(Nm/rad) 2.48·107 

kISy – bending stiffness about y-axis stiffness of the IS 
(Nm/rad) 2.48·107 

kISz – torsional stiffness about z-axis stiffness of the IS 
(Nm/rad) 1.40·107 

kHSSx – bending stiffness about x-axis of the HSS 
(Nm/rad) 2.83·106 

kHSSy – bending stiffness about y-axis of the HSS 
(Nm/rad) 2.83·106 

kHSSz – torsional stiffness about z-axis of the HSS 
(Nm/rad) 0.15·107 

krp, ksp – stiffness of the engaging tooth pairs in the low 
speed planetary gear stage (N/m) 0.73·108 

kg12 – stiffness of the engaging tooth pairs in the 1st 
high-speed parallel gear stage (N/m) 2.02·109 

kg34 – stiffness of the engaging tooth pairs in the 2nd 
high-speed parallel gear stage (N/m) 0.11·108 

rc – radius of carrier (mm) 270 

rp – radius of planet (mm) 160 

rs – radius of sun (mm) 110 

rg1 – radius of gear 1 (mm) 290 

rg2-1– radius of gear 2_1 (mm) 95 

rg2-2 – radius of gear 2_2 (mm) 185 

rg3 – radius of gear 3 (mm) 80 

α – pressure angle (°) 20 

Gear ratio 34.654 
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These coordinates always affect each other. So we expected 
coupled vibrations which come from other component.  

Through these facts, Fig. 3 shows the difference of rota-
tional displacement about z-axis between the torsional model 
and the 3-dimensional model. Actually, if we see displace-
ments closely, these are not curved line. It is always vibrating 
according reference line. In Fig. 3, there are periodic vibra-
tions with their mean value close to zero. The magnitudes of 
vibration are getting larger through drivetrain because of gear 
ratio. Through this result, we estimated that vibrations of each 
component have similar shape and period. To see more detail, 
we expanded results into gear mesh. 

 
3.2 Contact force comparison between torsional model and 

3-dimensional model 

Gear mesh is not only most important part in the mechanical 
system and but also one of risk part. If external force is bigger 
than acceptable force, gear teeth will be defected. In this chap-
ter, we compared gear mesh contact force by same method. Fig. 
4 represents gear mesh contact force plot in time domain.  

In the 3D model, the contact force period is shorter than tor-
sional model. This period means vibration about rotation di-
rection. In other words, there are differences of angular veloc-
ity ratios between gears, because of shaft stiffness and gear 
mesh stiffness. This difference occurs that two points, which 

gear mesh takes place, will not meet and go away regularly. If 
two points meet regularly, the periodic vibration will not ap-
pear and has same shape of gear mesh stiffness as Fig. 1. 

From these reasons, we got the regular contact force plots in 
the torsional model. Minimum value of contact force is 0. It 
perfectly shows that two points are not affected when two 
points sufficiently fall away. However, this phenomenon does 
not match in the 3D model. Because of coupled motion by 
bearing and shaft bend, the vibration is not regular and occa-
sionally has minus value of contact force. In theoretically, the 
contact force has constant direction, and two points meet and 
go away in gear relation. However, the existence of bearing 
and shaft bending causes disturbance which makes additional 
relation between gear teeth, when the gear tooth sufficiently 
fall away. This is the cause of minus contact force values. 

Before simulation, we expected that there is more vibration 
between gear 1 and gear 2, because it has the biggest gear 
mesh stiffness and gear radius ratio written in Table 2. How-
ever, irregular vibrations took place frequently in the planetary 
gear stage compared to parallel gear stages. 

Through this fact, we concluded that planetary gear takes 
more influences of shaft bending. In the drivetrain, Sun gear 

0 5 10
-5

0

5
x 10-5

Time(sec)

f 1
 (r

ad
)

Rotor

0 5 10
-2

0

2
x 10-4

Time(sec)

f 2
 (r

ad
)

Carrier

0 5 10
-5

0

5

10
x 10-4

Time(sec)

f 3
 (r

ad
)

Planet

0 5 10
-4

-2

0

2
x 10-3

Time(sec)

f 4
 (r

ad
)

Sun

0 5 10
-4

-2

0

2
x 10-3

Time(sec)

f 5
 (r

ad
)

Gear1

0 5 10
-5

0

5

10
x 10-3

Time(sec)

f 6
 (r

ad
)

Gear2

0 5 10
-0.04

-0.02

0

0.02

Time(sec)

f 7
 (r

ad
)

Gear3

0 5 10
-0.04

-0.02

0

0.02

Time(sec)

f 8
 (r

ad
)

Generator

 
Fig. 3. Angular displacement difference between torsional model and 
3D model. 
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Fig. 4. Gear mesh contact force comparison between torsion model and 
3D model. 
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and planet gears are connected by low speed shaft and Inter-
mediate shaft. Also the number of planet gear is 3, although 
parallel gear has two gears. This geometric fact represents that 
planetary gear stage has more risk and coincides with gear 
mesh contact force results.  

In Fig. 5, we transformed gear mesh contact force into fre-
quency domain. Gear mesh frequencies and harmonic terms 
can be founded and checked as dot in plot. 18.31 Hz in plane-
tary gear stages, 63.12 Hz in the gear 1-gear 2 and 128.6 Hz in 
the gear 2-gear 3 are dominant and each harmonic terms multi-
ply 2,3,4…,n are represented. These values are same to angular 
velocities which were defined in Eqs. (1)-(3). The basic fre-
quencies of 2.5 Hz for 3D model and 2.0 Hz for torsional 
model can be found from Fig. 5. These frequencies are related 
to the periodic gear mesh stiffness of the planetary gear system. 
The difference between 3D model and torsional model may be 
caused by the gear backlash due to the bending of the shaft. 

The reason that gear 2- gear 3 has higher gear mesh fre-
quency is high angular velocity compared others. Although 
gear contact of ring-planet and planet-sun have different stiff-

ness model, these show same gear mesh frequencies. 
In the 3D model, there are irregular peaks. This is another 

evidence of coupled motion. Through this fact, it is necessary 
to consider shaft flexibility. However, coupled relative motion 
can create additional vibration peak, but main characteristic of 
system doesn’t change. Fig. 6 shows gear mesh frequency and 
side band peak closely. As you can see, the location of gear 
mesh frequency is same and sidebands are changed. More 
clearly, sidebands distance is longer than torsional model. In 

 
 
Fig. 6. Comparison of gear mesh frequency and sideband frequencies. 
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Fig. 7. Comparison of sideband frequencies. 

 

Table 2. Gear radius ratios and average of gear mesh stiffness. 
 

 Planet-sun Gear1-gear2 Gear2-gear3 

Radius ratio 1.4545 3.0526 2.3125 

Average of  
gear mesh  
stiffness 

0.73·108 N/m 2.02·109 N/m 0.11·108 N/m 
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Fig. 5. Fourier transform of gear mesh contact force. 
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other words, the system has faster and longer rotating fre-
quency signals compared to torsional model. 

Through this fact, we can expect that if there is shaft bend-
ing effect or eccentricity problem, the gear mesh contact pe-
riod will be short and irregular small vibration will appear. 

To verify this fact, we compared our model to the Ref. [22]. 
In the reference, there are additional sideband peaks around 
gear mesh frequency in gear eccentricity, backlash, and bear-
ing problems. And the magnitudes of couples of side peak are 
different.  

Fig. 7 shows the planetary gear stage’s sideband frequencies 
around gear mesh frequency. As you can see, we found same 
patterns of additional sideband peaks around gear mesh fre-
quency as explained in reference. And the magnitudes of side-
bands also are different. From these results, we can conclude 
shaft bending causes improper backlash and eccentricity prob-
lems. 

 
4. Conclusions 

A 3-dimensional mathematical model of drivetrain includ-
ing shaft bending effect was proposed. Especially, it suggested 
bending deflection of shaft, eccentricity compared previous 
researches. Using this mathematical model, we simulated 
according assumptions and environments. Finally, we showed 
dynamics responses, compared to torsional model, reference 
model, explained effect of shaft bending, and concluded its 
physical meaning and phenomenon. 

By addition of degree of freedom about bending axis, the 
gear mesh contact force was affected. As a result, irregular 
vibration take place and gear teeth always take loads even 
though two gear tooth fall away. If shaft is bended in manu-
facturing, it will produce abnormal loads. Especially, plane-
tary gear stages are more sensitive compared parallel gear 
stages because of geometry.  

Planetary gear stage is composed of planet, sun, ring gears. 
In case by case, its number of gears and rotation angle can be 
defined by users. Planet gears can take lots of loads from input 
torque. It transfers torque to sun gear. The number of planet 
gear determines capacity of planetary gear stage. A lot of 
planet gears can divide high load. As a result, planetary gear 
stage’s capacity is higher. Vice versa, if there is un-parallel 
problem such as shaft bending, eccentricity, its effect will be 
higher. As referred in this work, in the drive train system, low 
speed shaft and intermediate shaft should be checked regularly. 
Also, eccentricity and products line misalignment problem 
should be considered.  

Although there are a lot of vibrations in gear mesh contact 
force, the location of gear mesh frequencies are not changed. 
In other words, external or relative component’s disturbances 
just affect sidebands location and magnitude. However gen-
eral gear mesh contact force has same shape and trend. There-
fore, using this mathematical model, we need to research how 
it will affect gear tooth in elastic and plastic deformation as-
pect. 
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Nomenclature------------------------------------------------------------------------ 

a1, b1, c1, d1, e1, f1, g1 : Radius of unbalanced mass 
g  : Gravity acceleration 
T  : Kinetic energy 
V  : Potential energy 
L  : Lagrange equation 
N  : Gear ratio 
Crp, Crs : Gear contact ratio 
γrp  : Planet Gear’s gear mesh angle 
q  : Generalized coordinate 
[J]  : Mass matrix 
[K]  : Stiffness matrix 
[C]  : Damping matrix 
[Q]  : Generalized force 
[Qg]  : Gravity 
[Qa]  : External force 
Φ  : Degree of freedom 
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