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Abstract 
 
A new optimality criterion algorithm is presented for producing modified shape designs for fluid flow inside channels. To compute the 

fluid motion in a channel, the lattice Boltzmann method (LBM) was used based on D2Q9 and D3Q15 lattice spaces associated with the 
Bhatnagar-Gross-Krook (BGK) collision term. An experiential optimality method to design channels with the lowest pressure drop along 
the passage is introduced. The positions of solid cells and fluid cells are exchanged based on the strain rate tensor at the solid-fluid inter-
face. To obtain the optimized shape, the cells are changed until the optimality condition is obtained with the restriction of constant fluid 
volume. Examples are presented to validate the algorithm, including an elbow tube as well as symmetrical and nonsymmetrical T-
junction channels. The validation exercises demonstrate that the algorithm is suitable for optimal channel design.  
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1. Introduction 

One of the most popular methods for optimizing a fluid 
flow through a duct or industrial applications is the conven-
tional trial-and error replacement approach, which has applica-
tions such as heat exchangers with channels, train heads, axial 
flow fan blades, and noise control. Some studies focus on 
shape optimization of the fluid flow [1-5], and there a great 
deal of effort is also devoted to developing numerical methods 
to solve flow optimization problems. 

Borrvall et al. did the first study on shape optimization [6]. 
They proposed an optimal design method for Stokes flow 
problems by distributing inhomogeneous porous materials 
with a spatially varying Darcy permeability tensor and an 
artificial inverse permeability, which is proportional to the 
elemental thickness of a two-dimensional channel. Evgafov 
developed Borrvall’s approach, which considered only porous 
materials, so that pure solid and fluid can appear in the opti-
mization domain at the final stage of the optimization progress. 
However, the method could not be used for a widespread 
range of flows, and it works for very slow fluid flow [7, 8].  

Gersborg-Hansen et al. investigated laminar incompressible 
fluid flow at low Reynolds number [9]. Moos et al. applied a 
new numerical approach to the topology optimization process 
instead of traditional methods such as evolution strategies or 
gradient-based methods [10]. Wang et al. introduced a heuris-

tic optimality criterion algorithm for shape optimization based 
on the lattice Boltzmann method (LBM) [11]. They replaced 
the cells of fluid with solid units based on the value of dy-
namic pressure, which can be obtained from the density and 
velocity of fluid. Their method exchanges solid cells based on 
the maximum value of the shear stress among the solid nodes 
along the fluid-solid interface. It is practical to use LBM for 
complex fluid domains and simulating fluids at a kinetic level 
through the discrete Boltzmann equation. LBM is a well-
known method with proven capability [11-13]. Two important 
characteristics are the kinetic nature and local dynamics of 
LBM, which make it more flexible in dealing with complex 
boundaries and parallelization of the algorithm.  

In the present study, LBM was used to simulate the fluid 
flow through a complex geometry for two and three dimen-
sions. A new algorithm is proposed for obtaining the opti-
mized shape faster, transforming fluid cells into solid cells, 
and replacing inverse solid-fluid nodes based on just one crite-
rion. In a previous study [11], two factors had to meet the 
optimization condition in order to convert the solid and fluid 
nodes. The first one is finding the node with the minimum 
dynamic pressure to change the fluid nodes to solid nodes, and 
the other one is obtaining the node with the maximum shear 
stress along the interface nodes in order to a change solid node 
to a fluid cell. However, in the present method, just one physi-
cal quantity is sufficient to replace the fluid and solid nodes. 
Therefore, an additional computational step at the macro-
scopic level is not required, and the computation time can be 
decreased. The new algorithm is also more straightforward.  
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2. Mathematical model 

2.1 Lattice Boltzmann method 

Bhatnagar-Gross-Krook (BGK) LBM is based on a fluid 
distribution function that is applied for the momentum equa-
tion. Macroscopic fluid profiles such as pressure and velocity 
are found by solving the momentum equation. BGK is some-
times called the single relaxation time (SRT) method because 
it requires only one relaxation time for each vector of the lat-
tice velocity. There are different patterns of LBM in the two-
dimensional lattice units, such as D2Q5, D2Q7 and D2Q9. In 
LBM, the physical space is discretized into Cartesian grids. 
Each node in the LBM domain is related to its neighbors over 
lattice velocities. The D2Q9 model was implemented for its 
high accuracy among them. The governing equation of the 
LBM model is given by: 
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where fi is the density distribution function for particle veloc-
ity c in the space direction x at time t in a microscopic quantity, 
while i denotes the microscopic velocities of the unit lattice 
velocity. Fi is the external force in direction i and is assumed 
to be zero. 

The collision term of the LBM equation (right-hand side of 
Eq. (1)) describes the collision of the particle distribution 
function, and a propagation term of the LBM (left-hand side 
of Eq. (1)) represents the movement of the density distribution 
function to the nearest neighbor lattice nodes after the colli-
sion term. The BGK model has a single relaxation time, and 
its discretized equilibrium distribution function for the D2Q9 
equation is [14]: 
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In Eq. (2), fieq is the equilibrium distribution function for the 

density associated with time t  and position x and f is a scalar 
parameter representing species density at each local node. A 
macroscopic variable of a fluid such as the velocity, density or 
pressure can be derived from the distribution functions as 
following: 
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The relaxation time is a local number that is a function of 

space and time over the pressure and viscosity. Using Chap-
man-Enskog expansion, we can find the diffusion coefficient 
D in lattice units from the incompressible Navier-Stokes equa-
tions associated with the single dimensionless relaxation time 
τ for each component [15]: 
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Let the lattice velocity be c = Δx / Δt which is assumed to be 

one because Δx = Δt. Therefore, for an incompressible New-
tonian fluid, the weight coefficient ωi must satisfy the follow-
ing conditions: 
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In the propagation step of the LBM after the collision term, 

the analytical solution of the streaming term is: 
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where fi+(x,t) is the post-collision distribution function at x and 
t. In D2Q9, there are nine microscopic velocities that are com-
monly used for solving the fluid flow. The speed vector and 
the weight factors for both lattice arrangements are: 
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The D3Q15 scheme of LBM is used because it is accurate 

enough to simulate the geometry. Furthermore, it has enough 
degrees of freedom to recover Navier-Stokes equation, al-
though other schemes like D3Q19 and D3Q27 have higher 
accuracy compared with D3Q15. There are several reasons for 
applying D3Q15, such as less computation time and memory 
capacity in comparison with other schemes. The governing 
equation is similar to the D2Q9 velocity vector arrangement. 
The speed vectors and the weighting factors are: 
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2.2 Strain rate tensor 

The main difference between the method by Wang et al. 
[11] and this study is the optimality criterion. Wang et al. [11] 
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employed two criteria: The shear stress and the dynamic pres-
sure at the solid and fluid interfaces. In contrast, the strain rate 
tensor is the only one criterion in the present study. This 
physical measure defines the amount of change of the defor-
mation of a substance in the neighborhood of a certain node. 

The strain rate tensor is a kinematic property that defines 
the macroscopic change of the material. There is no depend-
ency between the strain rate tensor and the nature of the mate-
rial or between the forces and stresses that may be acting on it. 
In the LBM, the strain rate tensor can be obtained from the 
density distribution function for the macro quantities by math-
ematical analysis using Chapman-Enskog and Taylor expan-
sion as follows [16]: 
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Eq. (15) shows the importance of the distinction between 

equilibrium and density distribution functions. The key step in 
optimizing the shape of a channel is determining the strain 
tensor and finding the nodes having maximum and minimum 
values of the strain tensor along the fluid-solid interfaces. 

  
2.3 Simulation setup 

In this study, three geometries for 2D and one for 3D ge-
ometry are simulated. The initial shapes are presented in Fig. 1. 
The inlet area of 3D square duct has same height of 2D Elbow 
channel. The detail simulation parameters are presented in 
Table 1. The kinematic viscosity in Table 1 has units lu2/ts. Lu 
is the lattice unit which is the length between two grids, and ts 
represents discretized time step. For pressure P, Zou-He con-
ditions are applied with density ρ = 1. 

Zou-He boundary conditions are employed for the pressure 
and velocity boundary conditions. It is known that Zou-He 
boundary conditions have second-order errors for 2D and 3D 
square duct flow [17]. Full-way bounce-back scheme is ap-
plied along the wall for no-slip condition. Bounce-back 
scheme is easy to implement and robust for the complex ge-
ometry which can be observed during the optimization process. 

 
2.4 Optimization process 

Fig. 2 shows the simple concept of exchanging fluid-solid 

cells. The fluid node with lowest strain rate tensor is changed 
into solid node, and the solid node near the fluid node with 
highest strain rate tensor becomes the fluid node. 

Fig. 3 shows a flowchart of the simulation procedure, and 
the detail simulation steps are as follows: 

(1) Solid and fluid nodes need to be defined in the simula-
tion domain, and the density and kinematic viscosity are the 
initial input data. The density and viscosity of the fluid are ρ = 
1 and ν = 0.04. 

(2) At a certain time step, the time derivatives of fluid prop-
erties such as the velocity and pressure become very small 
after applying the propagation step, the collision term, and the 
boundary conditions at the inlet, outlet, and walls. Therefore, 
the fluid simulation is paused when a fixed flow is obtained. 
This happens when the average speeds of the flow in two time 
steps in all the computational cells are smaller than 1×10-8: 
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where N is the total number of computational cells in the do-
main. 

(3) After finding the solid-fluid interfaces and applying Eq. 
(15), a number of cells with the lowest strain rate tensor are 
changed to solid, and the same number of solid cells with 
neighbor cells that have a higher strain rate tensor are changed 
to fluid, thus creating a new channel shape. To maintain the 
fluid and solid volumes in the simulation domain, the numbers 
of cells changing from fluid to solid and solid to fluid are 
equal. The accuracy of the algorithm is higher if a small 
amount of cells is replaced for each iteration. However, as the 
number of simulation steps increases, which increases the 

Table 1. Simulation setup. 
 

Channel Grids Re Viscosity 
[lu2/ts] 

Velocity 
[lu/ts] 

Elbow 100 x 100 20 0.04 0.04 

T-junction 200 x 200 20 0.04 0.02 

Non-sym. T-junction 200 x 200 20 0.04 0.02 

Square duct 200 x 200 x 200 100 0.04 0.1 

 
                (a)                           (b) 

 

              (c)                            (d) 
 
Fig. 1. Simulation geometries: (a) 2D elbow; (b) 2D symmetric T-
junction; (c) 2D nonsymmetrical T-junction; (d) 3D square duct. 
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computation time, a certain number of solid-fluid cell pairs are 
replaced in each simulation time step. The values of exchang-
ing cells should be small enough for the fluid flow to converge 
after generating a new shape. In this simulation, the proportion 
of exchanging cell pairs is between 2 % and 5 % of the total 
interface cells. 

(4) In this stage, a new channel shape with a new set of solid 
and fluid cells needs to be initialized. Therefore, the fluid prop-
erties and boundary conditions are adjusted again. To reach 
steady-state conditions Eq. (17) faster for the new shape, the 
previous properties of the fluid are input as initial data, and the 
velocity of a fluid cell that was changed from solid to fluid is 
zero. To simulate the stable fluid flow, the initial value of the 
velocity profile should be zero after exchanging cells.  

(5) After recalculation of the fluid flow, the stability toler-
ance of the proposed algorithm and pressure drop should be 
checked. If the tolerance of the heuristic procedure meets ex-
pectations, the results can be exported, and the optimized 
shape is plotted. If not, the calculation starts again from step 3. 
The procedure is stopped when a fixed pressure drop is ob-
tained. This happens when the average pressure across the 
system approaches the maximum tolerance 51 10 -´ : 

 
1 t n t t
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N
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where N is the total number of computational cells in the do-
main, and n is 10.  
 
3. Results and discussion 

One of most challenging topics related to fluid flow inside a 
channel or tube is finding a way to reduce the pressure or vis-
cous dissipation. The controlled distribution of a fluid into a 
tube is an important issue for various aspects of performance. 
Many industrial and engineering applications need an opti-
mized design that has less friction between the fluid and solid 
wall. We expected the pressure drop or flow resistance to de-
crease after applying the proposed algorithm. Three fluid flow 
shapes shown in Fig. 1 were tested to validate the algorithm. 

 
3.1 Validation 

To validate our algorithm before presenting results of chan-

nels we compared results between our algorithm and Wang et 
al. [11]. With the geometry shown in Fig. 4, the validation was 
performed. The numerical parameters are as following: Grid 
size is 200 x 200, inlet velocity is equal to 0.04 lu/ts, the vis-
cosity ν is equal to 0.04 lu2/ts, and its Reynolds number is 40. 
It is observed that our algorithm can obtain nearly same final 
shape with Wang et al.’s result as shown in Fig. 5. The pres-
sure drop improvement from Wang et al. [11] was 67 % and 
our result improved 66 %. The small difference comes from 
the different criteria being used for both studies. 

In order to investigate the effect of grid resolution for the 
optimization algorithm, the comparative tests are carried out. 

 
Fig. 2. Simple concept of the exchanging fluid-solid cell. Red square is 
the cell with the highest strain rate tensor, and blue one has the lowest 
strain rate tensor. 

 

 
 
Fig. 3. Flow chart for the optimization process. 
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Three cases of lattice sizes (100 x 100, 200 x 200, 400 x 400) 
for the elbow geometry (Fig. 1(a)) are compared. Each case 
keeps the numerical parameters identical other than the lattice 
size. Fig. 6 shows that almost identical results are represented. 
It is surely considered that the grid resolution has less effect in 
the optimized shapes earned from the heuristic algorithm. 

To validate the code can predict correct flow behaviors such 
as Dean vortex in the curved duct, a 3D simulation has con-
ducted. Fig. 7 shows the vorticity in Z axis (the direction of 
flow) inside the optimized 3D duct. The flow is simulated for 
Re = 100 with 200 x 200 x 200. The Dean number is equal to 
55, which is in the range where the dean vortices are predicted, 

so is the result. 
 

3.2 Elbow channel 

The bend or curve in the channel causes viscous dissipation 
and energy loss when fluid is flowing in an elbow tube. We 
applied our optimization procedure to reduce the pressure 
drop and improve the design to reach the most uniform veloc-
ity along the channel. Fig. 1(a) shows the simulation domain. 
The height and width of the whole domain are divided into 
100 nodes. We selected an odd number of nodes for the inlet 
boundary conditions to imply a symmetrical parabolic veloc-
ity. Therefore, 21 nodes were chosen as the inlet boundary 
nodes, and the same length was used for the outlet boundary 
conditions. Using the viscosity ν and inlet length Li, the corre-
sponding velocity U0 can be obtained from the Reynolds 
number Re = LiU0 / ν. 

Fig. 8 illustrates the shape development and algorithm proc-
ess. The inner and outer edges of the bend gradually become 
smoother, and the distance between the inlet and outlet flows 
becomes smaller and smaller until it reaches the steady-state 
shape, where the characteristics of the fluid such as the flow 
velocity do not change as time passes. Fig. 9 shows that the 
singularity in velocity field decreases over time and is well 
maintained when the optimized shape appears. Also, the flow 
turns slowly rather than abruptly. 

Fig. 10 shows the pressure drop of the system with respect 
to time. The pressure drop is normalized. The pressure drop 
decreases up to 0.341 in the final stage. The results prove that 
the total pressure of the optimized shape is decreased by over 
66 % compared to the fist shape of the tube, and it tends to be  

 
 
Fig. 4. Simulation setup. Re = 40, grid = 200 x 200, inlet u0 = 
0.04 lu/ts. 

 

 
 
Fig. 5. Comparison with the result of Wang et al. [11]. 

 

 
Fig. 6. Optimized elbow shapes at Re = 40 with different grid sizes: (a) 
100 x 100; (b) 200 x 200; (c) 400 x 400. 

 

 
 
Fig. 7. Dean vortices in the curved duct at Dean number 55. 

 

       (a)            (b)            (c)            (d)  
 
Fig. 8. Images of shape development between the first and 150th itera-
tions: (a) 1st step; (b) 50th step; (c) 80th step; (d) 150th step. 
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stable after reaching a certain pressure drop. 
Fig. 11 represents the strain rate values during the shape de-

velopment. The strain rate is defined as the degree of deforma-
tion around the cells at the interface. Because of the fluid ele-
ment friction, any change in the deformation increases the 
interior tensor forces, which increase to oppose the deforma-
tion. The viscous tensor is linear with respect to the strain rate 
tensor. High viscous stress occurs in the interface cells where 
the rate of the strain tensor is high. As a result, in the initial 
shape of the development, a high rate of the strain tensor oc-
curs at the sharp point of the outer corner in the fluid domain. 
However, the rate of the strain tensor spreads gradually and 
turns slowly along the interface. 

 
3.3 Symmetrical and nonsymmetrical T-junction channel 

Fig. 1 shows the initial profile of symmetrical (Fig. 1(b)) 
and nonsymmetrical (Fig. 1(c)) T-junctions with merging 
channel flow, which are commonly used in industrial and 
research applications. A grid size of 200×200 was chosen for 
both cases. The inlet boundaries comprised 70 cells, and the 
length of the outlet was 0.25×Li+1, where Li is the total length 
of the simulation domain in the y direction. Both inlets on the 
right and left are equal and have the same absolute velocity 
profiles with opposite directions. Dirichlet boundary condi-
tions with constant pressure are applied for the outlet. There-
fore, the specified density ρ is set to one, and the velocity pro-
file is computed from this boundary. U0 is obtained in the 
same way from the Reynolds number. Fig. 12 shows the shape 
development of the symmetrical T-junction, and Fig. 13 
shows the nonsymmetrical T-junction. 

Fig. 14 illustrates the total pressure drop between the inlets 
and the outlet as a function of the iterations for the symmetri-
cal and nonsymmetrical T-junctions. The total pressure drop 
of the initial shape for the symmetrical T-junction is 1.0 and it 

 
Fig. 9. The development of the flow field between the first and 140th 
iterations: (a) 1st step; (b) 11th step; (c) 37th step; (d) 60th step; (e) 
100th step; (f) 140th step. 

 

 
 
Fig. 10. Pressure drop with respect to time for Re = 20 through the
elbow channel. 

 

 
Fig. 11. Development of strain rate tensor between the first and 150th 
iterations: (a) 1st step; (b) 11th step; (c) 37th step; (d) 60th step; (e) 
100th step; (f) 140th step.  

       (a)            (b)            (c)            (d)  
 
Fig. 12. Symmetrical T-junction shape development snapshots between 
the first and 380th iterations: (a) 1st step; (b) 40th step; (c) 190th step;
(d) 380th step. 

 

       (a)            (b)            (c)            (d)  
 
Fig. 13. Nonsymmetrical T-junction shape development snapshots 
between the first and 1920th iterations: (a) 1st step; (b) 100th step; (c) 
400th step; (d) 1920th step. 
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drops to 0.667 for the final shape. The improvement of total 
pressure drop is 34 % compare to the initial shape. The same 
behavior of pressure reduction occurs in the nonsymmetrical 
T-junction. The total pressure drop reduced up to 40 % for the 
nonsymmetrical T-junction channel. 

Figs. 15 and 16 show the corresponding flow fields for 
symmetrical and nonsymmetrical T-junctions as a function of 
the development time. In the figures, it is easy to see that the 
two right-angle corners gradually disappear with increasing 
iterations and become circular. Fluid cells with a low strain 
rate tensor in the position of joining fluids are replaced by the 
solid nodes. Therefore, the void volume between the junctions 
is used effectively, and dead zones become solid. After the 
pressure drop across the system converges to a certain point, 
the symmetrical and nonsymmetrical T-junction shapes 
change to a Y-shaped junction. 

Figs. 17 and 18 show the value of the strain rate tensor as a 
function of the development time for symmetrical and non-
symmetrical T-junctions at Re = 20. Low values of the strain 
rate tensor occur in the void volume area, and a high strain 

 
 
Fig. 14. Pressure drop with respect to time for Re = 20 through the 
symmetrical T-junction channel and the nonsymmetrical T-junction 
channel. 

 

 
Fig. 15. Development of flow field in the symmetrical T-junction 
shape between the first and 300th iterations: (a) 1st step; (b) 20th step;
(c) 40th step; (d) 100th step; (e) 160th step; (f) 300th step. 

 

 
Fig. 16. Development of flow field in the nonsymmetrical T-junction 
shape between the first and 300th iterations: (a) 1st step; (b) 30th step;
(c) 100th step; (d) 300th step; (e) 600th step; (f) 1000th step. 

 

 
Fig. 17. Development of strain rate tensor in the symmetrical T-
junction shape between the first and 300th iterations: (a) 1st step; (b) 
20th step; (c) 40th step; (d) 100th step; (e) 160th step; (f) 300th step. 

 

 
Fig. 18. The development of strain rate tensor in the nonsymmetrical T-
junction shape between the first and 1000th iterations: (a) 1st step; (b) 
30th step; (c) 100th step; (d) 300th step; (e) 600th step; (f) 1000th step. 



2626 J. Park et al. / Journal of Mechanical Science and Technology 32 (6) (2018) 2619~2627 
 

 

tensor occurs near the sharp edges. However, by applying the 
algorithm, the strain rate tensor turns gradually rather than 
abruptly in the last shape development for both T-junctions. 

 
3.4 Three-dimensional elbow duct 

The inlet velocity boundary condition is assumed to be a 
fully developed flow that has a parabolic shape, which is 
commonly observed in industrial and research applications. 
The Reynolds number is set as 100, from which the maximum 
velocity U0 can be calculated. A rectangular elbow duct is 
modeled to test the method, and its cross-section is shown in 
Fig. 1(d). A grid size of 200×200×200 was chosen, of which 
40 cells are selected for the inlet boundary condition, and an 
equal number of inlet nodes is chosen for the outlet boundary 
condition. Zero gradient pressure was set at the outlet of the 
duct. 

Fig. 19 shows that the sharp edges of the duct become 
smoother during the optimization progress, and the outlines 
change to a round shape. Fig. 20 shows the pressure of the 
elbow duct decreased sharply to 0.736 at the 50th iteration, 
and it becomes smooth when it reaches steady state. There is a 
direct relation between the pressure and the development of 

the shape. Finally, the pressure fell about 27 % compared with 
the first shape of the elbow duct. In order to illustrate how the 
strain rate tensor distributes through the elbow duct, several 
images of strain rate tensor are shown in Fig. 21. The strain 
rate tensor becomes smaller with time step goes on.  

 
4. Conclusions 

We presented an empirical optimality algorithm for design-
ing a fluid flow channel using LBM. The positions of ex-
changing solid cells are obtained based on the strain rate ten-
sor along the interface. Fluid cells with a low strain tensor are 
exchanged with solid cells, and the solid cells near cells with a 
high strain tensor are exchanged with fluid cells. The pressure 
drops gradually while the channel shape evolves to the final 
structure. We presented three different channel shapes and 
implemented the algorithm accordingly. The results prove the 
capability of the algorithm in fluid problems. The strain rate 
tensor along the interface is the only optimality factor needed 
to replace the cells. Therefore, this heuristic optimality crite-
rion needs fewer equations to find the cells to be exchanged 
and is also easy to perform. 
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Nomenclature------------------------------------------------------------------------ 

fi     : ith density distribution function 
x     : Particle position    
c     : Particle velocity 
Δx     : Unit grid length in lattice unit 
Δt     : Unit time step in lattice unit 
t     : Time 
Ωi     : Collision term 
fieq     : Equilibrium density distribution function 
τ     : Relaxation time 
ei     : Unit velocity vector 
fi+    : Post-collision distribution function 
Si,j : Strain rate tensor 
ν  : Viscosity 
N    : Total number of cells in the domain 
P     : Pressure of the flow 
ΔP    : Pressure difference from the initial state 
N    : Total number of cells in the domain 
ω    : Weight coefficient 
Fi     : External force 
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