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Abstract 
 
Transverse breathing cracks are a primary damage mode in rotor systems and seriously influence the safety and reliability of equip-

ment operation. The vibration characteristics exhibited by cracked rotors when passing through critical speeds serve as important evi-
dence in the diagnosis of cracks, and a breathing mechanism model without weight dominance is needed to study these resonant charac-
teristics. In this work, a restoring force modified model is proposed for studying the breathing mechanism of cracked Jeffcott rotors with-
out weight dominance. Furthermore, a novel phase waterfall plot method that can identify frequency components with weak amplitudes 
is proposed to analyze the vibration response characteristics of cracked Jeffcott rotors. Numerical and experimental studies indicate that 
the phase waterfall plots effectively recognize the weak characteristic frequencies of cracked rotors. This study can also provide refer-
ences for the crack monitoring of rotor systems.  
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1. Introduction 

Rotor-disc systems are widely applied in such fields as 
power supply systems, aeronautics, astronautics, and navy 
equipment. However, material defects, manufacturing flaws, 
and cyclic loadings usually cause cracks in the rotating com-
ponents of these systems. Transverse cracks are common in 
rotors and seriously influence the safety and reliability of 
equipment operation. The vibration characteristics of cracked 
rotors traversing critical speeds are important references in the 
fault diagnosis of cracks. Therefore, these resonant character-
istics must be studied. 

The first step to studying the resonant characteristics exhib-
ited by rotors passing through critical speeds is constructing a 
model without the weight dominance of a breathing crack in 
the damaged system. The transverse crack alternately opens 
and closes (complex “breathing effect”) due to gravity and 
unbalanced forces, thereby resulting in periodically changed 
stiffnesses. Research on the breathing mechanism aims to 
determine the stiffness breathing functions of cracked rotors. 
Mayes [1] proposed a method that studies the stiffnesses of 
shafts containing cracks that change with shaft depth. Sekhar 
[2] used a simple hinge model to describe the breathing action 
of small cracks. Sinou [3, 4] solved the dynamic response of a 

cracked rotor with a cosine breathing function. Sawicki [5] 
developed a strategy that can analyze the vibration response of 
a cracked rotor with and without weight dominance. These 
studies describe the time-varying stiffness of cracked rotors, 
but these models do not precisely reveal the breathing mecha-
nism of such rotors. Mohammad [6-8] defined two new 
breathing functions to represent the actual breathing effect on 
the cracked element stiffness matrix. Bachschmid [9, 10] 
modeled the breathing functions of cracks with a numerical 
method that discretizes a crack section into many area ele-
ments. The total closed area of the crack section is also consti-
tuted by all the area elements in a compressive stress state. 
This model can also be used to analyze the breathing mecha-
nism of cracked rotors with weight dominance on the basis of 
the stress changes of the cross section. However, when a 
cracked rotor passes through the critical speed, the vibration 
(whirl) of the rotor becomes excessively complicated and not 
synchronized with rotation. The dynamic response of the rotor 
increases rapidly, and the assumption of weight dominance 
becomes unreliable [11]. Therefore, a breathing mechanism 
model without weight dominance must be used to study these 
resonant characteristics. 

Aside from breathing mechanism modeling, the dynamic 
behaviors of cracked rotors have attracted the attention of 
many researchers. Bachschmid and Sekhar [12-16] studied a 
crack identification method that is based on vibration re-
sponses and applied it to practical engineering. Dong [17] 
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investigated the effects of crack location and depth on the 
mode shapes and the changes in the eigenfrequencies of a 
cracked rotor. Spagnol [18] predicted that a high unbalance 
eccentricity and a 180° placement of the unbalanced mass will 
result in the disappearance of 2X and/or 3X harmonic compo-
nents at one-half and one-third of the rotor critical speed. Zhao 
[19] developed a finite element model of a cracked shaft-disc 
system to investigate the coupling of lateral, longitudinal, and 
torsion vibration, which may indicate damage. Chu [20] inves-
tigated the dynamic behaviors of a cracked rotor system with 
oil-film force and provided reasonable references for the safe 
operation and the crack diagnosis of rotors. Khorrami [21] 
formulated an analytical model to study the effects of crack 
characteristics on selected vibrational properties. Liu [22] 
found that coupled vibration in lateral and torsional compo-
nents is an effective indicator of cracks in the presence of tor-
sional excitation. These studies provide references for crack 
diagnosis, but the current diagnosis methods are not precise. 
Therefore, the vibration response characteristics of cracked 
rotor systems should be further studied. 

Effective signal processing and visualization methods are 
the key to extracting dynamic response characteristics and 
identifying rotor cracks, which have been widely studied by 
scholars. Sekhar [23] compared the detection performances of 
short-time Fourier transform, continuous wavelet transform, 
and Hilbert–Huang transform. Chen [24] analyzed the effec-
tiveness of RMS values, kurtosis values, and frequency spec-
trum diagrams in the judgment of crack length. Yan [25] used 
the fast Fourier transform method and the EMD technique to 
derive the amplitude variation of high-order frequencies and 
indicated the practicality of the EMD-based crack detection 
method. Kumar [26] proposed an approach to detecting the 
combined faults of unbalanced and bent rotors for the ad-
vanced detection of the features of fault rotor diagnosis. The 
aforementioned studies provide effective methods for feature 
extraction and crack identification. However, these methods 
are based on the time-domain or frequency-domain amplitude 
characteristics of signals. Therefore, when a crack produces 
weak vibration energy and thus small characteristic frequency 
amplitudes, effectively identifying the characteristic frequen-
cies will be difficult. To improve the accuracy of crack identi-
fication, signal processing and feature extraction methods that 
are more powerful and robust than existing techniques need to 
be developed. 

On the basis of this analysis, this work develops a modified 
model to study the breathing mechanism of cracked rotors 
without weight dominance. A novel phase waterfall plot diag-
nostic method that can identify frequency components with 
weak amplitudes is proposed for analyzing the simulated and 
experimental signals of cracked rotors passing through critical 
speeds. 

This paper is organized as follows. Sec. 2 presents the de-
velopment of new functions of horizontal, vertical, and cou-
pling stiffnesses for modeling the breathing effects of cracked 
rotors without weight dominance. Sec. 3 explains the use of 

the new breathing functions to construct the dynamical equa-
tions of a cracked rotor; the time-domain waveforms, time–
frequency spectrums, and an analysis of the phase waterfall 
plots of simulated signals when the rotor passes through the 
critical speed are also included. Sec. 4 discusses the experi-
mental study involving a cracked rotor passing through the 
critical speed; the effectiveness of the simulation in Sec. 3 is 
compared and validated. Sec. 5 presents the conclusions. 

 
2. Breathing mechanism 

This section explains the proposed restoring force modified 
model. The restoring force of the cracked rotor in the whirling 
process can be solved using this method instead of the hy-
pothesis that the direction of the restoring force is parallel to 
the shaft displacement. 

 
2.1 Algorithm of breathing function 

In Fig. 1, oxy is a fixed coordinate system, o'x'y' is the rotat-
ing coordinate system, 'o N

uuuur
 is the normal direction of the 

crack tip, H is the horizontal reference axis, q  is the rotation 
angle, j  is the whirling angle, y q j= -  is the rotation–
whirling difference angle, and d is the absolute depth of the 
cracks. The crack depth is defined as /d Dm = , and D is the 
diameter of the shaft. The crack section comprises three parts, 
namely, uncracked, open crack, and closed crack areas. The 
entire section is divided into numerous area elements.  

During the rotation of the rotor, the tensile and compression 
area of the crack section changes with the stress field distribu-
tion. This change in area causes the “breathing effect”, which 
is the constant opening and closing of the crack. The centroid 
and centroid principal inertia axes of the closed area (area ① 
+ ② in Fig. 1) are obtained by considering the influence of 
the open crack area to the positions of oI,, xI and yI , as shown 
in Fig. 2. 

In Fig. 2, oIx*y* is a coordinate system whose origin is at 
centroid oI, and whose axis x* is parallel to the axis x'. xI and yI 
are centroid principal inertia axes. h ( 0h ) is the angle be-
tween the axes xI and x*(x'). ia ( 0a ) is the angle between the 
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Fig. 1. Diagram of the crack section, fixed coordinate system, and 
rotating coordinate system. 
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restoring force iF  and the shaft displacement 'oo
uuur

. 
The breathing mechanism can be studied by the stress 

analysis of the cracked cross section during the rotation of the 
rotor, which can be used to determine the closing area of the 
crack. The principal inertia moments of the closed area can 
also be calculated, and the bending stiffness of the local 
cracked shaft can ultimately be obtained. Bachschmid [11, 12] 
modeled the breathing function of cracks with a numerical 
method that discretizes the crack section into numerous area 
elements. The total closed area of the crack section comprises 
all the area elements, which are in a compressive stress state. 
The stress of the crack section is determined by weight or 
other forces with known directions. Therefore, this model is 
generally used for heavy rotors. A flowchart of Bachschmid’s 
breathing mechanism model is shown in Fig. 3(a). 

For general cracked rotors, the closing and opening of the 
crack section are not controlled by gravity but by rotation and 
whirling. To solve the stiffness breathing functions of cracked 
rotors without weight dominance, the key problem is deter-
mining the direction of the restoring force iF , as shown in 
Fig. 2. When Bachschmid’s model is used in the condition 
without weight dominance, the direction of the restoring force 

iF  is assumed to be parallel to the shaft displacement 'oo
uuur

. 
However, the asymmetric stiffnesses of cracked rotors cause 
the restoring force iF  to be unparallel to the shaft displace-
ment 'oo

uuur
, as shown in Fig. 2(c), 'i ooF

uuur
�  ( ia p¹ - ). A 

detailed explanation is presented in Sec. 2.4.  
In this work, the model in Ref. [11] is modified and a re-

storing force modified model is developed to study the breath-

ing mechanism of cracked rotors without weight dominance. 
The basic process in restoring force modification is that at 

each rotation–whirling difference angle, the angle of the re-
storing force is initially assumed and the stress concentration 
is ignored. Thus, the stress distribution corresponding to the 
assumed restoring force can be calculated, and the open area 
and the total closed area can be obtained. Afterward, the stiff-
ness of the equivalent cracked beam (a remarkably short area 
containing the crack) can be obtained according to the bending 
theory of beams, as described by Bachschmid [12]. 

To simplify the model and quantitatively investigate the 
main mechanical characteristics of Jeffcott rotor models, the 
z-axis DOF is not considered. Therefore, we consider the open 
area in the crack section to be throughout the shaft. Then, the 
breathing stiffness of the cracked Jeffcott rotor can be ob-
tained using the abovementioned method. 

This process can greatly simplify the calculations of stiff-
ness and restoring force and can extract the main change law 
of the breathing stiffness. This simplified model also satisfies 
the requirements of qualitative vibration characteristic analysis 
and mechanism explanations of cracked rotors. However, part 
of the accuracy of the vibration amplitude is lost. All models 
have limitations, and no absolute best model exists. Therefore, 
the most appropriate model should be established according to 
the analysis requirements. 

With the combination of the solved stiffness and the current 
shaft displacement (whirling position) 'oo

uuur
, the new restoring 

force can be calculated. Finally, the angle of the restoring 
force can be modified by the updated restoring force. In the 
methods presented above, the stress distribution of the cracked 
section is no longer determined by gravity but by rotation and 
whirling, thus overcoming the constraint of weight dominance. 
A flowchart of the restoring force modified breathing mecha-
nism model is shown in Fig. 3(b). 

A comparison of the flowcharts in Figs. 3(a) and (b) shows 
that the proposed model adds an iterative process for the solu-
tion of the restoring force. Instead of the hypothesis that the 
direction of the restoring force is parallel to the shaft dis-
placement, this method can be used to solve the restoring 
force of the cracked rotor in the whirling process. 

To satisfy the condition without dominance, Bachschmid’s 
model is modified in this study. Details about the processes of 
the modified model are in the Appendix A. 

The breathing stiffness of the cracked Jeffcott rotor system 
can be solved following the steps in the flowchart and the 
Appendix A. This section considers four rotors with crack 
depths of 0.05m = , 0.1m = , 0.2m =  and 0.3m = .  

 
2.2 Relative stiffness 

The relative stiffnesses are shown in Fig. 4. The stiffnesses 
kx*, ky* and kx*y* change with y . In Fig. 4(a), the value of the 
coupling stiffness kx*y* is close to zero and kx* and ky* are close 
to Kmax (Kmax is the stiffness of the rotor without cracks). 
Therefore, the breathing effect is not significant at 0.05m = . 
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Fig. 2. Iterative processes of the restoring force and the centroid prin-
cipal inertia axis: (a) Assumptive restoring force and the centroid prin-
cipal inertia axis; (b) assumptive restoring force and the convergent 
centroid principal inertia axis; (c) modified restoring force and the 
assumptive centroid principal inertia axis; (d) modified restoring force 
and the convergent centroid principal inertia axis. 
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In Figs. 4(a)-(d), the stiffness decreases greatly, which means 
that the breathing effect becomes increasingly pronounced 

with the increase in crack depth. The length of the straight part 
in these four figures decreases with the increase in crack depth, 
which indicates that the angle range where the crack is fully 
closed is also decreasing. Therefore, the influence of the crack 
on the stiffness becomes increasingly remarkable as crack 
depth increases. 

 
2.3 Discussion 

In Sec. 2, the stiffness breathing functions of the cracked ro-
tor are analyzed using the proposed method. However, certain 
issues still need to be discussed.  

When the rotor is cracked, its asymmetric stiffness causes 
the restoring force iF  to become unparallel to the shaft dis-
placement 'oo

uuur
. The restoring force iF  at a certain state is 

shown in Eq. (A.7). To illustrate the unparallelism of the di-
rection of the restoring force iF  to the shaft displacement 

'oo
uuur

, Eq. (A.8) is rewritten as follows: 

 

( ) ( ) ( )( )
2 2
' ' ' '

2 22 2
' ' ' ' ' '

( 2 )'cos
'

x o xy o o y oi
i

i
o o x o xy o xy o y o

k x k y x k yoo
oo x y k x k y k x k y

a
- + +
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+ + + +

F
F
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  (1) 

 
                            (a)                                                    (b) 
 
Fig. 3. Flowcharts of the breathing mechanism model: (a) Bachschmid’s model; (b) proposed restoring force modified model. 

 

  
               (a)                           (b) 
 

  
               (c)                           (d) 
 
Fig. 4. Relative stiffnesses kx*, ky* and kx*y*: (a) 0.05m = ; (b) 0.1m = ;
(c) 0.2m = ; (d) 0.3m = . 
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The stiffnesses of a normal rotor with a circular section are 
maxx yk k K= =  and 0xyk = . In this case, cos 1ia º - , which 

means that iF  and 'oo
uuur

 are in the opposite direction. There-
fore, at any position, the directions of restoring force iF  and 
shaft displacement are opposite, and the direction of the re-
storing force iF  does not need to be modified. However, if 
the rotor is cracked, then the condition cos 1ia = -  is satis-
fied only at special whirling positions where the crack is to-
tally closed. Otherwise, the condition cos 1ia = -  cannot be 
guaranteed because x yk k¹  and 0xyk ¹ . Therefore, the real 
direction of the restoring force iF  must be determined ac-
cording to the iterative calculations proposed in this article. 

Accurate stiffness and closed area of the crack can be calcu-
lated because the restoring force iF  can be obtained at any 
whirling position through the iterative calculations. In Fig. 5, 

0.3m =  is used as an example to show the difference in the 
stiffnesses before and after the modification of the restoring 
force. After modification, ky* is greater than before within a 
certain range, kx*y* shows the reverse trend, and kx* is un-
changed. The above results show that the modification re-
duces the stiffness variation caused by the crack. 

Furthermore, modification results match the general princi-
ples of mechanics well because the movement is always along 
the direction of least resistance. Letting ia p= -  artificially 
emphasizes the breathing of the crack, thereby causing the 
movement to overcome large resistances. 

 
3. Dynamical responses and phase waterfall plot 

method 

3.1 Dynamical equations 

In Fig. 6, L is the length of the shaft and zc is the z-

coordinate of the crack position with respect to the o-xyz ref-
erence system. oc is the center of mass, e is the eccentricity, 
and β is the imbalance orientation angle. The breathing func-
tion determines the stiffnesses (kx*, ky*, kx*y*) of the rotor in the 
rotational coordinate system o'x'y', and the stiffnesses (kx, ky, 
kxy) in the fixed coordinate system oxy can be obtained by a 
transformation of Eq. (A.6). Afterward, the general dynamical 
equation of the Jeffcott rotor can be established in the fixed 
coordinate system oxy through Eq. (2). 

 
( , ) s et+ + = +Mu Cu K u u F F&& & ,              (2) 

 

where 0 T

s mg= -é ùë ûF  is a force caused by the dead weight 
of the rotor and eF  is an external force caused by the rotation 
of the rotor. 

The external force of the rotor excited by the imbalance 
when starting with constant acceleration is shown in Eq. (3). 
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where angular acceleration q g=&&  is a constant, 0tq g w= +&  
is the instantaneous angular velocity, 2

00.5 t tq g w= +  is the 
rotation angle, and 0w  is the initial angular velocity. Then, 
the dynamic equations (Eq. (4)) for the starting up can be ob-
tained from Eq. (2). 
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The parameters selected in the numerical case study are the 

same as those of the rotor test bed. The parameters of the rotor 
system are as follows: Length 225 mm;L =  diameter 

10 mm;D =  mass 2.46 kg;m =  eccentricity distance e =  
510 ;D -´  damping 2 cc mw z= , where cw  is the critical 

speed; and damping ratio 35 10z -= ´ . Other kinematic pa-
rameters are shown in the succeeding simulations. The 
Runge–Kutta method is used to solve the dynamical equations. 
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Fig. 5. Relative stiffnesses before and after modification at 0.3m = : (a)
kx*/Kmax; (b) ky*/Kmax; (c) kx*y*/Kmax. 
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Fig. 6. (a) The Jeffcott rotor with the transverse crack; (b) schematic 
diagram of the cracked cross section. 
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3.2 Dynamical result comparison 

To compare the dynamic results obtained by the restoring 
force modified model and the previous model, the axis orbits 
and the frequency spectrums before and after the restoring 
force modifications are presented in Fig. 7. The kinematic 
parameters are 20 rad / sg =  and 0 0.6 cw w= . 

Fig. 7(a) presents the axis orbits before and after the restor-
ing force modifications. Fig. 7(b) shows the frequency spec-
trums of the displacements and the error rates of the harmonic 
amplitudes before and after the restoring force modifications. 
Fig. 7(a) shows that the vibration amplitudes of the X and Y 
directions are reduced after modification. Fig. 7(b) shows that 
the amplitudes of the frequency components before and after 
modification are different; the maximum error rate of the fre-
quency amplitudes is 13.46 %. This result also validates the 
analysis in Sec. 2.3, which states that before modification, let-
ting ia p= -  artificially emphasizes the breathing of the 
crack, thus causing the vibration amplitudes to become rela-
tively large. The need for model modification is also illustrated. 

 
3.3 Time-domain waveforms 

The vibration signals of the cracked rotor passing through 
the critical speed contain abundant fault characteristic infor-
mation. Therefore, we mainly study the characteristics of the 
time-domain waveforms, the amplitude spectrums, and the 
phase waterfall plots of these vibration signals. 

At crack depth 0.2m = , the dynamic response characteris-
tics of the four cracked rotors with different imbalance orien-
tation angles are solved as the rotor passes through the critical 
speed. Fig. 8(a) shows the time-domain waveforms of a nor-
mal rotor. Figs. 8(b)-(e) show their time-domain waveforms at 
β = 0, β = π/2, β = π and β = 3π/2. 

Fig. 8(a) shows that at the critical point, only one resonance 
peak of the normal rotor has a regular shape. In Figs. 8(b)-(e), 
the time-domain waveforms of the cracked rotors passing 
through the critical speed are highly related to the imbalance 
orientation angles. 

(1) The resonant amplitudes change with the imbalance ori-
entation angles. The resonant amplitude obtains the maximum 

value at β = 0 (Fig. 8(b)), which is more than 0.5 mm. On the 
contrary, at β = π (Fig. 8(d)), the resonant amplitude is less 
than 0.1 mm, which is the minimum that corresponds to these 
four phases.  

(2) The shapes of the resonance peaks change with the im-
balance orientation angles. In Figs. 8(b) and (c), two inde-
pendent and steep resonance peaks are present, one of which 
is larger than the other. However, in Figs. 8(d) and (e), the two 
resonance peaks are coupled together and both are not steep 
anymore. 

These results of the proposed model show that the vibration 
responses of cracked rotors have different time-domain wave-
forms for various imbalance orientation angles and double 
resonance peaks are noticeable features of cracked rotors.  

These characteristics are recognized by scholars. The accu-
racy of the proposed model for major vibration feature extrac-
tion is illustrated by the experimental study about the double 
resonance peaks in Sec. 4.2. 

 
3.4 Phase waterfall plot method 

A novel phase waterfall plot method is proposed to identify 
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Fig. 7. Dynamic results before and after the restoring force modifica-
tions: (a) Axis orbits; (b) frequency spectrums and error rates of har-
monic amplitudes. 
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Fig. 8. Time-domain waveforms of cracked rotors passing through the 
critical speed at 0.2m = , 0 1000 r / minw =  and 29 rad / sg = : (X) 
vibration amplitudes in X direction, (Y) vibration amplitudes in Y 
direction: (a) Normal rotor; (b) β = 0; (c) β = π/2; (d) β = π; (e) β = 
3π/2.  
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the weak frequency components of the cracked Jeffcott rotor. 
Cracks in rotors can cause parametric excitation. Therefore, 

the vibration responses of the cracked system theoretically 
contain different frequency components other than the rota-
tional frequency（1X）caused by imbalance. However, the 
energy of the parametric excitation caused by the crack may 
be excessively small, and finding the characteristic frequen-
cies of the cracks in the amplitude spectrums of the vibration 
responses is difficult. The amplitude A  of a certain fre-
quency component ( ) sin( )y t A t j= W +  in the vibration re-
sponses is associated with the excitation energy, but the initial 
phase j  is uncorrelated with this energy. Once the frequency 
component is present, the initial phase will be between p-  
and p . On the basis of this analysis, the phase can be used to 
identify the weak frequency components, which cannot be 
identified in amplitude spectrums.  

With the vibration response of an acceleration process as an 
example, the graphing method of the phase waterfall plot is 
represented as follows. 

For an m-point discrete harmonic signal S =  
0 1 1[ , , , ]ms s s -L , the initial step is making a short-time window 

move a sampling point every time and multiply with the signal, 
as shown in Fig. 9. Then, k  short-time signals 0 1( ), ( ),y t y t  

2 1( ) ( )ky t y t-L  can be obtained, where 0 0 1 1( ) [ , , , ]my t s s s -= L , 
1 1 2( )=[ , , , ]ny t s s sL ,L , 1 2 1( ) [ , , , ]n n n ny t s s s+ -= L , and n  is 

the window length ( ).n m=  The initial phases 0 1 2, , ,j j j  
, njL  of these signals are increased, as shown in Fig. 10. 
Second, frequency spectrums ( )0Y w , ( )1Y w , ( )2Y w  and 
K , ( )1 ,kY w-  which correspond to these short-time signals, 
can be obtained by FFT. The phase spectrums can be calcu-
lated by ( ) ( )=arctan

i ii Y YI RwF , where 
iYI  and 

iYR  are the 
imaginary and real parts of ( )iY w , respectively. ( )i wF  are 
plotted in Fig. 11. 

Each single-phase spectrum ( )i wF  has nonzero values 
not only at frequency W  but also at all the other frequencies. 

Therefore, we cannot identify the frequency W  only by each 
phase’s spectrum ( )i wF  because 

iYI  and 
iYR  are not zero 

but random values close to zero at other frequencies. However, 
if all the phase spectrums ( )i wF  are arranged in turn, then a 
phase waterfall plot can be constructed as shown in Fig. 11. 
As a regular phase banding at frequency W  is produced, the 
frequency W  can be identified. 

 
3.5 Phase waterfall plots and time–frequency amplitude 

spectrums 

The effectiveness and superiority of the phase waterfall plot 
in recognizing weak characteristic frequencies are verified by 
the following comparisons. 

This section compares the dynamic response characteristics 
of the vibration displacements of cracked rotors for four im-
balance orientation angles β = 0, β = π/2, β = π and β = 3π/2 at 

0.2m =  with those of a normal rotor (Figs. 12(a) and (b)).  
For the vibration responses in the acceleration process, the 

phase banding in the phase waterfall plot is oblique. If the 
vibration responses contain several high-order frequency 
components, then the phase bandings can form radial lines in 
the phase waterfall plot, as shown in Figs. 12(d), (f), (h) and 
(j). 

Figs. 12(a) and (b) show that only one frequency compo-
nent in the amplitude spectrum corresponds to the rotational 
speed as the rotational speed increases; moreover, the phase 
waterfall plot shows the same frequency component (without 
radial lines). Once the crack appears, the characteristics (radial 
lines) of the phase waterfall plots become noticeable. The 
radial lines in the phase waterfall plots represent the high-
order frequencies of the vibration responses of the cracked 
rotors. In amplitude spectrum, such amplitudes can hardly be 
recognized. The detailed characteristics are as follows.  

(1) A comparison of the amplitude spectrums in Figs. 12(c), 
(e), (g) and (i) with that in Fig. 12(a) shows that high-order 
frequencies are important characteristics in identifying the 
cracked rotors. However, their amplitudes are weak at several 
imbalance orientation angles. These high-order frequency 
components with weak amplitudes cannot be effectively rec-
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Fig. 9. Diagram of the windowed process. 
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Fig. 11. Drawing process of the phase waterfall plot. 
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ognized in amplitude spectrums. At the same crack depth, 
imbalance orientation angles considerably affect the shapes 
and components of amplitude spectrums. Thus, the use of 
amplitude spectrums is not a robust method of extracting the 
characteristic frequencies of cracked rotors. 

(2) Compared with the phase waterfall plot in Fig. 12(b), 
those in Figs. 12(d), (f), (h) and (j) all have remarkable radial 

features, which represent the high-order frequency compo-
nents of the vibration responses of the cracked rotors. These 
radial features are not influenced by imbalance orientation 
angles. These high-order frequency components of cracked 
rotors can hardly be identified in the amplitude spectrums in 
Figs. 12(c), (e), (g) and (i). Therefore, the radial feature in the 
phase waterfall plots is an evident characteristic of cracked 
rotors. 

According to the comparative analysis of the characteristics 
of amplitude spectrum and phase waterfall plots with different 
imbalance orientation angles, phase waterfall plots are more 
effective than amplitude spectrums in recognizing weak char-
acteristic frequencies of cracked rotors. Amplitude spectrums 
can show certain features, but the radial line feature in phase 
waterfall plots is an evident characteristic of cracked rotors. 

 
4. Experimental study for transient responses 

4.1 Introduction of experiment 

Experiments are conducted on a Bently RK4 rotor test bed, 
which is shown in Fig. 3 together with the tested cracked rotor. 
The rotor test rig mainly includes a speed controller, motor, 
shaft, and base. The data acquisition system includes a dis-
placement probe, signal regulator, and HBM data acquisition 
system (DAS). The controller supplies power to the motor and 
controls the speed of the motor. The displacement probe col-
lects the lateral vibration signal of the shaft and is connected 
to the HBM DAS through the signal regulator. 

The diameter of the steel rotor is 10 mm, and the rotor is 
supported by two sliding bearings with 225 mm distances. The 
left end of the rotor is coupled with a drive motor according to 
a flexible coupling. A crack with approximately 2 mm depth 
(This crack is a small slot cut by a line-cutting machine. A real 
crack is then obtained according to a fatigue experiment by a 
three-point bending fatigue experiment machine.) is present in 

 
                (a)                          (b) 
 

 
               (c)                           (d) 
 

 
                (e)                         (f) 
 

   
                (g)                         (h) 
 

 
                (i)                           (j) 
 
Fig. 12. Dynamic response characteristics of cracked rotors passing 
through the critical speed at 0.2,m = 0 1000 r / min ,w = 29 rad / sg = : 
(a), (c), (e), (g), (i) Time-frequency amplitude spectrums; (b), (d), (f),
(h), (j) phase waterfall plots; (a) and (b) normal rotor; (c) and (d) β = 0;
(e) and (f) β = π/2; (g) and (h) β = π; (i) and (j) β = 3π/2.  

 

Table 1. Parameters of the experiment. 
 

Testing parameters Values and units 

Sampling frequency 3200 (Hz) 

Diameter of the disc 80 (mm) 

Thickness of the disc 25 (mm) 

Critical speed of the test bed 4000 (r/min) 

Angular acceleration 9 ( 2rad / s ) 

 
HBM DAS Displacement Probe

BaseMotorController

Signal Regulator

Shaft  
 
Fig. 13. Bently RK4 rotor test bed and HBM genesis high-speed DAS. 
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the middle of the rotor. The rotor is generally similar to a Jeff-
cott rotor. 

The disc of the rotor has 16 thread holes that are evenly po-
sitioned to fix the additional eccentric mass, and two eddy 
current displacement sensors close to the disc are installed on 
the rotor test bed in the X and Y directions to measure the 
vibration displacements. The data are collected by HBM 
genesis high-speed DAS, and the detailed parameters of the 
testing system are shown in Table 1. 

Before the experiment, the dynamic balance operation is 
adopted to prevent the interference of the inherent imbalance. 
Then, the additional eccentric mass is added in the corre-
sponding thread hole in the disc to simulate the imbalance in 
the particular imbalance orientation angle.  

The imbalance orientation angles are obtained by the posi-
tion of the thread hole. In addition, the imbalance orientation 
angle β is changed four times as follows: β = 0, β = π/2, β = π 
and β = 3π/2. The rotation speed is initially 1000 r/min and 
then increased to 6500 r/min at a constant acceleration rate. 

 
4.2 Time-domain waveforms 

Fig. 14(a) shows the time-domain waveforms of a normal 

rotor, and Figs. 14(b)-(e) show the waveforms corresponding 
to the imbalance orientation angles β = 0, β = π/2, β = π and β 
= 3π/2.  

Comparing with the numerical case study in Sec. 3.2, the 
features of the time-domain waveforms from the simulation 
data and those from the experimental data are remarkably 
similar. The waveforms in Figs. 8(a) and 14(a) both have a 
single resonance peak, which is a feature of a normal rotor. 
The waveforms in Figs. 8(d) and (e) and those in Figs. 14(d) 
and (e), respectively, agree well. The vibration waveforms 
have noticeable double resonance peaks in the Y direction. 
Although the waveforms in Figs. 8(c) and 14(c) are slightly 
different, both of them have sharp double resonance peaks. 
The waveforms in Figs. 8(b) and 14(b) in the Y direction both 
have double resonance peaks. 

This comparative analysis shows that the time-domain 
waveforms of the numerical and experimental studies agree. 
Therefore, the effectiveness of the adopted model for major 
vibration feature extraction can be validated. The breathing 
stiffness is the intermediate variable of the dynamic model, 
and it is closely related to the response of the dynamic model. 
Although we cannot obtain the breathing stiffness in the ex-
periment to justify this breathing mechanism model directly, 
the good agreement of the vibration response can justify this 
breathing mechanism model indirectly. 

 
4.3 Phase waterfall plots and time–frequency amplitude 

spectrums 

Figs. 15(a) and (b) are the time–frequency amplitude spec-
trum and phase waterfall plots of a normal rotor. Figs. 15(c)-
(j) correspond to the four time–frequency amplitude spec-
trums and phase waterfall plots of the cracked rotors at imbal-
ance orientation angles β = 0, β = π/2, β = π and β = 3π/2, re-
spectively. 

Figs. 15(a) and (b) show that only one frequency compo-
nent in the spectrum corresponds to the rotational speed. As 
this speed increases, the radial feature in the phase waterfall 
plot becomes decreasingly remarkable for the normal rotor.   

When the rotor is cracked, the dynamic response character-
istics change noticeably. Figs. 15(c)-(j) show the following.  

(1) Once a crack appears, all the phase waterfall plots show 
noticeable radial features and the amplitude of the high-order 
frequencies are weakened. These features are not influenced 
by imbalance orientation angles. Therefore, the radial features 
in phase waterfall plots are the typical features of cracked 
rotors. 

(2) The high-order frequencies in amplitude spectrums are 
the characteristic frequencies of cracks, but their amplitudes 
are not significant. Therefore, recognizing cracks is difficult. 
Furthermore, the features in amplitude spectrums are influ-
enced by imbalance orientation angles. Thus, the features in 
phase waterfall plots are more robust than those in amplitude 
spectrums.  

Compared with the numerical case study results shown in 

 
(a) 

 

 
(b)                            (c) 

 

 
(d)                             (e) 

 
Fig. 14. Time-domain waveforms of the cracked rotor passing through 
the critical speed: (X) vibration amplitude in X direction, (Y) vibration 
amplitude in Y direction; (a) normal rotor; (b) β = 0; (c) β = π/2; (d) β
= π; (e) β = 3π/2. 
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Fig. 12 in Sec. 3.4, the dynamic response characteristics of the 
simulation data agree well with those of the experimental data. 
The amplitude spectrums in Figs. 12 and 15 mainly contain 

fundamental frequency components, and the amplitudes of 
high-order frequency components are remarkably small. Fur-
thermore, the major features of the phase waterfall plots in 
Figs. 12 and 15 are noticeably close and both have evident 
radial features. 

Therefore, the effectiveness of the proposed model for the 
major vibration feature extraction of cracked rotors is further 
validated. Phase waterfall plots are an effective means of rec-
ognizing weak characteristic frequencies of cracked rotors, 
and the radial feature in these plots is an evident characteristic 
of cracked rotors. 

 
5. Conclusions 

This work proposes an algorithm for calculating the stiff-
ness breathing functions of cracked Jeffcott rotors without 
weight dominance on the basis of bending theory. A model for 
cracked rotor systems is also constructed. The vibration fea-
tures of cracked rotors passing through the critical speed are 
studied through numerical cases and experiments. A novel 
phase waterfall plot method that can identify frequency com-
ponents with weak amplitudes is proposed for the analysis of 
the vibration response characteristics of cracked Jeffcott rotors. 
The major conclusions are as follows. 

(1) The restoring force modified model proposed in this 
work adds the iterative process for the solution of the restoring 
force. The restoring force of the cracked rotor in the whirling 
process can be solved using this method instead of the hy-
pothesis that the direction of the restoring force is parallel to 
the shaft displacement. Therefore, the proposed model satis-
fies the condition without weight dominance. 

(2) A novel phase waterfall plot method that can identify 
frequency components with weak amplitudes is proposed. 
Features of the phase waterfall plots and time–frequency am-
plitude spectrums at different imbalance orientation angles are 
compared. Results show that the phase waterfall plot is an 
effective and robust means of detecting the high-order fre-
quency components of cracked rotors. The radial feature in 
phase waterfall plots is an evident characteristic of cracked 
rotors, which can provide references for crack monitoring. 

(3) The time-domain waveforms of vibration displacement 
signals at different imbalance orientation angles during the 
passing through the critical speed are comparatively studied. 
Double resonance peak characteristics in the simulation sig-
nals and experimental data agree well, thereby potentially 
validating the effectiveness of the proposed model for cracked 
rotors. 
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             (a)                          (b) 
 

  
             (c)                          (d) 
 

 
             (e)                           (f) 
 

 
             (g)                           (h) 
 

 
              (i)                           (j) 
 
Fig. 15. Dynamic response characteristics of cracked rotors passing 
through the critical speed at 29 rad / sg = : (a), (c), (e), (g) and (i) 
Time-frequency amplitude spectrums; (b), (d), (f), (h) and (j) phase
waterfall plots; (a) and (b) normal rotor; (c) and (d) β = 0; (e) and (f) β
= π/2; (g) and (h) β = π; (i) and (j) β = 3π/2. 
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Nomenclature------------------------------------------------------------------------ 

oxy      : Fixed coordinate system 
o'x'y'     : Rotating coordinate system 

'o N
uuuur

     : Normal direction of the crack tip 
H       : Horizontal reference axis 
q         : Rotation angle 
j   : Whirling angle 
y   : Rotation–whirling difference angle 
d       : Absolute depth of the cracks    
m       : Relative depth of the cracks 
D       : Diameter of the shaft 
① : Uncracked area 
②        : Closed crack area 
③        : Open crack area 
oI,        : Centroid 
xI, yI      : Centroid principal inertia axes 
oIx*y*     : Coordinate system 
h ( 0h )    : Angle between xI and x* 

iF         : Restoring force 
'oo

uuur
  : Shaft displacement 

ia ( 0a )   : Angle between iF  and 'oo
uuur

 
Ix*, Iy*, Ix*y* : Inertia moment of the closed area 
kx*, ky*, kx*y* : Stiffnesses with respect to the oIx*y* coordinate 
kx, ky, kxy  : Stiffnesses with respect to the oxy coordinate 
Kmax       : Stiffness of the normal shaft 
L       : Length of the shaft 
zc        : z-coordinate of the crack position 
FxI, FyI   : Component forces of iF  
Ix, Iy  : Principal inertia moments 
xi, yi  : Centroid coordinates of the ith area element 
Ai  : Area of the ith area element 
E     : Young’s modulus 
oc    : Center of mass 
e     : Eccentricity 
β : Imbalance orientation angle 
M  : Mass matrix 
C  : Damping matrix 
K  : Stiffness matrix 
Fs      : Dead weight 
Fe    : External force caused 
u , u& , u&&  : State variable  
m         : Mass 
g  : Angular acceleration 

0w   : Initial angular velocity 
yi(t)       : Short-time signals 

ij         : Initial phases of yi(t) 
( )iY w     : Frequency spectrums of yi(t) 
( )i wF     : Phase spectrums of yi(t) 
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Appendix 

A. Detailed processes of the restoring force modified 
model 

(1) The cross section is divided into many area elements, as 
shown in Fig. 1. At each rotation–whirling difference angle 
( iy y y= + D ), the following iterative calculations are per-
formed on the discrete section to solve the open and closed 
area of the cracked section, the position of the centroid princi-
pal inertia axes (h ), and the principal inertia moments (Ix, Iy) 
with respect to the principal inertia axes (xI, yI).  

(2) The angle of the restoring force is assumed to be 
0a p= - , as shown in Fig. 2(a). 
(3) The centroid Io  is assumed to coincide with the origin 
'o  and the centroid principal inertia axes (xI, yI) with the ro-

tating coordinate axes ( 0 0h = ), as shown in Fig. 2(a).  
(4) According to the theory of material mechanics and by 

ignoring the stress concentration, the stress of the ith area ele-
ment can be calculated by Eq. (A.1). 

( ) ( )
I Ix c c y c c

i i i
y x

F L z z F L z z
y x

LI LI
s

- - - -
= + ,     (A.1) 

 
where L is the length of the shaft, zc is the z-coordinate of the 
crack position with respect to the o-xyz reference system (in 
this study, zc = L/2.), as shown in Fig. 6. FxI and FyI are the 
component forces of iF  in the xI and yI directions, Ix and Iy 
are the principal inertia moments corresponding to the cen-
troid principal inertia axes xI and yI, respectively, as shown in 
Fig. 2. xi and yi are the centroid coordinates of the ith area 
element with respect to the oIxIyI reference system. 

The sign of the stress can be checked at each area element 
of the cracked area. A plus sign means tension. No contact 
force is present at this point (the cracked area element is open-
ing; area ③). A minus sign means compression. Contact 
forces are present (the cracked area element is closed; area 
②).  

(5) Total closed areas ①+② are determined. According to 
the theory of material mechanics, the new centroid of the total 
closed area can be calculated by Eq. (A.2). 

 

1 1

1 1

I I

n n

i i i i
i i

o on n

i i
i i

x A y A
x y

A A

= =

= =

= =
å å

å å
,        (A.2) 

 
where Ai is the area of the ith discrete area element, xoI and yoI 
are the coordinates of the centroid Io  with respect to the 

' ' 'o x y  reference system, and ix  and iy  are the centroid 
coordinates of the ith area element for the same reference sys-
tem. 

The angle h  can be calculated with the axial conversion 
Eq. (A.3). 

 
* *

* *

2
tan(2 ) x y
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I I
h = -

-
,                   (A.3) 

 
where Ix*, Iy*and Ix*y* represent the inertial moments and iner-
tial product with respect to x* and y* axes, which can be cal-
culated by Eq. (A.4).  
 

* * * *
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where xi and yi are the centroid coordinates of the ith area ele-
ment with respect to the * *

Io x y  reference system. 
(6) Steps (3)-(5) are repeated with the updated Io  and h  

until h  converges into a stable value, as shown in Figs. 2(b) 
and 3. 

(7) To simplify the model and investigate the main me-
chanical characteristics in the Jeffcott rotor model, the z-axis 
DOF is not considered. Thus, in this breathing mechanism 
model, we assume the open part in crack section to be 
throughout the shaft. 

This procedure can substantially simplify the calculations of 
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stiffness and restoring force and can extract the main change 
law of breathing stiffness. This simplified model satisfies the 
requirements of qualitative vibration characteristic analysis 
and mechanism explanations of cracked rotors, although part 
of the accuracy of vibration amplitude may be lost. All models 
have limitations, and no absolute best model exists. Therefore, 
the most appropriate model should be established according to 
the analysis requirements. 

When high accuracy of vibration amplitude is needed, the 
entire shaft should be divided into a local cracked shaft and 
two normal shafts, which connect with the local cracked shaft 
by both ends. 

 
The inertial moments and products Ix*, Iy* and Ix*y* are 

known. On the basis of the above simplification and the theory 
of material mechanics, the stiffnesses kx*, ky* and kx*y* can then 
be calculated by Eq. (A.5), where E is Young’s modulus. 

 
*

* 2 2

48 .
(3 4 )c c
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z L z
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                      (A.5) 

 
The stiffnesses kx, ky and kxy with respect to the x and y axes 

can then be calculated by axial conversion (Eq. (A.6)).  
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  (A.6) 
 

where j  is the whirling angle of the axis in the fixed coordi-
nate. 

(8) The restoring force iF  and the angle ia  can be calcu-
lated by Eqs. (A.7) and (A.8). 
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where xo' and yo' are the relative displacements of centroid o' 
with respect to the oxy reference coordinate. 

Steps (2)-(8) are repeated with the updated iF  and ia  un-
til ia  converges into a stable value, as shown in Figs. 2(c), 
(d) and 3.  

(9) The stiffness K* ( )y = [kx*, ky*, kx*y*] is saved at the pre-
sent rotation–whirling difference angle y . 

(10) The turn–whirling difference angle y y y= + D  is 
updated, and Steps (2)-(9) are repeated. Then, the stiffness 
K* ( )y = [kx*, ky*, kx*y*] at each y  can be obtained. 
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