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Abstract 
 
In this paper, a nonlinear Fault detection and isolation (FDI) based on an improved Multiple model (MM) approach was proposed for 

the gas turbine engine. A bank of Strong tracking extended Kalman filters (STEKFs) was designed that enables robustness to model un-
certainty and overcomes the shortcoming of the MM approach. The Jacobian matrix used in the filters was deduced by using the non-
equilibrium analytic linearization method to improve the traditional method. Hierarchical fault detection and isolation architecture based 
on evaluating the maximum probability criteria were developed for both single and multiple faults. In addition, a nonlinear mode set 
automatic generation method that enables automatic generation of the modes of each level in the hierarchical architecture was also pre-
sented. Fault detection and isolation of a two-shaft marine gas turbine was studied in a simulation environment using the proposed 
STEKF-based MM approach and compared with the results of the traditional Extended Kalman filter (EKF) based MM approach. The 
results showed that the proposed approach not only has the advantages of the EKF-based MM approach but also robustness to the model 
uncertainty and overcomes the shortcomings of the MM approach.  
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1. Introduction 

The gas turbine engine, as important power machinery, un-
dergoes unavoidable failure with increase of service time. The 
gas path fault, as the most common fault in the gas turbine 
engine, has been widely studied by researchers. The main 
causes of gas path fault include fouling, erosion, corrosion and 
Foreign object damage (FOD). These causes will result in 
performance degradation of the gas turbine engine, further 
reduce its safety and stability, and lead to increase fuel con-
sumption as well as operation and maintenance cost [1, 2]. 
Fault diagnosis of gas turbines plays an important role in im-
proving the reliability and reducing the operation and mainte-
nance costs of the gas turbine engine. It can detect the occur-
rence and locate the fault in time to prevent a catastrophe and 
then contribute to the development of a maintenance schedule. 
Fault detection and isolation (FDI), as the core of gas turbine 
fault diagnosis, has received extensive attention from re-
searchers in recent years. On the one hand, the FDI of com-
plex nonlinear systems such as gas turbines engine is more 
complicated than that of linear systems. On the other hand, 
sophisticated FDI algorithms do not necessarily result in a 

more accurate diagnosis [3]. 
In the past few decades, researchers have proposed a variety 

of FDI methods. These methods are developed on the basis of 
Gas path analysis (GPA), which can detect and isolate gas 
turbine faults by observing the deviation in engine measure-
ment parameters such as rotational speed, pressure, tempera-
ture, and fuel flow [4]. Based on the available knowledge of 
the gas turbine, FDI can be categorized into three main ap-
proaches, namely, model-based [5], data-driven [6] and expert 
system [7]. The model-based approach, as one of the most 
widely used fault diagnosis approach, allows one to represent 
all prior knowledge of the gas turbine as a mathematical 
model and then accomplish the objective of FDI through the 
mathematical model and measured data of the gas turbine. The 
estimation method, as the most popular model-based approach, 
is widely used in gas turbine online fault detection and isola-
tion due to its real-time property. 

A variety of estimation algorithms have been proposed, 
such as the Kalman filter and its derivative method [8-10] and 
the particle filter method [11]. The complexity of different 
FDI methods causes their performance and computational cost 
to differ, but the more complex the algorithm, the higher the 
computation cost. Therefore, it is necessary to trade off the 
accuracy and the computational cost of on-line gas turbine 
fault detection and isolation. A method named the Multiple 
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model (MM) based FDI approach can simultaneously ensure 
high accuracy and reasonable computational cost. The MM-
based FDI is based on a conditional hypothesis, which trans-
forms the complex fault detection and isolation problems into 
pattern recognition problems. Several modes that represent the 
possible operating conditions of the gas turbine will be estab-
lished, and a bank of Kalman filters, which correspond to 
these modes, is designed to recognize the mode that matches 
the current operating condition. Thus, the filter estimation 
residual of the mode that matches the current operating condi-
tion will be close to zero, whereas the other filters will have a 
significant estimation residual. Therefore, the fault can be 
detected and isolated via the mode that with the minimum 
estimation residual in the bank of filters. 

In Ref. [12], the Multiple model adaptive estimation 
(MMAE) method is applied to detect the sensor and actuator 
faults in an aircraft engine control system. Both single and 
dual sensors as well as actuator faults are addressed. Moreover, 
a hierarchical architecture is used to reduce the number of 
filters and improve the computational efficiency. In Ref. [13], 
the Residual correlation Kalman filter bank (RCKFB) based 
on the MMAE algorithm is proposed to detect the actuator 
fault of the control system in the turboshaft engine. In Ref. 
[14], the MM-based FDI approach is used for the first time to 
detect and isolate the gas path fault of the gas turbine, and a 
modular and hierarchical architecture is developed that en-
abled the detection and isolation of both single and concurrent 
multiple faults in the jet engine. In addition, the effect of sen-
sor failure and the extensive levels of noise outliers in the 
sensor measurements are analysed. Then, the Extended Kal-
man filter (EKF) and the Unscented Kalman filter (UKF) 
based MM approach are proposed [15]. This study shows that 
considerable performance improvements could be accom-
plished by the UKF over the EKF and that the UKF is signifi-
cantly more robust to large sensor noise. 

The choice of the filter has a great influence on the per-
formance of the MM-based FDI approach. Although the com-
putational cost of the linearized Kalman filter is low, but the 
gas turbine is a nonlinear system, so it will have a large esti-
mation error. Furthermore, the UKF needs to choose 2n+1 
sigma points, which greatly increases the computational cost, 
so it may not be suitable for on-line fault detection and isola-
tion applications. While the EKF as a nonlinear estimation 
method has a reasonable computational cost and more widely 
used. However, the EKF has poor robustness to model uncer-
tainty and sensor noise [16]. For the model-based fault detec-
tion and isolation approach, model uncertainty exists due to 
the model simplification and the inaccurate initial noise co-
variance matrices. In addition, the EKF needs to linearize the 
nonlinear model around the Kalman filter estimate, so the 
model uncertainties will be further increased. Therefore, the 
EKF may diverge due to the presence of model uncertainty 
and large sensor noise, which affects the MM-based FDI re-
sults. 

In addition, the design of the mode set is another important 

part of the MM-based FDI approach. The mode set needs to 
include all possible operating conditions of the gas turbine. It 
is acquired in advance and then selected according to the pre-
vious results in the existing approach [14], which will be diffi-
cult to apply practically. Moreover, in the MM-based FDI 
approach, the hypothesis conditional probability of each mode 
is recursively calculated by using Bayes’ law. However, due 
to the model uncertainty and large sensor noise, the difference 
between modes will be reduced so that too unobvious to dis-
tinguish. This will affect the performance of the MM-based 
FDI approach. Furthermore, the hypothesis conditional prob-
abilities of each mode are obtained through the Gaussian den-
sity function. This means that the filter residuals of each mode 
should follow the Gaussian distribution, but it is usually not 
satisfied in practice. 

Therefore, in this paper, an improved MM-based nonlinear 
FDI approach was proposed to overcome the problems men-
tioned above. A bank of Strong tracking extended Kalman 
filter (STEKF) was designed for a nonlinear dynamic model 
of the two-shaft marine gas turbine. The STEKF uses the or-
thogonality principle and the suboptimal fading factor to forc-
ing filter residual has orthogonality or approximate orthogo-
nality. It has the advantages of robustness to model uncer-
tainty and insensitivity to sensor noise [16]. In addition, the 
generalized Jacobian matrix used in the STEKF was deduced 
using the non-equilibrium analytic linearization method. It is 
overcome the shortcomings of the traditional method that 
obtaining the Jacobian matrix by calling the gas turbine 
nonlinear model multiple times, so that the Jacobian matrix 
used in the STEKF can be calculated in real time. 

In addition, the STEKF-based MM approach was imple-
mented for the two-shaft marine gas turbine and tested in a 
simulation environment. A hierarchical architecture that en-
ables the detection and isolation of both single faults and mul-
tiple faults in the gas turbine was developed. The mode set of 
each level in the hierarchical architecture was generated auto-
matically according to the detection and isolation results of the 
previous level by using the mode set automatic generation 
algorithm. In this algorithm, the fault factors are regard as 
control variables, and the corresponding fault modes are gen-
erated by changing the value of the fault factors. Finally, the 
results of the proposed STEKF-based MM approach was 
compared with those of the traditional EKF-based MM ap-
proach. 

The remainder of this paper is organized as follows: Sec. 2 
briefly describes the nonlinear dynamic model of the gas tur-
bine studied in this paper. The STEKF-based MM approach is 
described in detail in Sec. 3. Sec. 4 deduces the generalized 
Jacobi matrix used in the STEKF by using the non-
equilibrium point analytic linearization method, and the gen-
eralized model of the mode set is obtained. In Sec. 5, the hier-
archical fault detection and isolation architecture is developed, 
and the mode set automatic generation method is presented; 
then, both the single fault and multiple faults are detected and 
isolated in the simulation environment. Sec. 6 analyses and 
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discusses the results of the proposed STEKF-based MM ap-
proach and compares it with the results of the EKF-based 
MM approach. The conclusions of this paper are presented in 
Sec. 7. 

 
2. Nonlinear dynamic model of a gas turbine engine 

In this section, the nonlinear dynamic model of the gas tur-
bine will be described briefly. This paper mainly studies the 
fault detection and isolation of a two-shaft marine gas turbine 
engine, the main components of the gas turbine include the 
compressor, combustion chamber, compressor turbine and 
power turbine. A schematic diagram of the gas turbine engine 
shows in Fig. 1, where the propeller and reduction gearbox are 
simplified as a load.  

The nonlinear dynamic model of the engine was developed 
in the environment of MATLAB/Simulink based on a previ-
ous work [17]. Considering the rotor dynamics and the vol-
ume dynamics, the main differential equations of the engine 
model are shown in Eq. (1). A more detailed description of the 
model can be found in Refs. [18-20]. The gas turbine consid-
ered in this paper is a marine gas turbine whose load has a 
cubic relationship with the propeller speed which linearly 
related to the power turbine speed. Therefore, the load power 
was expressed as a cubic relationship with the power turbine 
rotational speed. 
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where ηm is the mechanical efficiency, J1 and J2 are the inertia 
of the compressor shaft and power turbine shaft, respectively, 
Φ is the relationship coefficient between the power turbine 
rotational speed and the load power, LHV is the fuel low heat-
ing value, V1, V2 and V3 are the component volumes, and Γ is 
the relationship coefficient between mass flow and pressure. 
The subscripts C, CT, PT, CC and g indicate the compressor, 
compressor turbine, power turbine, combustion chamber and 
gas, respectively. 

Typical causes of gas turbine fault include fouling, erosion, 
corrosion, and Foreign object damage (FOD). These faults 
result in a change in the corrected mass flow (m) and the isen-

tropic efficiency (η) of the components. In this paper, we only 
considered the faults that will cause m and η	decrease. There-
fore, six kinds of faults were investigated in this paper, as 
shown in Table 1. In this table, F denotes the fault factor, 
which equals to 1 when gas turbine in a healthy condition and 
between 1 and 0 when the fault occurs. For instance, Fmc < 1 
indicates that a compressor fault occurs and causing the com-
pressor corrected mass flow decrease. 

 
3. The STEKF-based multiple model approach 

Fig. 2 shows the general architecture of the MM-based FDI 
approach [21]. In this architecture, a mode set that represents 
the possible operating conditions (Namely, healthy and differ-
ent faulty conditions) of the gas turbine is obtained, and then, 
a bank of Kalman filters is designed corresponding to each 
mode in the mode set. For the bank of filters, given a set of 
measurement parameters y and control variable u, each filter 
will produce a filter residual vector ri. Because each mode 
represents a possible operating condition of the gas turbine, 
the filter residual of each filter will be different. The filter 
residual of the mode that consistent with the current operating 
condition will be close to zero, and the residual of the other 
modes will be large. Hence, these filter residuals represent the 
approximation of each mode and the current operating condi-
tion of gas turbine. Therefore, according to these filter residu-

Table 1. Component fault and its description. 
 

Effect of component fault Description 

Change in compressor corrected mass flow ΔFmc 

Change in compressor isentropic efficiency ΔFηc 

Change in compressor turbine corrected mass flow ΔFmct 

Change in compressor turbine isentropic efficiency ΔFηct 

Change in power turbine corrected mass flow ΔFmpt 

Change in power turbine isentropic efficiency ΔFηpt 
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Fig. 1. Schematic diagram of the two-shaft marine gas turbine. 
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Fig. 2. General architecture of the MM-based FDI approach. 
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als, the hypothesis conditional probability evaluator will re-
cursively calculate the conditioned probability of each mode 
by using Bayes’ law, and the sum of conditional probabilities 
for these modes is always 1. Thus, the higher probability of 
the mode, it is more likely to be consistent with the current 
operating condition, so the mode can be detected and isolated 
by using the maximum probability criteria. 

 
3.1 Strong tracking extended Kalman filter 

The STEKF is derived from the EKF, which introduces the 
suboptimal fading factor into the estimation error covariance 
matrix of the EKF. The role of the suboptimal fading factor is 
to adjust the gain matrix in real time, and the forcing filter 
residual has orthogonality or approximate orthogonality. The 
STEKF has the following advantages: strong robustness 
against model uncertainties and very good real-time state 
tracking ability even when there is a state jump, regardless of 
whether the system has reached a steady state [16]. The 
STEKF will be introduced briefly in this section. 

A discrete-time nonlinear system is shown in Eq. (2): 
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where x is the state variable, u is the control variable, y is the 
measurement, and w and v are the process noise and the meas-
urement noise, respectively. These noises are assumed to be a 
zero-mean Gaussian noise and the covariance is Q and R, 
respectively. 

Introducing the suboptimal fading factor into the estimation 
error covariance matrix (Pk) and assuming the factor is λk-1, the 
modified Pk can be obtained as: 
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The suboptimal fading factor can be recursively solved by 

Eq. (4): 
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The second equation of Eq. (4) is called the orthogonality 

principle, whose physical meaning is that the residual error 
series should be made mutually orthogonal at each step, and it 
makes the filter robust to the uncertainty of the model. The 
STEKF algorithm is shown in Table 2, and more detailed in-
formation can be found in the Ref. [16]. 

The STEKF overcomes the shortcomings of the traditional 
EKF, so the STEKF-based MM approach will has better ro-
bustness to the model uncertainty than the EKF-based MM 
approach. Meanwhile, it will force the filter residuals follow 
the normal distribution and satisfy Bayes’ law. However, the 
MM-based FDI approach is a model-based approach and usu-

ally requires a sufficiently difference between models, while 
the STEKF has a “Smoothing” effect on model. The “Smooth-
ing” effect on models result in the difference between models 
will not significant, which makes fault detection and isolation 
more difficult. To solve the problem mention above, an effec-

Table 2. The STEKF algorithm. 
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Table 3. The EKF algorithm. 
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tive solution approach was used in this paper. When updating 
the model probability, the traditional EKF was used to calcu-
late the filter residuals and the covariance matrix of the filter 
residuals. The suboptimal fading factor was introduced during 
the filtering and state estimation so that the above-mentioned 
problem can be addressed effectively. To evaluate the per-
formance of the method proposed in this paper, it was com-
pared with the traditional EKF method. The EKF algorithm is 
shown in Table 3, and detailed information can be found in 
Ref. [5]. 

 
3.2 Hypothesis conditional probability 

In the MM-based FDI approach, the mode set represents all 
possible current conditions of the gas turbine, including 
healthy and different faulty conditions. At a given discrete 
time k, each filter will produce a filter residual vector, which 
represents the approximation of each mode and the current 
operating condition of gas turbine. The hypothesis conditional 
probability was used to represent the approximation of these 
modes and the current condition. Hypothesis conditional 
probability pi(k) is defined as the probability that the gas tur-
bine operating condition is mi (i = 1, 2…n denotes the number 
of the modes) when given a measurement vector yk at discrete 
time k, that is: 

 
( ) Pr[ ( ) ] .i i k kp k m m y t y= = =              (5) 

 
The hypothesis conditional probability at a given time k of 

all modes can be recursively calculated from the values at time 
k-1 and the conditional probability densities for the current 
measurement yk, as shown in Eq. (6): 
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where fz(yk|i,yk-1) denotes the conditional probability density of 
the i-th mode when the measurements is yk and pi(k-1) denotes 
the hypothesis conditional probability of the i-th mode at time 
k-1. The Gaussian conditional probability density function is 
shown in Eq. (7). 
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where m is the dimension of the measurement parameters, Sj is 
the innovation vectors, and νj is the filter’s residual vectors, 
and these vectors can be obtained in the filtering process. 

 
3.3 Fault detection and isolation logic 

By comparing the hypothesis conditional probabilities of 
these modes that represent the possible operating conditions 
of gas turbine, it is possible to detect and isolate the fault of 
the gas turbine. If the current operating condition of the gas 

turbine is consistent with the j-th mode mj, then the filter re-
sidual of mode mj will be close to zero, so the corresponding 
conditional probability densities will be close to maximum. 
Meanwhile, the filter residuals of the other modes are larger 
than that of mode mj, and the conditional probability densities 
are smaller than that of mode mj. According to Eq. (6), with 
recursively calculation, the hypothesis conditional probability 
of mode mj will increase until close to 1, while the hypothesis 
conditional probability of the other modes will decrease until 
close to 0. Therefore, the maximum probability criteria can be 
used to detect and isolate the fault, as shown in Eq. (8). 
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where j represents the j-th mode that is consistent with the 
current operating condition of the gas turbine. 

 
4. Jacobian matrix determination based on analytic 

linearization 

The STEKF estimation accuracy and computational cost 
depend on the calculation frequency of the Jacobian matrix. 
However, the calculation of the Jacobian matrix of the gas 
turbine nonlinear dynamic model is complicated, so some 
methods have been proposed, such as periodic updates or di-
rect calculation offline, but they will increase the estimate 
error [9]. In addition, the MM-based FDI approach used in 
this paper needs to design a bank of filters, so it will have a 
large computational cost if using the existing methods. To 
overcome these problems, in this paper, the non-equilibrium 
analytic linearization method was used to derive a generalized 
analytic expression for the Jacobian matrix under the non-
equilibrium point. 

 
4.1 Non-equilibrium linearization 

The engine model as shown in Eq. (1) is a nonlinear system 
as shown in Eq. (9). The elements of the vector F are equal to 
1 when the gas turbine is in healthy condition, and at least one 
element is less than 1 when a fault occurs. 
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where x denotes the state variable, x = [Nl, Np, T3, P3, P4, P5]T; 
u denotes the control variable, u = wf; y denotes the output 
variable, y = [ Nl, Np, T2, P2, T4, P4, T5, P5]T; F denotes fault 
factors, F = [Fmc, Fηc, FmcT, FηcT, FmpT, FηpT]T. 

At arbitrary point (xi, Fi, ui), a Taylor expansion was per-
formed on Eq. (9), and the high order terms were ignored. A 
linearization model as shown in Eq. (10) can be obtained [22]: 
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And f(xi, Fi, ui) represents the function value of f(x, F, u) at 
the point (xi, Fi, ui). Similarly, h(xi, Fi) represents the function 
value of h(x, F) at the point (xi, Fi, ui). These values are zero 
when the gas turbine is operating in a steady state condition 
and non-zero during a transition condition. 

Eq. (10) can be rewritten as Eq. (11): 
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Therefore, the Jacobian matrixes are as follow: 
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The Jacobian matrixes are dynamic matrixes and change 

with the operating condition of gas turbine. The elements in 
the matrixes are determined by the parameters of the gas tur-
bine nonlinear model. Thus, if the generalized expressions of 
the Jacobian matrix are determined, it is possible to determine 
the Jacobian matrix quickly based on the current parameters of 
the nonlinear model.  

 
4.2 Jacobian matrix 

Fig. 3 shows the decomposed modules and the information 
flows of the nonlinear model. As shown in this figure, the 
models of the main component are decomposed into several 
sub-modules, and each sub-module includes a nonlinear equa-
tion. For instance, the model of the compressor is decomposed 
into the temperature sub-module, the corrected mass flow sub-
module and the isentropic efficiency sub-module. Linearized 
each sub-module, the linearization model of the component 
can be derived by symbolic computation according to the 
information flows between sub-modules. Then, the general-
ized expression of the Jacobian matrix can be derived by lin-
earization of the nonlinear model. In this paper, the derivation 
of the Jacobian matrix at a non-equilibrium point is briefly 
described below. 

The analytic linearization method can only be directly per-
formed on the expression, but for the gas turbine nonlinear 
model, the component map cannot be presented as an expres-
sion instead of as a look-up table. But the mass flow can be 

expressed as a function of rotational speed and pressure ratio 
(Namely, m = f(N, π)) and the efficiency can be expressed as a 
function of mass flow and rotational speed (Namely, η = f(m, 
N)). In addition, the mass flow and the efficiency will be 
changed when the fault occurs; in other words, the mass flow 
and the efficiency can also be expressed as a function of the 
fault factors. Hence, the mass flow and the efficiency sub-
modules can be expressed as Eq. (12). 

 
( , , )

( , , ) .
m mm f N F

f m N Fh h

p
h

=ìï
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               (12) 

 
Linearized Eq. (12) by using the central difference method, 

as shown in Eq. (13). 
 

m m i m mi

i i

m D u m D u
D u D uh h h hh h

= + -ìï
í = + -ïî

          (13) 

 
where Dm, Dη denote the linearization matrix, and um = [N π 
Fm]T, uη = [m N Fη]T, umi = [Ni πi Fmi]T, uηi = [Ni πi Fmi]T. 

The other sub-modules shown in Fig. 3 can be directly lin-
earized. The component linear model can be derived accord-
ing the relationship between the sub-modules that form the 
component model by using symbolic computation. Finally, the 
nonlinear equation shown in Eq. (1) can be linearized, and the 
intermediate variable of the equation can be eliminated ac-

 
 
Fig. 3. Modules and the information flow of the gas turbine nonlinear 
mathematical model. 
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cording to the relationship between the components as shown 
in Fig. 3. The analytic linearization equation of Eq. (1) at arbi-
trary point is shown in Eq. (14). 
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     (14) 

 
where u contains state variables, fault factors and control vari-
ables. Rewriting Eq. (14) as a state space model, the variables 
are divided into two sets, one set of state variables and one set 
of fault factors and a control variable. In this paper, there are 
six state variables, and the control variables are the fuel flow 
and the six fault factors. Similarly, according to Fig. 3, the 
linearization equation of the measurement parameters can be 
derived by the analytic linearization method. Thus, the ana-
lytic expression as shown in Eq. (11) can be obtained. The 
analytic linearization process indicates that the analytic ex-
pression of the Jacobian matrix does not change with the op-
erating conditions, but the Jacobian matrix will vary with the 
operating conditions because it is a function of the gas turbine 
parameters. 

It is important to note that the proposed Jacobian matrix de-
termination approach needs to call the engine nonlinear model 
only once in each step, and then, the Jacobian matrix can be 
obtained according the analytic expression. Traditional ap-
proaches, such as the perturbation method, need to call the 
engine nonlinear model 14 times to obtain the perturbations 
and then used to generate the Jacobian matrix [23]. Therefore, 
the computation cost of the proposed approach is less than that 
of the traditional approach and more suitable for on-line appli-
cations. 

 
4.3 The model of the mode set 

The effect of fault on the gas turbine measurement parame-
ters is similar to the effect of the control variable. When the 
gas turbine is in the healthy condition, the fault factors are 
equal to one, namely, F = 16x1, and will change when the fault 
occurs. For example, when the compressor occurs a fault that 
causes a decrease in the corrected mass flow, then Fmc < 1, and 
the other fault factors remain 1. The gas turbine measurement 
parameters will deviate from the healthy condition, so these 
deviations may be considered as a result of the change in fault 
factors. Conversely, fault can be implanted into the healthy 
model by changing the fault factors. Considering the role of 
control variables, the fault factors were regarded as control 
variables in this paper. By changing the value of the fault fac-
tors, it can control the healthy model to become the corre-
sponding faulty model. Therefore, as shown in Eq. (15), the 

fault factors are considered as the control variables, and dif-
ferent fault models can be obtained by changing the fault fac-
tors which control the healthy model. Finally, the model of the 
mode set is: 

 

1

 var

1

( ,[ , ])

( ,[ ,0])

q

j j
j

control iable

q

j j
j

x f x b z u

y h x b z

=

=

=

=

å

å

&
14243

                 (15) 

 
where u denotes the real control variable, namely wf, ∑q 

j=1bjzj 
denotes the virtual control variables consisting of the fault 
factors, q represents the number of possible faults in the gas 
turbine. In this paper, the value is 6. bj represents the fault 
severity of the j-th fault, and it is a scalar. zj is a 6×1 vector 
representing the location of the fault. When a fault occurs, the 
value of the corresponding element in zj is 1, and the value of 
other elements is 0. In addition, when the gas turbine is in a 
healthy condition, ∑q 

j=1bjzj is a 6×1 unit vector, and it is a 6×1 
nonzero vector in the event of a fault. Therefore, the mode set 
that includes the healthy mode and the different faulty modes 
can be obtained from Eq. (15), and this will contribute to the 
automatic generation of the model set, which will be described 
in detail in Sec. 5. 

 
5. Implementation of MM-based FDI approach 

In this section, the hierarchical detection and isolation archi-
tecture was developed for both single and multiple faults in 
the gas turbine, and the automatic generation method of the 
mode set was proposed based on the non-equilibrium analytic 
linearization model. 

 
5.1 Hierarchical detection and isolation architecture 

In this paper, six component faults corresponding to the six 
fault factors mentioned in Table 1 were investigated. Hence, 
the total number of modes in the mode set is seven, where 
mode 1# corresponding to the healthy condition and modes 2# 
to 7# corresponding to the six different faulty conditions. The 
hierarchical architecture is shown in Fig. 4. 

In this architecture, fault detection and isolation is divided 
into multiple levels, and each level is activated in sequence. 
The first level is the single fault detection and isolation level, 
assuming the gas turbine starts from the healthy condition. 
Thus, the mode set in this level has a healthy mode and the 6 
different faulty modes correspond to 1 % decrease in each 
fault factor with respect to health condition. When starting to 
detect and isolate faults, only the first level is activated, and 
the other levels are deactivated. When a fault is detected and 
isolated, the algorithm will activate the next level and deacti-
vate the previous level, and the mode set in the next level will 
be automatically generated according the result of the previous 
level. This will be described in detail in the next part. 
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For instance, as shown in Fig. 4, if the compressor mass 
flow fault is detected and isolated in the first level, then the 
mode set of level 2 will be obtained according the result, and 
mode 1# corresponds to the compressor mass flow fault with a 
1 % decrease, while mode 2# corresponds to a compressor 
mass flow fault with more severity, considering a 2 % de-
crease. Modes 3#-7# correspond to double concurrent faults, 
including a compressor mass flow fault with a 1 % decrease 
and one of the other different faults with a 1 % decrease. The 
mode set of the third level and the subsequent levels are ob-
tained similar to level 2. 

 
5.2 Mode set automatic generation method 

In this section, an online automatic generation method is 
proposed, and the online automatic generation of the seven 
modes in the model set is described in detail. 

Table 4 shows the possible fault modes in level 1 and level 
2 of the hierarchical architecture [15]. In level 1, there are only 
7 modes, but in level 2, there are 42 modes, mainly classified 
into 6 sets, with each set corresponding to one of the possible 
detection and isolation results. For instance, if the compressor 
mass flow fault is detected and isolated in level 1, then the 
first set will be selected as the mode set of level 2. However, 
the kind of fault occurs cannot be known before it is isolated, 
so all possible modes need to be obtained in advance. And 
then, the modes are chosen according to the result of the pre-
vious level. However, the number of the possible modes is too 
large to practical application. Therefore, in this paper, an on-
line automatic generation method was proposed to overcome 
the problem mentioned above. In this method, when a fault is 
detected and isolated, the matrix ∑q 

j=1bjzj which consisting of 
the fault factors defined in Eq. (15) will be known, and the 
new matrix corresponding to the next level can be calculated 
based on the previous level. Then, the mode set of the next 

level can be obtained based on the healthy mode through the 
control of the new matrix consisting of fault factors. 

Therefore, to generate the mode set in the next level is 
mainly to obtain the matrix ∑q 

j=1bjzj in the next level. The 
proposed on-line automatic generation algorithm is shown in 
Table 5. This algorithm first determines the number and loca-
tion of the fault modes that occurred in the previous level ac-
cording to the results, namely, the hypothesis conditional 
probability vector pupper level and the matrix Fupper level. For the 
hypothesis conditional probability vector, a threshold is se-
lected to determine the occurrence of the fault. Then, the ma-
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0.99

mc

pt

F
Fh

D =
D =

NextLevelF

0.3 : 0.05 :1frw =

 
 
Fig. 4. Hierarchical detection and isolation architecture. 

 

Table 4. Operating modes corresponding to various possible two con-
current scenarios. 
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Table 5. Mode set automatic generation algorithm. 
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Step 3: Automatic generate the mode set of the next level according the 
Eq. (15) 
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Notation 

pupper level denotes the hypothesis conditional probability matrix of the 7 
modes in the previous level, a 7x1matrix; 
Fupper level denotes the fault factors matrix of the next level, a 6x7matrix; 
Fnext level denotes the fault factors matrix of the previous level, a 6x7 matrix 
si denotes the increased severity in the next level, a scalar. si = 0.01 in this 
paper. 
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trix of the next level, Fnext level, is obtained. Finally, this matrix 
will be implanted in Eq. (15), and the seven possible fault 
modes will be obtained based on the healthy model through 
the control of the matrix to realize the automatic generation of 
the model set. With this algorithm, the mode set of each level 
can be automatically generated according to the results of the 
previous level and does not need to be obtained in advance. In 
this paper, it is assumed that the severity of the fault increases 
with the activated level of the hierarchical architecture and the 
severity of each fault is equivalent to the decrease of fault 
factors. In this paper, assuming the fault factors decrease by si 
each time, namely, 0.01. 

 
5.3 Case study description 

To verify the effectiveness of the proposed approach, the 
nonlinear MM-based FDI approach, which based on the 
STEKF, was developed for detection and isolation of both 
single and multiple faults of a two-shaft marine gas turbine in 
the simulation environment. The performance of the approach 
was analysed in different fault scenarios and conditions. In 
addition, the effects of Q and R on the MM-based FDI ap-
proach performance were also investigated. Therefore, three 
cases were mainly investigated in this paper. 

The first case mainly focuses on the detection and isolation 
of single fault with different severities under steady state con-
dition and transient condition. In this case, the detection factor 
and the isolation factor were introduced to evaluates the per-
formance of the proposed MM-based FDI approach. 

The second case mainly focuses on the fault detection and 
isolation of multiple faults with different severities under a 
steady state condition. It is assumed that a compressor mass 
flow fault with a 1 % decrease and a compressor turbine mass 
flow fault with a 2 % decrease occur in the gas turbine, and 
the results of the fault detection and isolation were analysed. 

The third case mainly focuses on investigating the effects of 
0.1*Q and 0.1*R on the performance of the proposed MM-
based FDI approach. 

In this paper, it is assumed that, during the detection and 
isolation of multiple faults, the time between the occurrences 
of faults is sufficient for the MM-based FDI algorithm to de-
tect and isolate the first fault. The analysis and discussions of 
the results are presented in the following section, and all these 
results were compared with that of the traditional EKF-based 
MM approach. 

 
6. Simulation results and analysis 

In this section, the results of the case studies mentioned in 
the previous section were analysed and discussed. In this pa-
per, it is assumed that the initial condition of the gas turbine is 
in healthy condition, it means that the initial value of the hy-
pothesis conditional probability of the mode that corresponds 
to the healthy condition is 1, while the initial value of the hy-
pothesis conditional probability of other modes is 0. 

Considering the poor tracking ability of the Kalman filter 
for the mutation condition and to avoid the problem that the 
hypothesis conditional probability of the mode is close to 0 
and changes slowly when the fault occurs in this paper, a 
minimum hypothesis conditional probability of 0.001 was set 
for each mode.  

 
6.1 Fault detection and isolation factors 

To detect and isolate faults, the detection and isolation 
threshold pthreshold was introduced. The detection threshold is 
used to indicate that the current condition has changed when 
the probability of the current mode decreases to the threshold. 
The isolation threshold is used to indicate that the current con-
dition is ensured when the probability of a new mode in-
creases to the threshold. In this paper, it is assumed that the 
detection threshold equals the isolation threshold, and the 
threshold value is 0.98, as shown in Fig. 5. The detection and 
isolation threshold in this paper is only used for determining 
the fault detection and isolation time, and it does not affect the 
false alarm and the missing alarm. 

In addition, to analyse the detection and isolation perform-
ance of the proposed approach, the detection factor (fd) and 
isolation factor (fi) were introduced. They are defined as the 
ratios of the detection time and isolation time to the transient 
time caused by the fault, respectively. When the value of the 
factor is greater than 1, it means that the detection time or the 
isolation time is greater than the transition time caused by the 
fault. It indicates the fault can be detected and isolated, but not 
in real time. When the value is less than 1, it indicates that the 
fault can be detected or isolated in real time. The defined de-
tection and isolation factors are shown in Eq. (16), and Fig. 5 
shows schematic of the detection time, isolation time, and 
transient time. 

 
det
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d ection transition
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            (16) 

 
6.2 Single fault detection and isolation 

In this case, the detection and isolation of a single fault with 
different severities in the two-shaft marine gas turbine under 
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Fig. 5. Schematic of the detection threshold, the detection time, the 
isolation time and the transient time. 
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steady state and transient conditions were investigated. The 
six faults mentioned in Sec. 2 were detected and isolated by 
using the proposed STEKF-based MM approach and com-
pared with the results of traditional EKF-based MM approach. 
In this case, the severities of the injected fault include 1 %, 
3 % and 5 % decreases, and all faults occur at t = 5 s. Table 6 
shows the detection time, isolation time, and transition time of 
both the proposed approach and the traditional approach. 

Table 6 shows that, for single fault detection and isolation, 
with the fault severity increase, the detection time and the 
isolation time will decrease. This is mainly due to the more 
obvious difference between modes that with more serious 
fault, resulting in a faster change in the hypothesis conditional 
probability of these modes. Comparing the detection time and 
the isolation time of the two approaches, it can be seen that 
both approaches can detect and isolate the fault accurately, 
and the detection time and the isolation time of the proposed 
approach are shorter than the traditional approach. Fig. 6 
shows the detection and isolation results when injecting a 1 % 
decrease in each fault factor at t = 5 s, corresponding to the 
first row of each mode in Table 6. It needs to mention that the 
pi in the Fig. 6 and the subsequent figures indicates the hy-
pothesis conditional probability of each mode which is de-
fined by Eq. (6). 

Fig. 7 shows the detection factor and the isolation factor of 
both approaches for each fault with different severities. The 
figure shows that the detection and isolation factors in both 
approaches decrease rapidly with increase in the severity of 
fault. It indicates that fault detection and isolation is easier for 
a more serious fault. In addition, as seen from Fig. 7, both the 
detection factor and the isolation factor for single fault detec-
tion and isolation are less than 1, indicating that these faults 

can be detected and isolated in real time. 
To evaluate the performance of the proposed approach in 

transient condition, the fault injected during the transient con-
dition was investigated. In this case, the relative fuel flow 
decreases linearly from 1 at t = 5 s to 0.8 at t = 25 s, while the 
compressor mass flow fault with 1 % decrease is injected at t 
= 15 s, and the result shows in the Fig. 8. The figure shows 
that the proposed approach can still detect and isolate the fault 
 
Table 6. The detection and isolation time of the STEKF and the EKF. 
 

Fault mode Severity d EKFt  d STFt  i EKFt  i STFt  trt  
1 6.60 6.34 8.86 8.64 17.00 

3 5.26 5.22 5.50 5.50 18.36 Mode 2 

5 5.16 5.12 5.26 5.24 18.76 

1 5.92 5.42 6.96 5.96 13.98 

3 5.14 5.08 5.28 5.16 15.48 Mode 3 

5 5.08 5.06 5.16 5.08 16.94 

1 7.84 7.64 12.12 11.90 16.02 

3 5.44 5.34 5.84 5.84 17.04 Mode 4 

5 5.24 5.12 5.46 5.28 16.54 

1 6.44 5.82 8.28 7.38 14.28 

3 5.18 5.08 5.50 7.30 16.22 Mode 5 

5 5.08 5.06 5.20 6.18 13.52 

1 9.84 9.02 16.74 15.54 17.76 

3 5.70 5.56 6.44 7.76 14.88 Mode 6 

5 5.36 5.18 5.64 6.14 15.84 

1 5.78 5.40 7.16 6.22 15.84 

3 5.10 5.06 5.28 5.14 12.76 Mode 7 

5 5.06 5.04 5.12 5.08 13.60 

 
 

 
 
Fig. 6. The detection and isolation results of the STEKF based multiple model approach and the EKF based multiple model approach when injected 
each fault with 1 % decrease. 
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accurately under a transition condition, but the detection and 
isolation time is longer than that under a steady state condition. 
In addition, the detection and isolation time of the proposed 
approach is shorter than the traditional approach. 

 
6.3 Multiple faults detection and isolation 

In this case, multiple fault detection and isolation was stud-
ied by using the proposed approach and compared with the 
results of the traditional approach. Suppose the faults do not 
occur simultaneously and the time intervals between the faults 
are sufficient for the MM-based FDI algorithm to detect and 
isolate the first fault. In this paper, assume that a 1 % decrease 
in the compressor mass flow is injected at t = 5 s and a 2 % 
decrease in the compressor turbine mass flow is injected at t = 
25 s. The MM-based FDI approach based on the hierarchical 

architecture described in Sec. 5 was developed to detect and 
isolate the multiple faults. The hypothesis conditional prob-
abilities of each mode in different levels of the two approaches 
are shown in Figs. 9 and 10, respectively. 

Figs. 9 and 10 show that, for the first fault, the detection and 
isolation time is the same as in single fault detection and isola-
tion. For the second fault, although both approaches can accu-
rately detect and isolate the fault, the proposed approach has a 
slightly longer detection and isolation time than the traditional 
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Fig. 7. The detection factor and isolation factor of the STEKF based 
multiple model approach and the EKF based multiple model approach. 
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Fig. 8. The detection and isolation results of the STEKF-based MM 
approach and the EKF-based MM approach under transition condition. 
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Fig. 9. Multiple faults detection and isolation results of the proposed 
STEKF-based MM approach under steady state condition. 
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Fig. 10. Multiple faults detection and isolation results of the EKF-
based MM approach under steady state condition. 
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method. In addition, the proposed mode set automatic genera-
tion method can generate the mode set of the next level ac-
cording to the detection and isolation results of the previous 
level. Thus, each level can maintain seven possible modes, 
which greatly reduces the computational cost. 

Similarly, for the above described multiple faults, the pro-
posed approach and the traditional approach were used to 
detect and isolate the faults under a transient condition. In this 
case, the relative fuel flow starts to decrease linearly from 1 at 
t = 5 s and decreases to 0.8 at t = 40 s, while the first fault is 
injected at t = 15 s, and the second fault is injected at t = 30 s. 
The results for detection and isolation by two approaches are 
presented in Figs. 11 and 12. These figures show that the two 
approaches can still accurately detect and isolate the injected 
faults. However, the detection and isolation time required by 
two approaches are longer than that under steady state condi-
tions, and the time taken by the proposed approach to detect 
and isolate the second fault is longer than that of the tradi-
tional approach. 

As seen from the above results for single and multiple fault 
detection and isolation, the performance of the proposed mul-
tiple model approach based on STEKF is similar to that of the 
traditional multiple model approach based on the EKF in sin-
gle fault detection and isolation. However, for multiple fault 
detection and isolation, the detection time and the isolation 
time of the proposed multiple model approach based on 
STEKF is slightly longer than that of the traditional approach, 
especially for detecting and isolating the second fault. 

 
6.4 Effect of model uncertainty on fault detection and isolation 

In this section, the effect of model uncertainty on the 

performance of the nonlinear multiple model fault detection 
and isolation approaches was investigated. In this case, the 
influence factors that cause model uncertainty in the perform-
ance of the fault detection and isolation algorithm were stud-
ied, such as the inaccuracy of the system noise covariance Q 
and the inaccuracy of the measurement noise covariance R. 
The results of single fault detection and isolation show that 
with the fault severity increase, the differences between these 
modes that represent the possible operating conditions of the 
gas turbine will more significant, and the fault will be easier to 
detect and isolate. In other words, fault detection and isolation 
is more difficult for the injected fault with 1 % decrease than 
the fault with 3 % and 5 % decrease. Therefore, a fault with 1 
% decrease was selected in this section to investigate the ef-
fect of model uncertainty on the performance of the fault de-
tection and isolation algorithm and to compare the robustness 
of the STEKF-based MM approach to model uncertainty with 
that of the EKF-based MM approach. 

 
6.4.1 Effect of system noise covariance Q 

In this section, the effect of model uncertainty caused by the 
inaccuracy of the initial system noise covariance Q on the 
performance of the two algorithms was investigated. In this 
case, by artificially reduce the system noise covariance to 
0.1*Q, and the other parameters remain unchanged. The se-
verities of the injected fault are decreased by 1 %, and each 
fault occurs at t = 5 s. The results of detect and isolate the 
injected fault by using the proposed STEKF-based MM ap-
proach and the traditional EKF-based MM approach are pre-
sented in Fig. 13. 

As seen from the figure, the approach proposed in this pa-
per can still accurately detect and isolate the injected faults 
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Fig. 11. Multiple faults detection and isolation results of the proposed 
STEKF-based MM approach under transition condition. 
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Fig. 12. Multiple faults detection and isolation results of the EKF-
based MM approach under transition condition. 
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even when the initial noise covariance of the system is inac-
curate. In contrast to the case corresponding to Fig. 6, the 
detection and isolation time of all modes except the com-
pressor turbine efficiency fault are increase, and for the 
compressor turbine efficiency fault, the probability of other 
modes will varying but does not influence the isolation result. 
For the multiple model fault detection and isolation ap-
proach based on the EKF, although the injected fault eventu-
ally can be accurately detected and isolated, but for the com-
pressor mass flow fault, the hypothesis conditional probabil-

ity of the mode corresponding to the power turbine effi-
ciency fault will increase and may lead to incorrect fault 
isolation. In addition, when a compressor turbine efficiency 
fault is injected, the probability of the mode corresponding 
to the compressor efficiency fault will increase to greater 
than 0.98, which may cause a false alarm. By comparing the 
detection and isolation results of the two methods, it indi-
cates that the proposed method has better robustness to the 
model uncertainty caused by the inaccuracy of initial system 
noise covariance. 

 
 
Fig. 13. The detection and isolation results of two approaches when the initial system noise covariance is 0.1*Q. 

 
 

 
 
Fig. 14. The detection and isolation results of two approaches when the initial system noise covariance is 0.1*R. 
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6.4.2 Effect of sensor noise covariance R 
The effect of the model uncertainty caused by the inaccu-

racy of the initial sensor noise covariance R on the perform-
ance of the two approaches was studied. In this case, by artifi-
cially reduce the sensor noise covariance to 0.1*R, and the 
other parameters remain unchanged. Consequently, the sever-
ities of the injected fault are decreased 1 %, and each fault 
occurs at t = 5 s. The fault detection and isolation results of the 
two approaches are shown in Fig. 14.  

As seen from the figure, the approach proposed in this paper 
can accurately detect and isolate the injected fault, but the 
detection and isolation time is increased than the case corre-
sponding to Fig. 6. For the traditional multiple model ap-
proach based on the EKF, when the initial sensor noise co-
variance decreased to 0.1*R, the hypothesis conditional prob-
ability of each mode fluctuated during detection and isolation 
process, especially for the power turbine mass flow fault. This 
is mainly due to the poor robustness of the EKF to model un-
certainties, whereas the robustness of the STEKF to model 
uncertainty makes the detection and isolation results less af-
fected. 

 
7. Conclusion 

In this paper, the gas turbine nonlinear fault detection and 
isolation approach based on multiple models was studied. 
An improved STEKF-based MM approach was proposed to 
overcome the shortcoming of poor robustness to model un-
certainty of the traditional EKF-based MM approach, and to 
keep the filter residuals follow Gaussian distribution to sat-
isfy the Gaussian density function. In addition, a mode set 
automatic generation method was also proposed in this paper, 
in which the mode set of the current level will be automati-
cally generated according to the results of the previous level. 
The approach proposed in this paper was applied to fault 
detection and isolation of a two-shaft marine gas turbine 
engine and compared with the results of traditional EKF-
based MM approach. The results show that the performance 
of the approach proposed in this paper and that of the tradi-
tional approach are similar for single fault detection and 
isolation, and in multiple fault detection and isolation, al-
though the detection time and the isolation time of the pro-
posed approach are slightly longer than that of the traditional 
approach, but it more robust to mode uncertainty than the 
traditional approach. 
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