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Abstract 
 
A Markov chain simulation was performed to extract points in a failure region. A Kriging metamodel was constructed to approximate 

a limit state based on the points extracted by the Markov chain simulation. A kernel sampling density was constructed to approximate the 
optimal importance sampling density. The points extracted in the failure region by the Markov chain simulation were assumed as a mean 
of each kernel. An importance sampling method was applied to calculate the failure probability. In the importance sampling method, 
points are extracted from the kernel in the vicinity of a limit state. Considering the statistical distance as well as the learning function, 
additional experimental points were selected for the kriging metamodel. A stable numerical calculation method was applied to find the 
parameters of the kernel sampling density. The completeness of the Kriging metamodel was evaluated on the basis of possible changes in 
failure probability.   
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1. Introduction 

Many studies have been made to calculate the probability 
that a product or a system fails to perform its intended func-
tion, with the assumption that the uncertainties in the design 
are random variables. A performance function is defined as 
the state of design. The performance function ( g ) has a posi-
tive value in a safe state and a negative value in a failure state. 
Also, when the performance function is zero, it is known as a 
limit state. 

The failure probability (Pf) is given by Eq. (1) when the un-
certainties are defined as a random variable vector 

1 2, , , T

n= é ùë ûL%q q q q and the joint probability density of %q  is 

( )p %q . ( )gI %q  is an indicator function that is 1 when the per-

formance function is negative. Otherwise, the indicator func-
tion is zero. Θ  is the domain of possible values of %q . In 
most cases, it is difficult to calculate Eq. (1) analytically, and 
an approximated value is calculated by numerical calculations. 
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One of the ways to approximate Eq. (1) is to use a Monte 
Carlo simulation. The Monte Carlo simulation is robust for 
nonlinear limit states, but requires considerable computational 
cost [1]. There are two approaches to reduce the computa-
tional cost.  

The first is to reduce the number of performance function 
calculations. These include the importance sampling method 
and subset simulations. The efficiency of the importance sam-
pling method is determined by the importance sampling den-
sity. The points in the failure region have been extracted more 
easily by Markov chain simulation [2]. With these samples, 
we can construct the importance sampling density in the form 
of a kernel sampling density. 

The second is to reduce the computation time required for 
one calculation of a performance function. It takes a long 
computational time when a large numerical analysis is neces-
sary such as finite element analysis. In addition, the Monte 
Carlo simulation requires a tremendous number of evaluations 
of a performance function to calculate a meaningful failure 
probability. 

At first, to reduce the computation time, a polynomial-based 
response surface was applied to approximate the performance 
function [3, 4]. In the past, the Kriging metamodel was ap-
plied to approximate the performance function [5, 6]. In the 
early stages, many studies constructed a Kriging metamodel 
precisely for the entire range of the performance function. 
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Recently, studies are being conducted to construct a Kriging 
metamodel precisely in the vicinity of the limit state where it 
is important to determine whether the value of a performance 
function is negative or positive. The preciseness of the pre-
dicted value of a performance function is no longer important. 

In this paper, an improvement of the adaptive importance 
sampling method is proposed. The method is based on the 
Markov chain simulation, kernel sampling density, and the 
Kriging metamodel. A kernel sampling density construction 
method is proposed to extract more points in the vicinity of a 
limit state. A stable numerical method is also proposed to find 
the parameters of the kernel sampling density. A method to 
evaluate the completeness of the Kriging metamodel is pro-
posed by calculating the possibility that the calculated failure 
probability changes due to the uncertainty of the Kriging met-
amodel. 

 
2. Fundamental theory 

2.1 Importance sampling method 

The importance sampling method has been applied to re-
duce the number of calculations from a Monte Carlo simula-
tion. In a Monte Carlo simulation, points are extracted accord-
ing to the probability density function of random variables. 
But, in the importance sampling method, points are extracted 
according to the importance sampling density.  

The importance sampling density is assumed to extract 
points more easily in a failure region. In Eq. (2), ( )p %q  is the 
joint probability density function of a random variable vector 
and ( )h %q  is the assumed importance sampling density. Eq. 
(2) is equivalent to Eq. (1) 

Because the variance of a predicted failure probability is ze-
ro, the ( )opth %q  in Eq. (3) is the optimal importance sampling 
density. But, ( )opth %q is not practical because it includes a con-
stant Pf . Therefore, the importance sampling density is as-
sumed to be similar to the optimal importance sampling den-
sity as much as possible. 

 

( ) ( )
( ) ( )Θ

,f g

p
P I h d

h
= ò

%
% % %

%
q

q q q
q

 (2) 

( ) ( ) ( )
.

g

opt
f

I p
h

P
=

% %
% q q
q  (3) 

 
2.2 Adaptive importance sampling method 

We improved the adaptive importance sampling method 
proposed by Au [2] by modifying a sampling scheme from a 
kernel density. The modified sampling scheme is introduced 
in Sec. 2.3 in this paper. Au performed a Markov chain simu-
lation using a Metropolis algorithm to easily extract points 
from a failure region. Also, the kernel sampling density is 
constructed with these points as the mean of each kernel. This 
kernel sampling density is assumed to be the importance sam-

pling density of Eq. (2). The Metropolis algorithm is per-
formed in the following procedure: 

 
Metropolis algorithm 
(1) An arbitrary point is selected in the failure region as the 

starting point. This point can be chosen by the researcher’s 
intuition and is known to have little effect on the results. 

(2) If the current point is A% , then one point B%  is ex-
tracted from a uniform distribution centered on A% . The side 
length of the hyper-rectangle of a uniform distribution is de-
termined by applying Eq. (4) [2]. In Eq. (4), is  is a standard 
deviation of each random variable. M is the number of sam-
pling points of Markov chain simulation. n is the number of 
random variables. 

 
( )1/ 46 .n

i il M - += s  (4) 
 
(3) ( ) ( ) ( ) ( )/g gI B p B I A p A= % %% %h  is calculated. 
(4) If 1³h , B%  is selected as the next point for a Markov 

chain simulation. 
(5) If 1<h , B%  is selected as the next point for a Markov 

chain simulation with a probability of h . 
 
In the above procedure, the point selected as the next point 

of a Markov chain simulation is called an “Accepted point” in 
this paper. M points are extracted in this study. The point that 
was not selected as the next point is called the “Rejected 
point” in this paper and the number is MR. 

 
2.3 Kernel sampling density 

In this study, the kernel sampling density of Eq. (5) was 
constructed by a linear combination of kernels that are a nor-
mal distribution of Eq. (6). The covariance matrix of M points 
extracted by the Markov chain simulation is applied to S in Eq. 
(6). In Eq. (6), n is the number of random variables. 

Au proposed to uniformly extract points from all kernels [2]. 
However, in this study, the points were extracted only in the 
kernel near a limit state. To do this, we calculated the mean 
( m ) and standard deviation (s ) of the distances from the 
origin to the points generated by a Markov chain algorithm in 
the standard normal space. We also only extracted points from 
kernels that are centered on the points within +m s . In this 
study, the number of kernels from which the points are ex-
tracted is marked as Mk. 
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where 2 2 .i iw l= × ×Σ S  

In Eq. (6), w is the value for adjusting the covariance of all 
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kernels, and il  is the value for adjusting the covariance of 
each kernel. In this study, the optimum w was found by apply-
ing the method suggested by Au [2]. Also, the calculation 
method of il  proposed by Au was improved for numerical 
calculations. 
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Au calculated the il  of Eq. (6) through Eq. (7) [2]. When 

the value of ( )p %q  is small and the value of M is large, the 
numerical value of Eq. (7) becomes zero. To prevent such a 
numerical error, il  is calculated through Eq. (8). The value 
of α  is 0.5, as suggested by Au [2]. 
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Eq. (7) includes ( )( )
1

M
j

j

p
=
Õ %q . Because ( )( )jp %q  is always 

less than one, when M is large, ( )( )
1

M
j

j

p
=
Õ %q  becomes zero 

numerically. ( )( )
1

M
j

j

p
=
Õ %q  of Eq. (7) is converted to 
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1
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j
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log p
M =
å %q  in Eq. (8). ( )( ){ }jlog p %q  of Eq. (8) can 

express a number much smaller than ( )( )jp q%  of Eq. (7) nu-

merically. When ( )( )
1

M
j

j

p
=
Õ %q  in Eq. (7) becomes zero numeri-

cally, ( )( ){ }
1

1 M
j

j

log p
M =
å %q  of Eq. (8) does not become zero 

numerically. When 100 points were extracted from the failure 
region of Fig. 1, the value of Eq. (7) was zero numerically, 
whereas the value of Eq. (8) was not zero numerically. 

 
2.4 Kriging metamodel 

To reduce the computation time of the performance func-
tion, the Kriging metamodel has been applied by many re-
searchers [6]. 

The Kriging metamodel of Eq. (9) is obtained by adding a 
stochastic process to a polynomial approximation model [5, 7]. 
The F in Eq. (9) is expressed by Eqs. (10) and (11). f%  is a 
vector of q functions, and F is a s q´  matrix when there are 
numerous experimental points as s. The experimental points 
are points where both the input and output values of a per-
formance function are known. %b  is equal to the coefficient 
resulting from the least square method. Z%  represents the 

Gaussian process. The mean of Z%  is zero and the variance of 
Z%  is 2

Zs . The covariance of Z%  is given by Eq. (12). 
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( ) ( )( ) 2, .i j ZCov Z x Z x = C% %% % s  (12) 

 
Here, C is a matrix that has a correlation function ( ),i jR x x% %  

of Eq. (13) as the i, j-th element. If the number of experiment 
points is s, the size of C is s × s. The correlation function af-
fects the smoothness of the Kriging metamodel, and the Gaus-
sian correlation function of Eq. (13) is applied to the d-
dimensional random variables. 
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ixg  is the g -th element of the i-th experiment point. gr  is 

the scale parameter. µ%b  and 2ˆZs , which are estimates of %b  
and 2

Zs , are given by Eqs. (14) and (15). 

 
µ ( ) 11 1 ,T y

-- -= F C F F C% %b T  (14) 

µ( ) µ( )2 1 .ˆ 1
T

Z y ys
-= - -F C F% %% %s b b  (15) 

 
1 2, , , T

sy y y y= é ùë ûL%  is a vector that has the output of a per-
formance function at the experimental point as an element. µ%b  
and 2ˆZs  can be determined after the gr  of Eq. (13) is de-
termined. The estimate of gr  is determined by the maximum 
likelihood estimation method and is shown in Eq. (16). 

 
 
Fig. 1. One hundred points which are extracted from failure region. 
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Max. ( ) ( ) ( ){ }21
2 ZL s ln ln detr sé ù= - × +ë ûC  

Subject to 0³gr  for 1, , .d= Lg  (16) 

 
The estimate of a performance function for any input value 

is given by Eq. (17). °xr  is a correlation vector between an 
arbitrary input value and an experimental point, and is ex-
pressed by Eq. (18). 

 

( ) µ µ( )1 ,ˆ T T
x xy x f r y-= + -C F% % %% %b b  (17) 

( ) ( ) ( )1 2, , , , , , .
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The Kriging metamodel can calculate the Mean square error 

(MSE) of the output of Eq. (17) through Eq. (19). 
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2.5 Kriging metamodel refinement 

Echard defined the learning function of Eq. (20) and pro-
posed a method to refine the Kriging metamodel by adding the 
point with the smallest learning function value as an experi-
mental point [8]. ( )ĝ %q  is the estimate of the Kriging meta-
model at point %q . ( )ĝ

%s q  is the uncertainty of the Kriging 
metamodel estimate at point %q , and is the square root of the 
value of Eq. (19). 

In this study, an experimental point of the Kriging meta-
model was added by considering the statistical distance as 
well as the learning function value. To do this, we calculated 
the mean ( m ) and standard deviation (s ) of the distances 
from the origin to the accepted points of the Markov chain 
algorithm in standard normal space. Points whose statistical 
distances from the origin are greater than 2-m s  and less 
than +m s  were added as experimental points to the Kriging 
metamodel. 

 

( ) ( )
( )ˆ

ˆ

g

g
U =

%
%

%
q

q
s q

. (20) 

 
Because the mean distance ( )m  is located beyond of a limit 

state as shown in Fig. 2, the minimum distance of 2-m s  
was considered to include points in the vicinity of the limit 
state. 

When considering the minimum distance of -m s , the 
points (Red triangle in Fig. 2) in the vicinity of a limit state 
can be missed. The points located beyond +m s  have little 
effect on the failure probability and need not be considered. 

Echard suggested that the Kriging metamodel is refined un-
til the minimum of the learning function values of all the 
points estimated by the Kriging metamodel becomes 2 or 

more [8]. In this study, the possibility of changing the pre-
dicted failure probability was calculated and used as a crite-
rion for finishing the refinement of the Kriging metamodel. 

The Kriging metamodel is a Gaussian process. The Gaus-
sian process assumes that all the estimated values are a normal 
distribution. The mean of the estimated value is the predicted 
value of the Kriging metamodel [7]. The learning function 
value of Eq. (20) is a statistical distance from zero. This can 
be seen as an uncertainty in the ability of the Kriging meta-
model to predict the negatives/positives of a performance 
function. Eq. (21) is an average value of the probability that 
the sign of an estimated value will change at all the points 
estimated by the Kriging metamodel. In this study, the value 
of Eq. (21) was applied as a criterion for finishing the Kriging 
metamodel refinement. 

 
( )
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1 1 ,
T

i

N

T i

T uN
=

= -Få q  (21) 
 

where 
( )F ×  : Cumulative distribution function of normal distribu-

tion 
i

uq    : Value of learning function at point i
%q  

TN    : Number of total points of a Kriging metamodel pre-
diction. 

 
The smaller the T value, the higher the accuracy of the 

Kriging metamodel, but it needs a higher numerical cost. So, it 
is necessary to find an appropriate compromise between accu-
racy and numerical cost. 

 
2.6 Procedure and failure probability calculation 

In this study, the failure probability was calculated by the 
procedure below: 
Step 1) M points are extracted based on the Metropolis algo-

rithm presented in Sec. 2.2. 
Step 2) A kernel sampling density is constructed and points 

are extracted as presented in Sec. 2.3. N points are ex-
tracted in each kernel. Total kM N´  points are ex-
tracted. 

 
 
Fig. 2. Example of statistical distance. μ is mean distance and σ is 
standard deviation of the distance. 
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Step 3) The Kriging metamodel is constructed, as presented in 
Sec. 2.4. The experimental points of the Kriging meta-
model are the M accepted points and MR rejected 
points generated in step 1. 

Step 4) The value of T in Eq. (21) is calculated about total 
kM N´  points. In Eq. (21), TN  is kM N´ . If the 

value of T is larger than the pre-defined value, the 
Kriging metamodel is refined by adding a point that 
has the smallest value from the learning function of Eq. 
(20) as an experimental point. This process is repeated 
until the value of T satisfies the pre-defined value. 

Step 5) The failure probability is calculated according to Eqs. 
(22) and (23), and the variance is calculated according 
to Eqs. (24) and (25). i

j
%q  is the j-th point extracted 

from the i-th kernel. If the coefficient of variation 
(C.O.V, Coefficient of variance) of Eq. (26) is greater 
than the pre-defined value, the failure probability is 
calculated again by increasing N from step 2. 

 
µ

, ,
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f k i
ik

P P
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= å  (22) 
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q

q
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 (23) 

 
The variance of each kernel and the whole variance are ob-

tained. According to the central limit theorem and formula for 
the variance of random variable linear summation, the vari-
ance of a failure probability is given by Eqs. (24) and (25). 
The covariance between each extracted points is ignored. 
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( )C.O.V / .ˆ ˆ
f fVar P P=  (26) 

 
The denominator of Eq. (26) converges to a failure prob-

ability as N increases according to the strong law of large 
numbers. The numerator of Eq. (26) decreases with an in-
creasing N. Therefore, C.O.V decreases when N increases. 

 
3. Examples 

3.1 Example 1 

Eq. (27) is an example given in Au’s paper [2]. Random 
variables are an independent standard normal distribution. The 
Most probable failure point (MPFP) is the nearest point to the 
origin in the standard normal space, and it is known that the 
MPFP peripheral region has a large effect on the failure prob-

ability. There are three MPFPs in Eq. (27), but Au and Zhao 
calculated a failure probability only for two MPFPs [2, 9]. To 
compare with these previous studies, we also calculated a 
failure probability for only two MPFPs. 

 
( )1 2, ,g min g g=  

42
1 1

1 22 ,10 5g expæ ö æ ö= - + - + ç ÷ç ÷ è øè ø
q qq  

2 1 24.5 .g = -q q  (27) 
 
It is difficult to find two or more MPFPs based on the First 

order reliability method (FORM). In this study, we could not 
find MPFPs exactly, but we could find many points in the 
vicinity of MPFPs more easily by using a Markov chain simu-
lation. With these points, we could approximate the failure 
probability.  

In the Kriging metamodel, F in Eq. (9) was assumed as a 
constant. The criterion of the T value was 0.005. The result is 
given in Table 1. We can confirm that the proposed method 
can calculate the failure probability with fewer performance 

Table 1. Result of example 1. 
 

Reference 
 

Au (1999) Zhao (2015) 
Proposed 
method 

NLSE 500 163 109 

fP  2.68×10-3 2.69×10-3 2.70×10-3 

C.O.V 7 % 5 % < 5 % 

 
 

 
(a) Exact performance function 

 

 
(b) Approximated performance function by the Kriging metamodel 

 
Fig. 3. Comparison of approximated performance function with the 
exact performance function of example 1. An approximated perform-
ance function of the Kriging metamodel is very different from the 
exact performance function. 
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function computations than the previous research results. In 
Fig. 3, we can compare the exact performance function with 
the performance function approximated by the Kriging meta-
model. 

The performance function approximated by the Kriging 
metamodel is very different from the exact performance func-
tion. The overall shape is very different. However, as shown 
in Fig. 4, the limit state near the MPFPs, which is important in 
calculating the failure probability, is very similar. In Fig. 4, the 
limit state of the Kriging metamodel is different from the ex-
act limit state. However, near the MPFPs which have a large 
effect on failure probability, the limit state of the Kriging met-
amodel is almost the same as the exact limit state. To reduce 
numerical cost, it is better to mainly consider the regions that 
have a large influence on the failure probability. The limit 
states closer to the MPFPs have more of an influence on the 
failure probability.  

The extracted sampling points are shown in Figs. 5-7. The 
failure region is painted gray. In Fig. 5, the accepted points 
(Circle) of a Markov simulation are selected as the center of a 
kernel (Solid square), except for some points relatively far 
from MPFPs. This has the effect of reducing the numerical 

cost by considering mainly the points near the MPFPs that 
have a large effect on the failure probability. The kernel cen-
ters are well distributed around the MPFPs. This makes it 
possible to approximate the failure probability more accu-
rately.  

Among the Markov chain simulation results, both the ac-
cepted points and rejected points (Cross) were used as the 
experimental points for the Kriging metamodel. The added 
experimental points of the Kriging metamodel are shown in 
Fig. 6. It can be confirmed that the points added as the ex-
periment points for the Kriging metamodel are selected 
mainly in the vicinity of the limit state having a large influ-
ence on the failure probability. 

Echard proposed that additional experimental points for the 
Kriging metamodel are selected by using the learning func-
tions of Eq. (20) [8]. In this paper, we considered the statistical 
distance as well as the learning function to select additional 
experimental points for the Kriging metamodel. Points far 
from the MPFPs are less influential on the failure probability, 
so it is better not to consider them to reduce the numerical cost. 
As shown in Fig. 6, the points far from MPFPs are excluded 

 
 
Fig. 4. Comparison of approximated limit state with the exact limit 
state of example 1. An approximated limit state is similar to the exact 
limit state in the vicinity of MPFPs. 

 
 

 
 
Fig. 5. Markov simulation result and kernel center of example 1. 
Among the accepted points (Circle) of the Markov simulation, the 
distant points from MPFP were not selected as the kernel’s center
(Solid square). 

 
 

 
 
Fig. 6. Added experiment points for the Kriging metamodel of exam-
ple 1. When considering the statistical distance as well as learning 
function, the distant points from the MPFP were not selected as the 
additional experimental points for the Kriging metamodel. 

 
 

 
 
Fig. 7. Sampling points of the kernel density of example 1. Most of the
points are extracted from the failure region. This mimics the optimal
importance sampling density. 

 
 



 S. Lee and J. H. Kim / Journal of Mechanical Science and Technology 31 (12) (2017) 5769~5778 5775 
 

  

from the additional experiments of the Kriging metamodel. 
This lowers the numerical cost. 

In Fig. 7, most of the points extracted from the kernel sam-
pling density are distributed in the failure region. Since Eq. (3) 
includes an indicator function, only the points in the failure 
region are extracted in the case of the optimal importance 
sampling density. From this point of view, the kernel sampling 
density in Fig. 7 simulates the optimal importance sampling 
density well. 

 
3.2 Example 2 

Eq. (28) is an example given in Cadini’s paper [10]. Cadini 
proposed the “MetaAK-IS2” method, which combines the 
“metaIS” [11] method and adaptive importance sampling. 
Random variables are in an independent standard normal dis-
tribution. In the Kriging metamodel, F in Eq. (9) was assumed 
as a constant. 

The criterion of a T value was 0.1. The results are shown in 
Table 2. We can confirm that the proposed method calculates 
the failure probability with fewer performance function com-
putations than the previous research results. In Fig. 8, we 
compare the performance function approximated by the 
Kriging metamodel with an exact performance function. 

 

( )
2

2

1

10 5 2 .i i
i

g cos
=

= - -åq pq  (28) 

 
The performance function approximated by the Kriging 

metamodel is very different from the exact performance func-
tion. In the approximated performance function, the cosine of 
the Eq. (28) is reflected, but the second-order polynomial term 
of Eq. (28) is not reflected. The cosine term is also not well 
reflected in areas far from the origin. However, as shown in 
Fig. 9, the limit state near MPFP, which is important in calcu-
lating the failure probability, is very similar. In Fig. 9, the limit 
state of the Kriging metamodel is different from the exact 
limit state. However, near the MPFPs that have a large effect 
on the failure probability, the limit state of the Kriging meta-
model is almost the same as the exact limit state. 

The extracted sampling points are shown in Figs. 10-12. 
Failure regions are painted gray. The failure regions are very 
complex and composed of disconnected regions. With such a 
failure region, it takes many numerical calculations to find all 
regions that include MPFP. In this example, there are four 
MPFPs, but we found only one region in the vicinity of MPFP 

Table 2. Results of example 2. 
 

Reference 
 

Monte Carlo MetaAK-IS2 
Proposed 
method 

NLSE 2.5×104 480 451 

fP  7.43×10-2 7.35×10-2 7.53×10-2 

C.O.V 2.23 % 2.50 % 3.00 % 

 
 

 
(a) Exact performance function 

 

 
(b) Approximated performance function by the Kriging metamodel 

 
Fig. 8. Comparison of approximated performance function with exact 
performance function of example 2. An approximated performance 
function of the Kriging metamodel is very different from the exact
performance function. 

 
 

 
 
Fig. 9. Comparison of the approximated limit state with the exact limit 
state of example 2. An approximated limit state is similar to the exact 
limit state in the vicinity of MPFPs. 

 
 

 
 
Fig. 10. Markov simulation result and kernel center of example 2. Only 
one region in the vicinity of MPFP was found. 
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and located in the kernel density center at that region. 
Although only one kernel density center was generated in 

the vicinity of a MPFP, the failure probability was calculated 
correctly within a C.O.V. This is due to the adjustment of the 
kernel density’s standard deviation in Eq. (6). Because of the 
adjusted standard deviation, the kernel density sampling 
points were distributed in other MPFPs, as shown in Fig. 12. 
Additional experimental points of the Kriging metamodel are 
shown in Fig. 11. 

As in the previous example, we selected additional experi-
ment points of the Kriging metamodel by using a learning 
function and statistical distance. As shown in Fig. 11, points 
far from the MPFPs are excluded from the additional experi-
ment points of the Kriging metamodel. 

 
3.3 Example 3 

The fatigue life of the material has large variation. The 
equations for the fatigue life predict only an average value of 
the fatigue life, and there is no information on the variation. 
To express the variation in the equation, there is a way to as-

sume the parameters included in the fatigue life equation as 
random variables. In this example, the parameters of the 
strain-life equation are assumed to be random variables and 
the fatigue failure probability is calculated. 

When the strain is given in Eq. (29), fatigue life can be cal-
culated. To consider the variation of fatigue life, Cho et al. 
assumed the material constants of Eq. (29) as random vari-
ables and calculated the probability of not meeting the prede-
termined fatigue life [12]. Meggiolaro reported that the fatigue 
material constants of Eq. (29) are the most similar to the log-
logistic distribution for metal materials [13]. In this study, the 
failure probability for the performance function of Eq. (31) 
was calculated assuming that the fatigue constants are in a 
lognormal distribution known to be similar to the log-logistic 
distribution. The strain’s magnitude was calculated by assum-
ing the magnitude of the stress as a constant through Eq. (30). 

 

( ) ( )
'

'ε 2 2 ,
2

bf c
f f fN N

E
s

e
- -D

= +  (29) 

1

2 ,
2

n

E K
s se

¢

¢
D Dæ öD = + ç ÷

è ø
 (30) 

1000.fg N= -  (31) 

 
The results are shown in Table 4. In this study, the perform-

ance function was calculated 649 times and the failure prob-
ability was 0.104 %. In the Kriging metamodel, F in Eq. (9) 
was assumed to be a constant. The criterion of the T value was 
0.01. From considering the Monte Carlo simulation results 
and C.O.V, we can confirm that the failure probability ob-
tained from the proposed method is a reasonable result. 

 
 
Fig. 11. Added experiment point of the Kriging metamodel of example 
2. When considering statistical distance as well as learning function, 
distant points from MPFP were not selected as additional experimental 
points for the Kriging metamodel. 
 
 

 
 
Fig. 12. Sampling points of the kernel density of example 2. Because 
of the adjusted standard deviation, the kernel density sampling points 
were distributed in other MPFPs. 

 
 

Table 3. Random variables of example 3. 
 

Random 
variable Distribution Mean Standard 

deviation 
'
fs  Lognormal 709 MPa 

b Lognormal 0.056 
'
fe  Lognormal 0.12 

c Lognormal 0.75 

E Normal 71.7 GPa 

Mean×0.05 

sD  Deterministic 820 MPa 0 

K ¢  Deterministic 787 MPa 0 

n¢  Deterministic 0.07 0 

 
 

Table 4. Result of example 3. 
 

 Monte Carlo Proposed method 

NLSE 5×105 649 

fP  1.00×10-3 1.04×10-3 

C.O.V < 5 % < 5 % 
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4. Conclusions 

Recently, a failure probability calculation method that ap-
plies a Markov chain simulation and a Kriging metamodel to 
an importance sampling method has been studied by several 
researchers. The Markov chain simulation is a means to find 
points in the vicinity of multiple MPFPs. The importance 
sampling method and Kriging metamodel are methods that 
can reduce the numerical cost. In this study, we confirmed that 
the previous evaluation method can be improved by consider-
ing the following: 

(1) Based on the statistical distance of the points extracted 
by the Markov chain simulation, only the points closer to the 
limit state were considered in the failure probability calcula-
tion. 

(2) After considering the statistical distance as well as learn-
ing function, the experimental points of the Kriging meta-
model were added. 

(3) Log was applied for the stable numerical calculations of 
the parameter il  of a kernel density function needed to con-
struct an importance sampling density. 

(4) The completeness of the Kriging metamodel was evalu-
ated on the basis of the possibility of changes in failure prob-
ability. 

 
Compared with previous research results that combine the 

importance sampling method and the Kriging metamodel for 
the same numerical example, it is confirmed that the number 
of performance function calculations can be reduced. 

From the points extracted from the two-dimensional prob-
lem, the kernel sampling density that has the parameter il  
calculated through an improved numerical method well simu-
lates the ideal importance sampling density. 

 
Nomenclature------------------------------------------------------------------------ 

g  : Limit state function 
ĝ  : Predicted value of the limit state function by the Kriging 

metamodel 
h : Importance sampling density 
hopt : Optimal importance sampling density 
Ig : Indicate function 
Ki : Kernel 
k : Kernel sampling density 
M : Number of accepted points extracted by the Markov 

chain simulation 
Mk : Number of points which used as the kernel center  
MR : Number of rejected points extracted by the Markov 

chain simulation 
NT : Number of total points from a Kriging metamodel pre-

diction 
n : Size of random variable vector 
Pf : Failure probability 
ˆ

fP   : Calculated failure probability 
p : Joint probability density of random variable vector 

S : Parameter of a kernel sampling density 
T : Possibility of a predicted failure probability change 
U : Learning function 

i
uq    : Value of learning function at point i

%q  
w : Parameter of a kernel sampling density 
Θ  : Domain of possible values of %q  
%q      : Random variable vector 

λi : Parameter of a kernel sampling density 
Σi : Covariance matrix of each kernel 
Φ  : Cumulative distribution function of normal distribution 
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