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Abstract 
 
This paper addresses the development of an online tool condition monitoring and diagnosis system for a milling process. To establish a 

tool condition monitoring and diagnosis system, three modeling algorithms – an Adaptive neuro fuzzy inference system (ANFIS), a 
Back-propagation neural network (BPNN) and a Response surface methodology (RSM) – are considered. In the course of modeling, the 
measured milling force signals are processed, and critical features such as Root mean square (RMS) values and node energies are ex-
tracted. The RMS values are input variables for the models based on ANFIS and RSM, and the node energies are those for the BPNN-
based model. The output variable is the confidence value, which indicates the tool condition states – initial, workable and dull. The tool 
condition states are defined based on the measured flank wear values of the endmills. During training of the models, numerical confi-
dence values are assigned to each tool condition state: 0 for the initial, 0.5 for the workable and 1 for the dull. An experimental validation 
was conducted for all three models, and it was found that the RSM-based model is best in terms of lowest root mean square error and 
highest diagnosis accuracy. Finally, the RSM-based model was used to build an online system to monitor and diagnose the tool condition 
in the milling process in a real-time manner, and its applicability was successfully demonstrated.  

 
Keywords: Online tool condition monitoring and diagnosis system; Milling process; Adaptive neuro fuzzy inference system (ANFIS); Back-propagation 

neural network (BPNN); Response surface method (RSM); Real-time validation  
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1. Introduction 

Recent trends towards the 4th industrial revolution have ac-
tively pushed researches on automated and intelligent manu-
facturing processes based on big data analytics and artificial 
intelligence [1]. In this context, Prognostics and health man-
agement (PHM) researches on machine tool equipment and 
various mechanical manufacturing processes have recently 
attracted more attention. Among them, the tool condition 
monitoring and diagnosis in mechanical machining processes 
has been of much significance to improve surface quality and 
dimensional accuracy of machined components, to prevent 
sudden failure of tool, to minimize unnecessary high number 
of tool changes, to minimize machine tool downtime, and so 
forth [2, 3].  

While monitoring and diagnosing tool conditions, there are 

two methods: offline and online. An offline method requires a 
direct measurement of tool wear during the process, and there-
fore, the machine must be frequently stopped for the tool to be 
taken out for the measurement [4]. The offline method is sup-
posed to be more accurate for tool condition monitoring since 
tool wear is directly measured, but this method is not applica-
ble in an automated manufacturing system. Besides, due to 
frequent stoppage of whole machining processes, the down-
time of machines can be increased, and therefore, productivity 
can be decreased. When measuring tool wear, an optical mi-
croscope and a vision sensor are typically used [5, 6]. A Scan-
ning electron microscope (SEM) can also be used, as well as 
Energy-dispersive x-ray spectroscopy (EDS) analysis [7]. 

An online method, which can also be referred to as the indi-
rect method, usually requires measurements of external signals 
including cutting force, cutting power, spindle current, accel-
eration, and acoustic emission signals, and those measured 
signals are processed to be related to tool condition states [8-
17]. Thus, additional signal processing techniques should be 
necessary. In the online methods, whole machining processes 
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do not have to be interrupted, while various sensors are used 
for measuring the abovementioned signals. Therefore, this 
method can be more effectively incorporated in an automatic 
manufacturing system without loss of productivity. On the 
other hand, the existence of noise and drift in measured signals 
becomes a major drawback of the online method, and it is 
sometimes necessary to carry out additional signal processing 
to identify features to be matched with tool condition indices.  

In the online methods, a tool condition monitoring and di-
agnosis model should be properly constructed by applying an 
appropriate algorithm. Chen et al. proposed the Artificial-
neural-networks-based In-process tool wear prediction (ANN-
ITWP) system and evaluated it in milling operations [18]. 
They used a back-propagation ANN model for training the 
experimental data. In their ANN-ITWP system, the input vari-
ables were feed rate, depth of cut and measured average peak 
force, and the output variable was the tool wear value (Vb). It 
was reported that the predicted average tool wear errors were 
within ± 0.037 mm. Lee et al. also used a Back-propagation 
neural network (BPNN) algorithm to establish the tool condi-
tion monitoring and diagnosis model in the micro-grinding 
process [19]. In their model, the input variables were node 
energies extracted from the measured tangential grinding force 
signals by using wavelet packet decomposition, and the output 
variable was the numerical confidence values for indicating 
three tool conditions – sharp, middle and dull.  

Meanwhile, Malekian et al. investigated the tool wear moni-
toring method with various sensors, including a force sensor, 
an acoustic emission sensor and an accelerometer for a micro-
milling process [20]. They established a tool wear monitoring 
model based on a neuro-fuzzy method by training the deter-
mining the membership functions and rules. In the course of 
training, the input variables were the collected sensor signals 
and cutting condition parameters, and the output variables 
were numerical values indicating the tool conditions – good, 
average and bad. Response surface methodology (RSM) could 
also be an appropriate algorithm for establishing a tool condi-
tion monitoring model. In this context, Nam et al. developed 

the tool condition monitoring and diagnosis model for the 
micro-drilling process based on an RSM [21]. The input vari-
able was a Root mean square (RMS) value extracted from the 
measured drilling thrust force signal, and the output response 
was a confidence value denoting the tool condition of the mi-
cro drill. In their research, a k-fold cross validation approach 
was also applied to improve an accuracy of the model.  

In this paper, we developed tool condition monitoring and 
diagnosis models for milling process based on three method-
ologies: An Adaptive neuro fuzzy inference system (ANFIS), 
a Back-propagation neural network (BPNN) and Response 
surface methodology (RSM). To establish the models, a series 
of side milling experiments were conducted to machine 40 
passes, and the milling forces for each pass were measured. In 
addition, flank wear values of the endmills after cutting spe-
cific milling passes were measured. After examining the 
measured cutting force signals and flank wear values, three 
tool condition states, initial, workable and dull, were defined.  

For the online monitoring and diagnosis, the measured mill-
ing force signals are processed to obtain appropriate features: 
RMS values and node energy. The RMS values are input vari-
ables to the models based on ANFIS and RSM, respectively, 
and the node energy is an input variable for the BPNN-based 
model. Meanwhile, as output variables for all three models, 
the confidence values indicating each tool condition state are 
used. For the numerical confidence values, 0 is assigned for 
the initial state, 0.5 for the workable state and 1 for the dull 
state, respectively.  

Each model is validated by conducting milling experiments 
under the same machining conditions. While investigating the 
Root mean square errors (RMSEs) and diagnosis rates of each 
model, it is found that the RSM-based model could be best 
with smallest RMSE and highest diagnosis rate. Then, the 
real-time online tool condition monitoring and diagnosis sys-
tem is realized based on the RSM-based model, and it shows a 
good applicability to an industrial site with high accuracy and 
fast processing time. Fig. 1 schematically shows an overall 
methodological framework of the research in this paper. 

 
 
Fig. 1. Schematic diagram of overall methodological framework of the research on an online tool condition monitoring and diagnosis system for 
milling process. 
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2. Milling experiments and tool wear measurement 

2.1 Milling experiments 

Milling experiments were conducted in the industrial CNC 
machining center (Doosan Infracore) which has a maximum 
spindle speed of 8000 rpm. A dynamometer (Type 9265B, 
Kistler) was installed below a vise holding the workpiece, as 
shown in Fig. 2, and it measured the cutting forces along X, Y 
and Z axes. For a tool, the carbide twist end mill (2MEM-120-
260-S12, JJ tools) having a diameter of 12 mm, a flute length 
of 26 mm and an overall length of 75 mm was used. The 
workpiece material was S45C carbon steel.  

To expedite the tool wear progress of the end mill during 
the experiments, a bit harsher machining conditions were ap-
plied, and they are summarized in Table 1. During the side 
milling experiment, as shown in Fig. 3, the rotating milling 
tool cut the workpiece 40 times with the same machining con-
ditions and each pass had the same removal volume of 270 
mm3. Thus, a total of 40 profiles of the milling force signals 
could be gathered. 

 
2.2 Tool wear measurement  

For tool wear measurement, ten milling passes, including 5th, 
10th, 15th, 18th, 21st, 24th, 27th, 30th and 40th passes were se-
lected among 40 ones. When measuring the tool wear, the 
milling process was paused after finishing each selected pass, 

and the tool was detached for the measurement. Therefore, an 
actual tool condition after such milling pass could be identi-
fied. In the above-selected passes, the tool wear measurement 
interval became shorter after the 15th pass, since the tool wear 
progressed more rapidly after that pass.  

Optical images of the milling tool after cutting each pass 
were taken by a Charge-coupled device (CCD) camera. From 
the optical images, flank wear values of each tool were ob-
tained by calculating pixels of the tool images and comparing 
them with scale bars marked on the pictures. Generally, flank 
wear is a result of abrasion and adhesion wear of a tool’s 
clearance face contacting with a finished surface, and it is 
usually considered as an important indicator of milling tool 
condition [4].  

Fig. 4 shows the optical images of the end mills after cutting 
each pass, and the measured flank wear values are also given. 
As can be seen in Fig. 4, the measured flank wear values of 
the milling tool increased as the number of milling passes 
increased. In particular, after machining the 21st pass, the flank 
wear value was 51.74 mm, and it was almost twice that after 
machining the 18th pass – 22.31 mm. Furthermore, the flank 
wear was intensified faster after the 21st pass, and therefore, it 
is believed that the significant tool wear of the end mill could 
have occurred at the 21st machining pass. 

Table 1. Experimental conditions. 
 

Milling type Side milling 

Tool Carbide twist end mill with Φ12 mm 

Material S45C steel 

Size 50x120x100 mm Workpiece 

Hardness (Brinell) 269 

Spindle speed 4000 rev/min 

Feed rate 200 mm/min 

Depth of cut 1.8 mm 
Cutting conditions 

Width of cut 3.0 mm 

Number of pass 40 passes 

Sampling freq. 10000 Hz 

 

 
 
Fig. 2. Photo of an experimental setup of the milling process. 

 

 
 
Fig. 3. Schematic diagram of the milling experiments. 
 

 
Fig. 4. Photos of the flank wear of endmills after cutting milling passes 
and their measured values. 
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3. Feature extraction and correlation with tool condi-
tion states 

By using a dynamometer, the cutting force signals in each 
milling pass were captured; the measured cutting force signals 
along X, Y and Z axes for all 40 passes are given in Fig. 5. In 
Fig. 5, the signals appearing in red are the milling forces along 
Y-axis, which was the feed direction, and the blue-colored 
signals represent those along X-axis, indicating the normal 
direction. Compared with those two directions, the forces 
along the axial direction (Z-axis), which is marked by green, 
are very small, and it is a normal phenomenon in the milling 
process. 

As can be seen in Fig. 5, the measured milling force signals 
were divided into ten sections according to the milling passes. 
When observing the magnitudes of measured milling forces in 
each section, there exists a sudden increase at a section from 
the 19th to the 21st pass. In particular, the milling forces along 
with X and Y axes increased significantly in this section. 
Since the measured tool wear values also increased dramati-
cally in this section, it was believed that the flank wear values 
were closely related to such measured milling forces. There-
fore, we concluded that the measured cutting force signals 
could be used for indicating the tool wear conditions in the 
milling process.  

On the other hand, in the first section, from the 1st pass to 
the 5th pass, the measured cutting forces gradually increased, 
and it is believed that a new endmill had become stabilized by 
milling the first five passes. Meanwhile, from the 6th pass to 
the 18th pass, the measured cutting force signals had a nearly 
constant magnitude, and the measured flank wear values 
gradually increased, as given in Fig. 5. Thus, in these sections, 
the milling process could be stable to machine the workpiece. 

Based on the above preliminary analysis on the measured 
cutting force signals, various static features including a Root 
mean square (RMS), a maximum, a variance, a crest factor, a 
kurtosis and a skewness were considered to be related to tool 
wear conditions. Among those features, the RMS, maximum 
and variance values are mathematical values representing the 
size of a signal, and the crest factor, kurtosis and skewness 
were those representing the shape of a signal, respectively. 
More detailed descriptions on each feature are given in Ref. 
[8]. In Fig. 6, the static features extracted from the measured 
resultant cutting force signals are given, and they are graphi-
cally shown versus the number of passes. 

From the previous analysis on the measured cutting force 

signals in a time domain, the 5th section – from the 19th to the 
21st passes – showed a significant increase in their magnitudes. 
In addition, while analyzing various features given in Fig. 6, 
the RMS values of the measured resultant forces showed a 
clear difference before and after the 5th section. Therefore, the 
RMS values were chosen to be associated with the tool wear 
conditions. 

For tool wear conditions of the endmill during the milling 
process, three states – initial, workable and dull states – were 
defined along with the milling passes. The first section from 

 
 
Fig. 5. The measured cutting force signals along X, Y and Z axes for 
all 40 passes. 

 

 
(a) RMS 

 

 
(b) Max 

 

 
(c) Variance 

 

 
(d) Crest factor 

 

 
(e) Kurtosis 

 

 
(f) Skewness 

 
Fig. 6. The static features extracted from the measured cutting force 
signals for 40 milling passes. 
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the 1st pass to the 5th pass denotes the initial state of the tool 
wear condition. The next three sections from the 6th pass to the 
18th pass do the workable state. Finally, the dull state includes 
those from the 19th to the 40th passes. Fig. 7 shows a graphical 
representation of the three states – initial, workable and dull – 
of the tool wear conditions versus the number of passes by 
considering the RMS values of the measured resultant cutting 
forces.  

On the other hand, another feature, a node energy, that can 
be extracted from the measured cutting forces by a Wavelet 
packet decomposition (WPD) method, was also considered. 
The WPD method basically divides non-stationary signals into 
several node energies stored in different frequency bands, and 
the number of nodes is decided by a level of WPD [22]. In this 
research, the level of WPD was 5, and thus, total 32 node en-
ergies were extracted from the cutting force signals, which are 
given in Fig. 8. Among them, the first node energy was for the 
lowest frequency band from 0 Hz to 156.25 Hz, which was 
calculated by dividing the Nyquist frequency (5000 Hz) by the 
number of nodes (32). In this frequency band, a rotational 
frequency of the spindle of 66.67 Hz and a tooth passing fre-
quency of 133.33 Hz were included. Hence, the 1st node en-
ergy could well describe a tendency of the tool conditions. As 
can be seen in Fig. 8, the 1st node energy shows a clear differ-
ence in its magnitudes for each tool condition state – initial, 
workable and dull states. 

 
4. Development of the tool condition monitoring and 

diagnosis model for milling process 

Three modeling methodologies – an Adaptive neuro fuzzy 
inference system (ANFIS), a Response surface methodology 
(RSM) and a Back propagation neural network (BPNN) – 
were applied for developing the tool condition monitoring and 

diagnosis model during the end-milling process. First, the 
concept of the confidence value was introduced to build the 
model. Hence, the numerical values of 0, 0.5 and 1 were allo-
cated to the initial, workable and dull states, respectively, and 
they were considered as output responses for the model. For 
input variables, the RMS values and node energies extracted 
from the measured cutting forces were used.  

While developing the models, the milling experiments un-
der the machining conditions given in Table 1 were repeated 
for five times. Then, the RMS values extracted from the 
measured cutting forces and the confidence values indicating 
the tool conditions in those five experimental cases were used 
for building the models. 

 
4.1 Adaptive neuro fuzzy inference system (ANFIS) 

The first model was based on an Adaptive neuro fuzzy in-
ference system (ANFIS). An ANFIS is a hybrid intelligent 
system combining a Fuzzy inference system (FIS) and an 
Artificial neural network (ANN), so that it takes benefits of 
both methods – a capability of capturing the vagueness in 
human decision making for an FIS and a self-learning ability 
using parallel data processing for an ANN [23, 24]. Therefore, 
an ANFIS is very useful for establishing a model with a com-
plex data distribution under uncertainty.  

However, ANFIS also has a limitation regarding the num-

 
 
Fig. 7. Initial, workable and dull states of the tool wear conditions 
versus the number of milling passes. 

 

 
 
Fig. 8. 32-Node energies of the milling force signals extracted by a 
WPD method. 

 

 
(a) General architecture of an Adaptive neuro fuzzy inference system 

(ANFIS) algorithm 
 

 
(b) Schematic of the tool condition monitoring and diagnosis based on 

an ANFIS algorithm 
 
Fig. 9. General architecture of an Adaptive neuro fuzzy inference 
system (ANFIS) algorithm and the schematic diagram for the tool 
condition monitoring and diagnosis model based on an ANFIS. 
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ber of input layers. As shown in Fig. 9(a), the ANFIS is gen-
erally structured down to several adaptive Membership func-
tions (MF) with fixed fuzzy rules, and if the input variables 
excess 5 layers, the functions become too complicated to en-
sure an accuracy of output results. In this research, as shown 
in Fig. 9(b), the trapezoidal membership functions were se-
lected. In such membership functions, the transition regions 
for the confidence values from 0.2 to 0.3 and from 0.7 to 0.8 
were allowed, since the tool conditions of the endmill could be 
described by a certain percentage of two different states [Jun 
and Park (2009)]. Thus, the region from 0.2 to 0.3 represented 
the transition from the initial to workable states, and that from 
0.7 to 0.8 denoted the transition from the workable to dull 
states, respectively. The model converted the input variables – 
the RMS values of the cutting forces – to the quantitative con-
fidence values in the range from 0 to 1. 

 
4.2 Response surface methodology (RSM) 

The second approach was based on a Response surface 
methodology (RSM) to build the regression model for moni-
toring and diagnosing the tool conditions. RSM is a collection 
of statistical and mathematical techniques that is often used 
when the input variables potentially influence some output 
responses [25]. In this paper, it is likely that RMS values of 
the measured cutting forces could have an influence on the 
tool wear conditions of the endmill. Thus, the RMS values 
were input variables, and the output responses were the tool 
conditions that were represented by the numerical confidence 
values. In addition, the 2nd order regression was considered. 
Fig. 10 depicts the schematic diagram of the RSM-based tool 
condition monitoring and diagnosis modeling. 

 
4.3 Back-propagation neural network (BPNN) 

In the third approach, a Back propagation neural network 
(BPNN) algorithm was introduced to build the tool condition 
monitoring and diagnosis model. Back propagation is the most 
extensively used training algorithm for ANN, and its major 
objective is to modify values of firing strength, generally 
called weight, using feedbacks on evaluation errors [26, 27]. 

In this algorithm, 32 node energies that were extracted from 
the measured cutting forces using a WPD method were input 
to the input layer, and the numerical confidence values were 
assigned to the output layer during training the model. In Fig. 
11, the schematic diagram for establishing the tool condition 
monitoring and diagnosis based on a BPNN is given. 

 
4.4 Validation of models and comparative analysis 

The tool condition monitoring and diagnosis models which 
were developed by three different methodologies were vali-
dated in this section. When validating them, the milling ex-
periment under same machining conditions given in Table 1 
was conducted. During the experiment, the RMS values and 
node energies were extracted from the measured cutting forces, 
and they were input to the models. Then, the confidence val-
ues were computed from the models as output responses. Fig. 
12 shows the validation results for three tool condition moni-
toring and diagnosis models. 

After computing the confidence values, we used them to 
classify three tool condition states. Namely, the confidence 
values below 0.2 were classified as the initial state; those be-
tween 0.3 and 0.7 were the workable state, and those larger 
than 0.8 were the dull state. As previously described, in the 
ANFIS-based model, two transition regions are defined. The 
computed confidence values within those regions can be clas-
sified to either tool condition state. Therefore, the confidence 
values in the range from 0.2 to 0.3 can be classified as either 
initial or workable state, and those in the range from 0.7 to 0.8 
can be either workable or dull state.  

In Fig. 12(a), the validation results from the model based on 
the ANFIS are given, and those from the models based on the 
RSM and BPNN are given in Figs. 12(b) and (c), respectively. 
Meanwhile, the transition regions which were introduced in 
the ANFIS-based model were also considered for the models 
based on the RSM and the BPNN, respectively, for consis-
tency. In Fig. 12, the blue circular dots denote the output con-
fidence values during training the models, and the red squares 
denote computed ones during validating (Testing) them. In 
particular, the red squares with ‘X’ marks mean erroneous 
diagnosis results from the models during the validation. 

 
 
Fig. 10. Schematic diagram for the tool condition monitoring and 
diagnosis model based on an RSM. 

 

 
 
Fig. 11. Schematic diagram for the tool condition monitoring and 
diagnosis model based on a BPNN. 
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As can be seen in Fig. 12, the confidence values indicating 
the tool wear conditions were computed for each milling pass 
during the validation, and there were 9, 5 and 5 erroneous 
diagnosis results for the ANFIS-based, RSM-based and 
BPNN-based models, respectively. In addition, a level of dis-
persion seems smallest for the RSM-based model and largest 
for the ANFIS-based model.  

This qualitative discussion can be confirmed by the quanti-
tative results given in Table 2. In Table 2, the diagnosis rates 
and Root mean square error (RMSE) values for each model 
are given. As shown in Table 2, the RSM-based model has the 
highest diagnosis rate and the lowest RMSE value, respec-
tively. Although the BPNN-based model has the same diagno-
sis rate with the RSM-based model, it has somewhat larger 
RMSE value. In the case of the ANFIS-based model, it was 
shown that the diagnosis rate was lowest and that the RMSE 
value was largest. Thus, the RSM-based model could be more 
advantageous for monitoring and diagnosing the tool wear 
conditions by using measured cutting force signals during the 

milling process in this research.  
Generally, an RSM can provide quite robust results when 

input data have a definite trend. On the other hand, an RSM 
may suffer from a lower accuracy in deduction, if a data dis-
tribution is highly complex and imprecise [21]. Meanwhile, 
the processing time of RSM is usually much faster than the 
other two approaches considered in this paper. Therefore, the 
best validation results from the RSM-based model could be 
obtained in this research, since the RMS values of the cutting 
force signals in the milling process showed the monotonously 
increasing trend according to the tool wear progression. 

 
5. Software development and industrial implementa-

tion for real-time monitoring and diagnosis 

The C sharp programming language was used to develop 
the real-time tool condition monitoring and diagnosis software 
for the milling process in an industrial site. As previously dis-
cussed, the RSM-based model showed the highest diagnosis 
accuracy and the lowest RMSE value. Therefore, the software 
was developed based on the RSM-based model with faster 
processing time.  

During actual industrial implementation of the developed 
software, the cutting force data start to be collected, as soon as 
they begin to increase after endmill’s contacting the workpiece. 
Then, their RMS values are calculated and matched with the 
specific milling pass. Those RMS values are input to the 
RSM-based model to compute the confidence values indicat-
ing the tool wear conditions of the endmill.  

In the software, the computed confidence values were used 
to diagnose the tool conditions. Thus, if the confidence value 
was larger than 0.8, the tool condition of the endmill was in 
the dull state and a sign of ‘abnormal’ was visually given. On 
the other hand, if the confidence value was smaller than 0.8, 
the tool wear condition could be in either initial or workable 
state. Therefore, a sign of ‘normal’ was visually given in the 
software. Fig. 13 shows the snapshot photos of the developed 
software’s user interface. As can be seen in Fig. 13, the com-
puted confidence values are graphically shown as lines along 
with the vertical axes. The numerical confidence values are 
also given nearby the vertical axes and on the line. For an 
intuitive information transfer, a line color in the case of the 
normal tool condition was green, and that for the abnormal 
tool condition was red, respectively. In addition, the white line 
lied in the display represents the confidence value of 0.8, 
which is the threshold value to determine either normal or 
abnormal state. 

 
(a) ANFIS 

 

 
(b) RSM 

 

 
(c) BPNN 

 
Fig. 12. Validation results of the tool condition monitoring and diagno-
sis models based on three methodologies – ANFIS, RSM and BPNN. 

 

Table 2. Root mean square errors and diagnosis rates for each tool 
wear condition monitoring and diagnosis model. 
 

Models RMSEs Diagnosis rates 

ANFIS 0.675 77.5 % (31/40) 

RSM 0.114 87.5 % (35/40) 

BPNN 0.138 87.5 % (35/40) 
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6. Conclusion 

Tool condition monitoring and diagnosis models were de-
veloped based on three different algorithms – ANFIS, BPNN 
and RSM – and a comparative analysis was conducted to 
evaluate each model’s performance in terms of an RMSE and 
a diagnosis rate.  

The models based on ANFIS and RSM used the RMS val-
ues extracted from the measured milling force signals as input 
variables. On the other hand, in the case of the BPNN-based 
model, the node energies were extracted from the milling 
force signals by a WPD method, and they were used as input 
variables. The output variables were the confidence values 
indicating the tool condition for all three models.  

It was shown that the RSM-based model was best with low-
est RMSE value (0.114) and highest diagnosis rate (87.5 %). 
Generally, an RSM is quite effective to produce robust results 
in the case of data sets having a definite trend. Since the tool 
wear progression showed an increasing trend in the milling 
process, it is believed that the RSM-based model showed the 
best result. Meanwhile, the BPNN-based model was second 
best with same diagnosis rate (87.5 %) with the RSM-based 
model and a bit higher RMSE value (0.138). Since a WPD 

method can be applied to highly dynamic data such as the 
milling force signals in this research, the extracted node ener-
gies can be effectively used for input variables for building the 
BPNN-based model with a good performance.  

The RSM-based model that showed the best performance 
was utilized to develop the software to monitor and diagnose 
the tool conditions in a real-time environment. Through a 
series of milling experiments and measurements, the tool con-
dition monitoring and diagnosis model was established, and it 
was programmed in the embedded system. In this system, the 
computed confidence value smaller than 0.8 was diagnosed as 
‘normal’, and that larger than 0.8 was diagnosed as ‘abnormal’. 
The developed software system was implemented in an indus-
trial site, and it was demonstrated that a real-time tool condi-
tion diagnosis rate was better than 95 %.  

Meanwhile, a concept of the confidence value was intro-
duced to indicate the tool conditions of endmills in the milling 
process. The measured flank wear values were categorized 
into three tool conditions states – initial, workable, and dull – 
after examining their magnitudes and increasing trend, and the 
corresponding ranges of the confidence values for each state 
were defined. Therefore, machine tool operators could get 
more intuitive information on the tool conditions and thus 
make a decision whether the tool should be changed or not 
more conveniently. 
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