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Abstract 
 
As a key technology for three-dimensional (3D) model retrieval from model databases, the ability to perform comparisons of 3D mod-

els is important. In particular, during the product design phase, 3D CAD models should be robustly retrieved for design reuse or machin-
ing process planning. However, typical retrieval methods that are based on model names, codes, or annotations are limited in terms of 
their usability and robustness. Therefore, there are increasing requirements for shape-based 3D model retrieval techniques, as well as the 
ability to perform 3D model comparisons. In this paper, we propose a shape distribution-based 3D CAD assembly comparison method 
that has the ability to identify dissimilarities in 3D CAD assembly models by differentiating between assembly relationships and part-
shape dissimilarities. This is different from existing methods, which are limited to only shape dissimilarities. We present experimental 
results for various test cases by comparing our proposed method and existing methods. Based on our experiment results, we found that 
our method can enable a comprehensive comparison of 3D CAD assembly models including assembly relationship dissimilarities, part-
shape dissimilarities, and overall model dissimilarities.  
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1. Introduction 

With recent advancements in computing power, as well as 
modeling and visualization techniques, 3D shapes have been 
widely used in many applications including product design, 
engineering simulation, virtual prototyping, entertainment, 
and cultural heritage [1-7]. This trend has led to a very large 
number of three-dimensional (3D) shape models.  

Shapes can be interpreted in various ways. Kendall [8] de-
fined a shape as “all the geometrical information that remains 
when location, scale, and rotational effects are filtered out 
from an object”. Based on this definition, we define a 3D 
Computer-aided design (CAD) model comparison as “quanti-
tatively evaluating similarity among 3D shape data contained 
in 3D CAD models”.  

Obtaining a similarity measurement of 3D shape data has 
been an area of research in disciplines such as computer vision, 
mechanical engineering, artifact searching, molecular biology, 
and chemistry [9]. Whereas the computer vision and graphics 
fields focus on shape matching, mechanical engineering and 
CAD fields have studied techniques involving comparisons of 
3D CAD models using domain knowledge such as manufac-

turing processes and product information, as well as 3D 
shapes. Typical applications of similarity measurements in the 
fields of mechanical engineering and CAD are the retrieval of 
a desired 3D CAD model from a model database for design 
reuse [10], mass customization [11], and machining process 
planning [12]. 

The simplest way to compare 3D CAD models is to retrieve 
model names, model numbers, and annotations that are as-
signed to 3D CAD models, and to evaluate their similarities 
based on pre-defined evaluation metrics with those data [13]. 
However, this approach has the following limitations. Annota-
tions regarding design and manufacturing are not attached to 
all 3D CAD models. Moreover, part names and codes are 
determined differently depending on the naming conventions 
employed. In addition, users would not know the exact part 
name or part code. Therefore, there is a need for a technique 
that evaluates similarities in 3D CAD models using 3D shape 
data because 3D shape data are always present in a 3D CAD 
model. 

3D CAD models are classified into 3D CAD assembly 
models and part models. 3D CAD part models contain the 
shape information of a part or component. Meanwhile, 3D 
CAD assembly models are composed of 3D CAD part models. 
They contain only structural information, i.e., the position and 
orientation of 3D CAD part models and assembly constraints 
for different 3D CAD part models. Because product design is 
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typically modeled in the form of 3D CAD assembly models, it 
is important to consider this application when comparing 3D 
CAD models.  

In this paper, we propose a new shape-distribution-based 
holistic method for the comparison of 3D CAD assembly 
models. This method discriminates part-shape dissimilarities 
and assembly relationship dissimilarities, and it also evaluates 
two types of dissimilarity based on the shape-distribution-
based method. The proposed method has two distinguishing 
technical features. First, it independently evaluates part-shape 
dissimilarities and assembly relationship dissimilarities, and 
produces an overall dissimilarity of 3D CAD assembly mod-
els. Second, it has very high applicability, and can be applied 
to most 3D CAD models (Feature-based, boundary represen-
tation (B-rep), and mesh models). Further, it does not require 
many types of data to perform the comparison. 

The remainder of this paper is organized as follows. In Sec. 
2, we review previous studies that were performed. In Sec. 3, 
we introduce shape-distribution-based dissimilarity measure-
ments and propose improvement that can be made. In Sec. 4, 
we discuss the application of the proposed method in the 
comparison of 3D CAD assembly models. In Sec. 5, we then 
demonstrate the proposed method by performing experiments 
using test cases, while in Sec. 6, we present the Conclusion 
and future works. 

 
2. Review of related studies and literature 

In order for a comparison to be made, each 3D model has to 
be identified using a shape descriptor that provides a compact 
overall description of the 3D shape [14]. Similarity compari-
son methods can classify shapes into six categories according 
to the data used to generate the shape descriptor. These are 
global feature-based, manufacturing feature recognition-based, 
graph-based, 3D object recognition-based, histogram-based, 
and product information-based methods [9].  

Paquet et al. [15] proposed a compact way of representing 
the coarse shape, scale, and composition properties of an ob-
ject for 3D-shape matching. Ramesh et al. [16] presented a 
machining feature-based similarity comparison method for the 
retrieval of mechanical parts. El-Mehalawi and Miller [12] 
developed a representation scheme that created the attributed 
graph to compare CAD models of engineering parts. Horn 
[17] reported that Extended Gaussian images (EGI) are useful 
for representing the shapes of surfaces, and are thus appropri-
ate for object recognition. 

Hermann et al. [18] proposed a plan-based design similarity 
measure to explicitly exploit process-plan similarities and to 
improve the variant process planning approach. Rodríguez and 
Egenhofer [19] developed a method for semantic similarity 
measurements that was conducted at two levels: Measuring 
the similarities between elements themselves, and measuring 
the similarities of neighborhoods of the elements. Alizon et al. 
[20] proposed a knowledge-reuse procedure for part-similarity 
measurement. Mun et al. [21] enhanced the method proposed 

by Alizon et al. using ontology and multi-criteria decision-
making techniques to improve the accuracy of the comparison 
results. 

Deshmukh et al. [22] proposed the assembly comparison 
method based on assembly notation, part type, part character-
istics, mating condition and joint orientation relationship. The 
Comparison method proposed by Chen et al. [23] uses hierar-
chical assembly structure, assembly interface composed of 
three layers and geometry of a part comprising an assembly. 
Both Refs. [22, 23] requires detailed information of assembly 
relationship to retrieve the intended assembly model in the 
database.  

Histogram-based methods randomly select sample points 
from a 3D model and extract characteristics from those points 
to create a histogram or a distribution that represents the fre-
quency of occurrence of each characteristic. Osada et al. [24] 
presented a method that represents the signature of an object 
as a shape distribution for the comparison of 3D mesh models. 
This method is simple and robust because it does not require 
pose registration, feature correspondence, or model fitting. 
Ohbuchi et al. [25] enhanced the method proposed by Osada 
et al. by introducing the angle-distance and absolute angle-
distance histograms, which are calculated based on the D2 
shape function. Tangelder and Veltkamp [26] used as shape 
descriptors weighted point sets that can be viewed as 3D 
probability distributions. Hwang et al. [11] presented shape-
similarity measurements using Ray distance-to-surface (RDS) 
and Normalized ray distance-to-surface (NRDS). Several 
CAD model databases including Engineering shape bench-
mark [27] provide 3D CAD models that can be used as test 
cases for evaluating and comparing performances of various 
shape retrieval methods. They typically serve 3D CAD part 
models in the form of a mesh model. 

The shape distribution-based method proposed by Osada et 
al. often results in a poor similarity comparison result when 
the shapes to be compared have similar overall shape but dif-
ferent shape characteristics [28]. Furthermore, as 3D CAD 
models become more complex, shape distributions tend to a 
bell-shaped normal distribution regardless of the level of detail 
in the shapes. In order to solve this problem, Ip et al. [28] pro-
posed a method to create four shape distributions according to 
each of the point-pair categories, namely the All, In, Out and 
Mixed point pairs, and to use them as shape descriptors of a 
3D CAD model. Cheng et al. [10] developed a new similarity 
measurement scheme that integrates the shape distribution and 
negative feature decomposition. Similarly, Chu and Hsu [29] 
adopted an integrated approach that uses the following multi-
ple shape signatures: feature adjacency graphs, topological 
graphs, and shape distributions.  

 
3. Shape distribution-based methods 

In this study, we propose a new method for the comparison 
of 3D CAD assembly models based on shape distributions 
proposed in Refs. [24, 25]. In this section, we therefore briefly 
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introduce shape distribution-based comparison methods.  
Shape distribution-based comparison has an advantage in 

that translation and rotation-invariant comparisons are possi-
ble, and do not require higher level information, including 
manufacturing features and processes. The dissimilarities of 
shapes are metrically derived from the distance between the 
Probability density functions (PDFs), which represent the 
probability of values obtained from points sampled from the 
surface of 3D models. In Ref. [24], five types of shape func-
tions (A3, D1, D2, D3 and D4) were proposed to calculate 
values for the PDF. 

The D2 shape function, which is the Euclidean distance 
from two points, was adopted in Refs. [24, 25], as well as 
other related studies because of its simplicity and robustness 
regardless of the shapes of the models to be compared. Fig. 1 
illustrates the shape distribution-based comparison method. 
Using the sampling and distribution calculation process, the 
shape of a 3D model is represented as a single PDF. To com-
pare two PDFs, we calculate the metric distance between two 
PDFs. The resulting distances between the two PDFs repre-
sent the dissimilarity between those two 3D models. As shown 
in Fig. 1, an additional faceting process is required before the 
sampling process when an input 3D model is not represented 
as a mesh model, such as Constructive solid geometry (CSG), 
B-rep, and feature-based models. 

Some studies have proposed methods for improving the de-
scription power of the PDF by separating point pairs using 
topological information. This is done by decomposing vol-
umes and by combining the two types of shape functions. Of 
those methods, combining two types of shape functions results 
in a two-dimensional (2D) PDF that enables a more precise 
shape comparison, while maintaining the advantage of gener-
ality because higher level information is not required. In Ref. 
[25], the mutual Angle-distance (AD) shape function is pro-
posed to combine the Euclidean distance (D2) and the dot 

product of normal vectors of the point pair, resulting in a 2D 
PDF. Moreover, to overcome the issue of normal flip, another 
shape function called mutual Absolute-angle distance (AAD), 
which takes the absolute value of the dot product of normal 
vectors, was also proposed. 

The normal flip problem is frequently observed when 3D 
models are retrieved from a public 3D model database in 
which the model quality is not guaranteed. However, the same 
problem also frequently occurs when a 3D CAD model gener-
ated from a 3D CAD system is converted into another format, 
as shown in Fig. 2(b). In this figure, the normal direction illus-
trated by the blue line is the opposite for two 3D CAD models. 
Therefore, we decided to apply the AAD shape function to 
robustly compare 3D CAD models. 

 
4. Shape distribution-based comparison of 3D CAD 

assembly models 

4.1 Introduction of 3D CAD assembly models 

The assembly model is a model that consists of individual 

 
 
Fig. 1. Comparison procedure for shape distribution-based method. 

 

 
 
Fig. 2. Normal flip problem in 3D CAD models. 
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part models, as shown in Fig. 3. The assembly model contains 
assembly information such as the positions and orientations of 
each part, as well as assembly constraints that exist between 
parts. Generally, products are designed primarily as 3D CAD 
assembly models. In addition to part models, assembly models 
are frequently reused when a new product is designed. There-
fore, methods that compare 3D CAD assembly models are 
essential to ensure the efficiency of the reuse process. Shape 
comparisons are closely related to 3D model retrieval technol-
ogy because we typically obtain similar models automatically 
by comparing a query 3D CAD assembly model with candi-
date 3D CAD assembly models that are in a database. 

However, existing shape distribution-based methods have 
limitations with regards to their ability to compare 3D CAD 
assembly models. Because they do not consider the assembly 
relationship, the comparison process for assembly models is 
the same as that for part models. In other words, the assembly 
model is considered to be a single shape. Therefore, existing 
shape distribution-based methods provide insufficient infor-
mation regarding dissimilarities that exist between assembly 
models because they cannot separately evaluate dissimilarities 
in the part shapes and dissimilarities in the assembly relation-
ship between assembly models. 

 
4.2 Holistic approach to the comparison of 3D CAD assem-

bly models 

In order to solve the problem, we developed a holistic ap-
proach to 3D CAD assembly comparison based on shape dis-
tributions. In our proposed approach, assembly retrieval meth-
od proposed by Deshmukh et al. [22] and Chen et al. [23] can 
be utilized to retrieve assembly models in the database with 
assembly structures similar to query assembly models using 
assembly name, annotation, part name and type. In this step, 

assembly structure only includes hierarchy between assembly 
and parts. Then part shape similarity and assembly relation-
ship similarity between query and database assembly models 
are calculated by the proposed shape distribution-based com-
parison method. In the proposed method, assembly relation-
ship represents position and orientation of part models com-
prising assembly model. 

We focus on the limitation and the improvement strategy of 
the shape distribution-based comparison method. The limita-
tion of the shape distribution-based comparison method is that 
the method is not able to reflect assembly relationship. Com-
pared with Deshmukh et al. [22] and Chen et al. [23], the pro-
posed method can compare assembly relationships of two 
assembly models in case the direct assembly structure infor-
mation is not available. Our similarity measurement approach 
requires only geometrical information of assembly models.  

Our goal is to derive separate dissimilarity values for the 
shapes of parts and the assembly relationship. 3D CAD as-
sembly and part models have different data structure from 
each other [30-32]. Moreover, they are recorded in different 
files. In this context, dissimilarity should be separately meas-
ured for assembly relationship and part shapes of an assembly 
model. In the proposed method, the dissimilarity between two 
assembly models, Dassy, is defined in Eq. (1). In Eq. (1), Da 
represents the dissimilarity of the assembly relationship be-
tween the assembly models, while Dp represents the dissimi-
larity of the part shapes between assembly models.  

 
, .assy a pD D Dé ù= ë û  (1) 

 
We can take advantage of separated similarity values for 

part shape and assembly relationship as follows. Well-known 
application of similarity measure such as 3D model retrieval 

 
 
Fig. 3. Components of a 3D CAD assembly model. 
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system can provide multidisciplinary retrieval results using 
separated similarity values. The user may request assembly 
model that shares similar part models assembled in different 
assembly relationship from query assembly model, which is 
the case of high Da value and low Dp. Note that value of Da 
and Dp is inversely proportional to the similarity between two 
models. Similarly, the condition of low Da value and high Dp 

value can be assigned to retrieve assembly models with simi-
lar assembly relationship and dissimilar part shapes from que-
ry assembly model. The proposed approach requires no de-
tailed assembly information extracted from 3D models in 
similarity measuring of part shape and assembly relationship. 
So the abovementioned advantage is available to the wide 
range of 3D model database. 

 
4.2.1 Preprocessing 

To compare assembly models, we obtain a point dataset Si 
and a corresponding normal vector set Ni from each 3D CAD 
part model in the preprocessing step. We assume that the posi-
tion set Si and Ni of generated points is coordinates described 
in an assembly coordinate system. We applied the same meth-
od as that employed in Ref. [24] to obtain the point sampling 
set from the 3D surface model, which is represented as a tri-
angular mesh. The sampling equation is shown in Eq. (2). 

 

( ) ( ) ( )1 1 1 2 2 1 2 31 1 .s r v r r v r r v= - + - +  (2) 

 
In Eq. (2), s represents the coordinates of a randomly sam-

pled point in the target mesh, v1, v2 and v3 represent the vertex 
coordinates that are used to construct a target triangular mesh 
face, and r1 and r2 are random values between 0 and 1. By 
repeatedly selecting the target mesh and generating point 
samples using Eq. (2), we can obtain the intended number of 
point samples. The selection of the target mesh is adaptively 
performed using the weighted random sampling, where the 
weight of each mesh face is proportional to the area of the 
mesh face. As a result, point samples are uniformly distributed 
along the entire surface of the 3D model. The corresponding 
normal vectors for each point sample are also stored as-is, if 
the source model has face normal information, while the cross 
product of two vertex pairs is stored if the face normal is miss-
ing in the source model. 

 
4.2.2 Dissimilarity measurement process for assembly rela-

tionship 
Based on the fact that the assembly relationship can be ob-

tained from the relative position and orientation of parts com-
prising an assembly, we propose a method to measure the 
dissimilarities of the assembly relationship based on shape 
distributions. Fig. 4 illustrates the proposed dissimilarity 
measurement process for the assembly relationship. Let two 
target assembly models for comparison–usually in retrieval 
case, one assembly model from database and the other from 
user input- be assembly A and assembly B. Based on our 

method explained in Sec. 4.2, we first found assembly models 
with similar assembly structures using the approach proposed 
in Refs. [22, 23] before shape distribution-based comparison. 
Therefore, we can assume that the number of comprising part 
of assembly A and assembly B are identical, and correspon-
dence between parts among two assembly models are known. 
Let the number of comprising part of assemblies A and B be M, 
so that assembly A has {A1, A2, …, AM} and B has {B1, B2, …, 
BM} as its comprising part set. Without loss of generality and 
for the convenience of explanation, let part models with iden-
tical index be corresponding part models. Through the pre-
processing described in Sec. 4.2.1, point set and normal vector 
set (Sm

A,Nm
A) and (Sm

B,Nm
B) –where m = 1…M; of part Am and 

Bm are obtained. The point set and normal vector set are used 
as input for the next step, which is divided into the sampling 
stage and dissimilarity comparison stage. In the sampling 
stage, we calculate the function values (AADs) for the assem-
bly relationship for target assembly models assembly A and 
assembly B. In the dissimilarity computation stage, we convert 
the calculated values into PDFs, after which we calculate the 
distances between two PDFs to determine the metric dissimi-
larity of the assembly relationship Da. 

 
4.2.2.1 Sampling stage for assembly relationship 

In Fig. 4, N is the target number of samples. Then, we re-
peatedly performed the sampling process described below N 
times. First, we selected two indices of parts from 1 to M with 
uniformly distributed random sampling, where M is the num-
ber of parts comprising an assembly. Our method considers 
each part in the assembly to have an equal weight in the as-
sembly relationship. We refer to the selected indices as i and j; 
part models Ai and Aj are selected from assembly A, while part 
models Bi and Bj are selected from assembly B. In the next 

 
 
Fig. 4. Dissimilarity measurement process for assembly relationship. 
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step, we select a single point from each of the four point sets 
Si

A, Sj
A, Si

B, Sj
B of part model Ai, Aj, Bi and Bj. Therefore, two 

point pairs are selected from assemblies A and B, where those 
points are belong to the corresponding parts between the two 
assemblies. Using the coordinates and normal vectors of one 
point pair for each assembly, we calculate the AAD shape 
function proposed in Ref. [25]. As we described earlier, the 
AAD shape function is for a 2D PDF, where the Euclidean 
distance and the magnitude of the dot product of the two vec-
tors form two axes. We denote calculated value as AAD, that 
is, the 2-tuple value of D2 and the Angle, as shown in Eq. (3). 

  
2 , p 1,p p pAAD D Angle N= Îé ùë û    (3) 

 
where N  is the number of intended samples. 

D2
p indicates the Euclidean distance of the point pair, and 

Anglep indicates the magnitude of the dot product of the corre-
sponding normal vector pair. Note that the range of each An-
glep is [0,1]. By performing N repetitions, we can obtain 2N 
number of AADs for assemblies A and B. Intuitively, obtained 
AAD value expresses difference of position and orientation of 
part i and j in an assembly model. As we described in Sec. 
4.2.1, set of point position and normal vector is expressed in 
an assembly coordinate system. Thus, the distance between 
two points sampled in different part models encodes the dis-
tance between two part models, and the angle between two 
vectors encodes the orientation between two parts as distribu-
tion. 

 
4.2.2.2 Dissimilarity computation stage for assembly relation-

ship 
From N AADs, a 2D PDF is generated for each assembly; 

two axes of the 2D PDF are the D2 distribution and Angle 
distribution. Because the ranges of the D2 and Angle values 
differ according to the model, a normalization process is re-
quired. In particular, for the D2 value, the scale difference 
realized by directly comparing the models affects the range of 
the D2 value. Therefore, a scale invariant comparison is en-
abled after normalization of the D2 distribution and Angle 
distribution. 

In existing shape distribution-based studies, each axis of a 
PDF is divided into a predefined number of bins for the nor-
malization. In order to equalize the number of bins in each 
PDF, the interval length of the bin should be defined. To de-
termine the interval length of the bin, methods using the 
maximum value of D2 or the mean value of D2 were pro-
posed. We applied the normalization method based on maxi-
mum value. Number of bins in D2 and Angle are fixed; thus 
intervals for each bin is decided by dividing maximum value 
of D2 and Angle of each model by the number of bins. Nor-
malization of PDFs allows scale-invariant shape comparison. 
In case of Angle, the result value of each sample is strictly 
limited in the range [0, 1] so it is reasonable to fix the number 

of bins. However, D2 value can vary according to the model 
scale. If overall scales of two models differ, dissimilarity can 
be amplified due to the bias if adaptive normalization method 
is applied such as the method proposed in Ref. [10]. Therefore 
we decided to adopt maximum-based normalization method 
with fixed number of bins.  

After normalization, the generation of the 2D PDF is 
straightforward. Fig. 5 shows the illustrated 2D PDF. Two 
axes of the 2D PDF are the D2 distribution axis and the Angle 
distribution axis; the D2 axis is divided into nD2 bins, and the 
Angle axis is divided into nA bins. The brighter part indicates a 
low-probability bin, and the darker part indicates a high-
probability bin. The probability of each bin is the number of 
AADs that belong to the bin divided by N, which is the total 
number of AADs for an assembly. 

The final dissimilarity value of the assembly relationship is 
metrically calculated by the distance between the two PDFs of 
the models. In related studies, experiments with various dis-
tance metrics were performed including the Minkowski Ln 
norm, the earth mover’s distance, and elastic matching. From 
our results and those reported from related studies, the type of 
distance metric does not significantly affect the resulting dis-
similarity value. We applied the Minkowski L1 norm, as in Eq. 
(4), because it is the simplest and fastest distance metric. 

 

( )
2

1 , ,
1 1

, .
D An n

L p q p q
p q

Distance X Y x y
= =

= -åå            (4) 

 
In Eq. (4), X and Y indicate the 2D PDFs, where xi,j and yi,j 

are the probabilities for the p-th and q-th bins in the D2 axis 
and Angle axis, respectively. nD2 and nA indicate the number of 
bins in each axis. The resulting distance represents the dis-
similarities in the assembly relationship Da between two as-
sembly models. 

 
4.2.3 Dissimilarity measurement process for part shape 

For dissimilarities of part shapes Dp, a similar process can 
be applied. The process diagram for the comparison of the part 
shapes is shown in Fig. 6. Unlike the process for the assembly 
relationship, only the point set and normal vector set for each 
individual part are used in the sampling process, while the 
dissimilarity computation process is similar to that of the as-
sembly relationship. 
 

 
 
Fig. 5. Illustrated 2D PDF. 

 
 



 H. Kim et al. / Journal of Mechanical Science and Technology 31 (12) (2017) 5627~5638 5633 
 

  

5. Experiments 

5.1 Test models for experiments 

To test and validate our proposed method, we performed 
several experiments where we measured the dissimilarities 
between the test 3D CAD assembly models. Four base assem-
bly models A, B, C and D provided by the company “D”, one 
of the largest shipbuilding companies in the world, were pre-
pared for experiments.  

As shown in Figs. 7 and 8, assembly models A and B con-
sist of 5 part models whereas assembly models C and D con-
sist of 7 part models. Assembly models A and C were created 
using Aveva Marine. Assembly models B and D created using 
Intergraph SmartMarine 3D were remodelled versions of as-
sembly models A and C, respectively. Each assembly model 
represents the 3D design of a unit object for an offshore plant. 
Each part model represents the 3D design of a branch object. 
A unit object consists of branch objects. 

Assembly models A and C (Assembly models B and D) 
have different level of detail of their parts, as shown in Fig. 9; 
assembly models B and D have simpler part shapes than as-
sembly models A and C. A flipped normal was observed in 
several part models of assembly models B and D; surfaces 
with a flipped normal are rendered in dark color in Figs. 7 and 
8. Scales of the original assembly models (A and C) and the 
remodelled assembly models (B and D) are different; the re-
modelled models are approximately 1/1000 of the original 
models. 

From the four base assembly models, ten variation assem-
bly models were generated by changing assembly relationship 
of assembly models, as shown in Figs. 10 and 11. The varia-
tions of assembly relationship are differences in orientation, 
position, position and orientation. Test assembly models B-
Base and C-Base are the same as assembly models B and C. 

Test assembly models A-Base and D-Base are the same as 
assembly models A and D. Test assembly models A-Orien and 

 
 
Fig. 7. 3D CAD base assembly models A and B prepared for experi-
ments. 

 

 
 
Fig. 8. 3D CAD base assembly models C and D prepared for experi-
ments. 

 

 
 
Fig. 6. Dissimilarity measurement process for part shape. 
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D-Orien contain a part (Part models A-P5 and D-P7) that has 
a different orientation compared to test assembly models A-
Base and D-Base. Test assembly models A-Pos and D-Pos 
contain a part (Part models A-P1 and D-P7) that has a differ-
ent position compared to test assembly models A-Base and D-
Base. Finally, test assembly models A-Pos_Orien and D-
Pos_Orien contains a part (Part models A-P5 and D-P7) that 
has a different position and orientation compared to test as-
sembly models A-Base and D-Base. 

 
5.2 Test cases and experiment settings 

We defined five test cases and conducted experiments to 
measure the dissimilarity between assemblies for the five test 
cases. The test cases are summarized in Table 1. In the first 
test case, we measured the dissimilarity between test assembly 
models A-Base and B-Base, and test assembly models D-Base 
and C-Base; two assemblies to be compared have an identical 
assembly relationship but different shapes for each part model. 
Test cases 2-4 measure the dissimilarity of test assembly mod-
els A-Base and D-Base with test assembly models A-Orien, A-
Pos and A-Pos_Orien and D-Orien, D-Pos and D-Pos_Orien, 
respectively. In these cases, the shapes of the parts comprising 
an assembly are identical, but the position and orientation of 
the parts are different according to the changes in the assem-
bly relationship. Finally, in test case 5, we measured the dis-
similarity of test assembly models A-Orien and B-Base with 
test assembly models D-Orien and C-Base; two assembly 
models to be compared have different part shapes as well as 
different assembly relationship. 
The parameters determined for the experiments that measure 
the dissimilarity between test assemblies are as follows. Pa-
rameters are selected based on the Refs. [24, 25] with consid-
eration of performance and computation cost. In case of sam-
ple number(N), higher number results in accurate similarity 
with higher computational cost. Target 3D models of our re-
search are 3D CAD models with relatively complex shapes. 
Thus, we set a higher sample number similar to Ref. [24].  

 
 
Fig. 9. Differences in two part models between assembly models. 

 

Table 1. Five test cases for experiments. 
 

 
 

 
Fig. 10. Generation of five variation assembly models from two base 
assembly models A and B for experiments. 

 
 

 
 
Fig. 11. Generation of five variation assembly models from two base 
assembly models C and D for experiments. 
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Table 2. Measured dissimilarities of part models in test assembly models A-Base, A-Orien, A-Pos, A-Pos_Orien and B-Base. 
 

 
 

Table 3. Measured dissimilarities of part models in test assembly models C-Base, D-Base, D-Orien, D-Pos, and D-Pos_Orien. 
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   We conducted experiments with different parameter settings 
for the number of bins in D2 with {32, 64, 128} and Angle 
with {4, 8, 16} according to the Ref. [25]. In these parameter 
settings for the number of bins, we observed no significant 
changes such as changes in order of similarities between test 
cases. Therefore we decided to report the experimental results 
from parameter setting 64 and 8 in the number of histogram 
bin for D2 and Angle, respectively. 

In summary, from each 3D CAD part model, 10000 points 
and normal vectors are generated for the point set and normal 
vector set. The sampling number, N, is 1024 times 1024 for 
PDF generation. As mentioned in Sec. 4, the numbers of bins 
for the D2 and Angle axis are fixed as 64 and 8 respectively in 
our experiments. To compare our results with those of an ex-
isting study, we also developed a comparison method pro-
posed in Ref. [25], while the same parameter is used for the 
point set, normal vector set, sampling number, and number of 
bins. 

 
5.3 Experiment results 

Table 2 shows the measured dissimilarities between two 
part models included in test assembly models A-Base, A-Orien, 
A-Pos, A-Pos_Orien and B-Base used in the test cases 1-5. In 
Table 2, the column-wise lowest dissimilarity values are 
shown in bold text. Because assembly models (Test assembly 
models A-Base, A-Orien, A-Pos and A-Pos_Orien) have same 
part shapes in test cases 2-4, the resulting dissimilarity of two 
part models corresponding to each other is close to zero. Be-
cause assembly models with different part shapes are com-
pared in test cases 1 and 5 (Test assembly models A-Base 
versus B-Base, test assembly models A-Orien versus B-Base), 
the resulting dissimilarity of two part models corresponding to 
each other is higher compared with other test cases. However, 
in all the test cases, a part model have the lowest dissimilarity 
with its corresponding part model among all part models to be 
compared. 

Table 3 shows the measured dissimilarities between two part 
models included in test assembly models D-Base, D-Orien, D-
Pos, D-Pos_Orien and C-Base used in the test cases 1-5. In 
Table 3, the column-wise lowest dissimilarity values are shown 
in bold text. Table 3 shows the same trend as Table 2. 

The dissimilarity values measured by our proposed method 
and that of Ohbuchi et al. [25] for ten test cases are summa-
rized in Tables 4 and 5. In these tables, the dissimilarity of the 
part shape in the proposed method is determined by averaging 
the dissimilarities of comprising parts; in each test case, the 
dissimilarity of the part shape is measured between each part 
of a test assembly and its corresponding part of another test 
assembly. In this table, we measured the dissimilarity values 
using the method proposed by Ohbuchi et al. [25] by treating 
an assembly model as a single shape (Single part).  

In the case of the part-shape dissimilarity, test cases 1 and 5 
show high dissimilarities, while test cases 2-4 show lower 
dissimilarities. In the case of the assembly relationship dis-

similarity, test case 1 shows the minimum dissimilarity value 
because two assembly models in this test case have the same 
assembly relationship. From these results, we found that the 
proposed method efficiently measures the dissimilarity be-
tween part shapes and the dissimilarity in the assembly rela-
tionship.  

When we compare our proposed method with the existing 
method [25], the main advantage of our method is that it pro-
vides separate dissimilarity values for the shapes of parts and 
the assembly relationship, and thus provides more detailed 
information on the dissimilarity when we compare 3D CAD 
assembly models. For example, dissimilarities measured by 
the method proposed by Ohbuchi et al. [25] are similar in test 
cases 1 and 4; test cases 1 and 4 show a 0.03 and 0.01 differ-
ence in the dissimilarity in Tables 4 and 5, respectively. How-
ever, there are very different reasons for the occurrence of the 
dissimilarity between the test assemblies in the two test cases. 
In test case 1, the dissimilarity is due primarily to the differ-
ence in the part shapes, while in test case 3, it is primarily due 
to the difference in the assembly relationship. Existing distri-
bution-based methods cannot distinguish between test cases 1 
and 3, while the proposed method can do so.  

The second advantage of the proposed method is that it is 
simple and robust by virtue of adopting a distribution-based 
method for the comparison of 3D CAD assembly models. The 
proposed method can be applied to almost all types of 3D 
CAD models, whether they are feature-based, CSG, B-rep, or 
mesh models. In addition, the proposed method does not re-
quire any higher level information for the comparison opera-
tion to be performed. 

In calculating Dp and Da of test cases, 143 and 200 millisec-
onds elapsed in average. We observed that point indexing for 
each part model consumed additional time when calculating 
Da. In application such as shape retrieval system, PDFs corre-
sponding to the 3D models in the database are generated once 
as an off-line process before search operation. In on-line proc-
ess when query model input is given, PDF for query model is 
generated and distance calculation between PDFs in the data-
base and query model is performed to measure similarity. In 
our experiments, distance calculation between two PDFs is 
done in 0.01 millisecond. Therefore rapid retrieval process is 
possible with shape distribution-based comparison method. 

However, the proposed method has the following limita-
tions. In the proposed method, dissimilarity results of the as-
sembly relationship and part shape are not completely inde-
pendent from each other. In the results of test case 1 shown in 
Tables 4 and 5, the dissimilarity of the assembly relationship 
was measured not as close to zero but as 0.134392 and 
0.172878 even though two assembly models had the same 
assembly relationship. This is because points and normal vec-
tors used for the assembly relationship were also sampled 
from each of the parts, which have different shapes in this test 
case. We can observe the same effect by comparing the results 
of test case 2 and test case 5 in Table 4. In these test cases, 
difference in assembly relationship are the same between two 
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assembly models to be compared (test assembly model A-
Base versus A-Orien and test assembly model B-Base versus 
A-Orien). It means that assembly relationship dissimilarities 
calculated in these test cases are similar to each other. How-
ever, resulting dissimilarity of assembly relationships differ 
between test cases 2 and 5 because the difference of part shape 
affects dissimilarity measure of assembly relationship in test 
case 5. Nevertheless, the relative differences in the dissimilar-
ity for the assembly relationship among the test cases remain 
valid; assembly relationship dissimilarity value calculated 
between assembly models with the same assembly relation-
ship is lower than that between assembly models with the 
different assembly relationship. This guarantees the suitability 
of the proposed method for engineering applications such as 
3D CAD assembly retrieval. 

 
6. Conclusion 

In this paper, we proposed a new shape distribution-based 
holistic method for the comparison of 3D CAD assembly 
models. Contrary to existing methods, this method discrimi-
nates part-shape dissimilarities and assembly relationship dis-
similarities, and evaluates two types of dissimilarities based on 
the shape distribution-based method. The separation of the 
part-shape dissimilarity and the assembly relationship dissimi-
larity enables the analysis of detailed dissimilarity characteris-
tics between assembly models.  

To test and validate our proposed method, we performed 
several experiments where we measured dissimilarities be-
tween test 3D CAD assembly models. From the experiments, 
we concluded that our method can provide an improved de-
scription of dissimilarities in assembly models compared with 
existing methods that process an entire assembly model as a 
single shape (Single part).  

However, the proposed method also has two limitations. 
First, there is a dependency between the part-shape dissimilar-
ity and the assembly relationship dissimilarity. Second, intui-
tive differences in the assembly relationship are not directly 
reflected by the dissimilarity value of the assembly relation-
ship. In future study, we will aim to find solutions for these 
limitations. 
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